
VDMWEB: A WEB-BASED VDM ANIMATION TOOL
PRESENTATION BASED ON A Literate Programming and Animation Environment for VDM

Harry Hughes and Leo Freitas

Newcastle University



INTRODUCTION
AIMS/OBJECTIVES

To provide tools to accomplish two goals:

1. A literate programming environment (LPE), in the style of Jupyter Notebook1 for VDM.

2. A framework to write GUI and animation system on top of VDM models.

3. An LPE enabling embedded animations/GUI linked with VDM specifications.

To assist development and exploration of VDM models.

1Jupyter Notebook available at https://jupyter.org/
1 / 20

https://jupyter.org/


INTRODUCTION
HOW THIS COULD HELP STAKEHOLDERS AND DEVELOPERS

Communication of technical information to non-technical audiences:

1. Raw program/specification code with comments in code make sense to programmers.

2. A console/command line based interface: avg. user rarely interacts with this kind of interface.

The proposal is to provide a solution as:

1. Literate programming allows the developer to put rich-text in-between code cells to explain
functionality.

2. Animations and GUIs allow users to interact with the underlying model visually.

2 / 20



INTRODUCTION
INTENDED DESIGN

The design plan is:

▶ A notebook extension for Visual Studio Code (VSCode), providing the literate environment.

▶ A Java based web-server extension:
• allowing the hosting of a REST API
• model interaction (sending commands etc.)
• static web content.

The REST API/static web server will enable the user to write simple web front-ends to be displayed
for user interaction through a range of UI design options.

3 / 20



INTRODUCTION
REST API AND WEB CONTENT

The decision to use a web server as a backend was in part driven by the design of VDMJ2 and VS
Code.

VSCode allows embedding of custom web output in a notebook via the Notebook API3.

It became clear that providing web-server based hosting for VDM was a useful contribution with
wide-ranging potential applications too.

2VDMJ is available at https://github.com/nickbattle/vdmj
3VSCode Notebook API documentation at https://code.visualstudio.com/api/extension-guides/notebook

4 / 20

https://github.com/nickbattle/vdmj
https://code.visualstudio.com/api/extension-guides/notebook


INTRODUCTION
ORIGINAL DESIGN DIAGRAM

Notebook

LATEX/MD

Backend

Doc Cells

Output Cells

Literate Cells

Code Cells VDMJ

LATEX

Figure 1. Equivalent of the WEB system from Knuth (1992) for this project

Figure 1 displays our initial design revised during later.

5 / 20



INTRODUCTION
SECOND DESIGN DIAGRAM

Notebook LATEX/MD

Backend Manager

Isolated VDMJ Process

REST API

Doc Cells

Output Cells

Literate Cells

Code Cells

Starts

Rich Text

Commands

Webpage output/input

Figure 2. New version of Figure 1, reflecting design changes

Figure 2 reflects the final design, from input to output.

It does obfuscate some of the aspects of handling certain complications.

6 / 20



JUPYTER NOTEBOOK STRUCTURE

Figure 3. A Jupyter Notebook open in VSCode

VSCode running Python Jupyter Notebook window, with code output embedded after the code that
produced it.

7 / 20



JUPYTER NOTEBOOK STRUCTURE
INDICATING OUTPUT FOR JUPYTER TO DISPLAY

The previous slide code is interpreted by Jupyter line-by-line in the Python interpreter.

Figure 4. Code from Jupyter example

▶ The first line declares that matplotlib (a Python graphing library) should output it’s plots
through the Jupyter notebook interface.

▶ This system our inspiration for our VDM Notebook system. An equivalent system could
declare how to output animations from a model and where.

8 / 20



JUPYTER NOTEBOOK STRUCTURE
BINDING WEB PAGE OUTPUT WITH ANNOTATIONS

We use VDM annotations as binding mechanism for REST API links. Listing 2 shows a concrete

example.

The annotation points to a folder containing HTML/JS/CSS constituting a website that can send
requests to vdmj-remote to query the model.

1 --@WebGUI("<nickname>", "<path to static web folder>")
2 module Conway
3 ...
4 functions
5 -- Perform one generation
6 generation: Population -> Population
7 generation(pop) ==
8 (pop \ deadCells(pop)) union newCells(pop);
9 ...

10 end Conway

Listing 2. Example of annotation webpage binding

The sample is an implementation of Conway’s Game of Life, used as the test model.

We are working on moving VDMJ-remote calls as VDM annotations to simplify the HTML/JS/CSS
setup.

9 / 20



Part I

APPROACH

10 / 20



VDM NOTEBOOK

Our working prototype (Figure 5) shows the idea works effectively.

It replicates the functionality of the ConwayNB4 animation example through VDMJ’s
RemoteControl mechanism.

