
VDM2Dafny:
An Automated Translation Tool for VDM-SL to Dafny

Integrated Master’s dissertation project presentation
Adam Winstanley – Leo Freitas

Aims and Objectives

• Establish translation environment from Dafny to VDM.
• Part of a master’s dissertation within 2 months time constraints.

• Cover relevant subset of VDM-SL for translation to Dafny
• Targets parts of VDM-SL which overlap with Dafny implementations.
• Dafny VDM preamble library.

• The approach to translation aims to be extensible and modifiable.

Background: Languages

• Both target languages are:
• Specification languages.
• Formally defined.

• Possible to extend current translations with the object-oriented
features of VDM++, as Dafny supports this paradigm.

• Dafny has:
• Native support of the .NET platform with compilation to .dll libraries
• Powerful static program verifiers (e.g. SAT/SMT solvers).
• Natively supported translation capabilities to other languages.

Background: Translation Tools

• Existing translation tools:
• VDM2UML
• VDM2C
• VDM2Java
• VDM2Isa

• Translation through as an VDMJ compiler plugin

• Works within tools for development in VDM.

Why Dafny?

• Built-in compatibility with the .NET platform.
• Automatically compiled C# libraries, which extends the number

of compatible modern languages that VDM can access.
• Similarities between the languages. There are a few missing

features in Dafny.
• Additional features in Dafny:

• Built on top of the Boogie platform.
• User declared lemmas for improved proof automation.
• Natively supports classes in specification.

Required Technologies

• The tool operates as a plugin for the VDMJ compiler.
• VDM2Isa from the VDMToolkit was used as a basis for:

• Hooking into VDMJ.
• Structure of the project.
• Command registration code.

• String templates are used to produce translations.

Grammar Rules

• Formal rules by which a language is
defined.

• Generally use Backus-Naur Form
notation to describe the syntax.

• These rules are available for both
Dafny and VDM.

• Translation strategies were devised
with these rules in mind.

[1]: Dafny Reference Manual. Available at: https://dafny.org/latest/DafnyRef/DafnyRef#g-type
[2]: VDM Language Manual 10. Available at: http://lausdahl.github.io/overturetool.github.io/files/VDM10_lang_man.pdf

[1]

[2]

https://dafny.org/latest/DafnyRef/DafnyRef#g-type
http://lausdahl.github.io/overturetool.github.io/files/VDM10_lang_man.pdf

String Templates

• Originally a part of Antlr.
• Separated