Figure 5. The original working prototype

4ConwayNB example available at https://github.com/leouk/VDM_Toolkit/tree/main/experiments/vdm/Games/ConwayNB
11 / 20

https://github.com/leouk/VDM_Toolkit/tree/main/experiments/vdm/Games/ConwayNB


VDM NOTEBOOK
ISSUES WITH NOTEBOOKS AND VDM MODELS

Jupyter Notebook is designed to develop Python, which is interpreted line-by-line.

During development, it became clear that using VDMJ for the interpreter meant that all code for a
model had to be loaded at once.

This meant the primary purpose of splitting up code into blocks in a notebook was somewhat
pointless.

We pivoted to web-based VDMJ. This brought advantages of VDM models being hosted as web
servers and allowing animations to be built atop them.

12 / 20



VDMJ REMOTE

VDM Files

Webpage/app

Web Client

Web-Server

Web Server

Webpage with tabs per annotation

VDMJ Remote

VDMJ

VDMJ Instance

WebGUI SessionWebGUI Output

Passed to Starts ->
<- Logs

Starts

Hosts

Embeds

Loads

Requests
WebGUI info

Requests

Starts

Figure 6. Broad systems diagram

Figure 6 shows a diagram of how VDMJ Remote works.

Each WebGUI annotation starts a separate web server to host it’s specific output content.

13 / 20



WORKING VERSION DEMO

(a) Console (b) GUI

Figure 7. Prototype of VDM Notebook embedding VDMJ Remote in VS Code

Figure 7 shows screenshots of the working prototype, the output always has a terminal tab, but can
also have as many annotation-specified @WebGUI(...) outputs in separate tabs.

14 / 20



VIDEO DEMO

Below is a link5 to a video demo of a webpage running atop a model (Conway’s GoL) running in
VDMJ Remote. The webpage is developed in React and calls the REST API provided by VDMJ
Remote.

Figure 8. Demo video link (click on image)

5Video url: https://youtu.be/0OYVLfd1g0o
15 / 20

https://youtu.be/0OYVLfd1g0o
https://youtu.be/0OYVLfd1g0o


OUTCOME

The primary output of this project is the VDMJ Remote6.

▶ Provides regulated (but not yet secured) access to a VDM model via HTTP requests.

▶ Can host static web content dynamically through the @WebGUI annotation in the model given
at runtime.

▶ Includes a limited VDM console and tabs system on the root page.

6VDMJ Remote available at https://github.com/pointerless/vdmj-remote
16 / 20

https://github.com/pointerless/vdmj-remote


Part II

WORK YET TO BE DONE

17 / 20



POTENTIAL EXTENSIONS/MODIFICATIONS
IMPROVEMENTS

Some options to improve VDMJ Remote are available:

▶ Adapting VDM objects to be serialized as JSON - This would improve compatability with other
technologies.

▶ API for directly interacting with internal VDMJ functionality rather than just via a simulated
command line.

▶ Optimisation improvements to allow fast, automated model testing.

18 / 20



POTENTIAL EXTENSIONS/MODIFICATIONS
PERFORMANCE/STRESS TESTING

exec endpoint Command Queue

VDMJ HandlerVDMJ Instance

Add Command ->
<- Wait to Receive Result

<- Execute Command
Collect Output ->

Request Thread

VDMJ Handler Thread

Wait for/Take next

Send result

Request

Figure 9. Parallel system for command execution, preventing race conditions

Figure 9 shows the system for queuing up commands for the VDMJ terminal, executing them, and
sending back the result. This had to be implemented to prevent race conditions on simultaneous

requests. While this has been tested, it has not been measured for high-throughput situations.

19 / 20



POTENTIAL EXTENSIONS/MODIFICATIONS
FURTHER PROJECTS

A variety of options are available for futher projects:

▶ Adapting VDMJ-Remote to work as a Jupyter Kernel - This would require modification of both
VDMJ-Remote and VDMJ to allow piecemeal parsing to a certain degree but would allow a
VDM Notebook to run wherever Jupyter can.

▶ Develop Python VDMJ Bindings - This could provide an equivalent to the above, but with the
additional benefit of easily embedding VDM models in a wide set of applications. An issue is
that there is no Java-Python engine available that is up to date with current Python versions (at
time of writing).

20 / 20


	Introduction
	Aims/Objectives
	How this could help stakeholders and developers
	Intended Design
	REST API and Web Content
	Original Design Diagram
	Second Design Diagram

	Jupyter Notebook Structure
	Indicating output for Jupyter to display
	Binding web page output with annotations

	Approach
	VDM Notebook
	Issues with notebooks and VDM models

	VDMJ Remote
	Working version demo
	Video Demo
	Outcome

	Work yet to be done
	Potential Extensions/Modifications
	Improvements
	Performance/Stress Testing
	Further Projects



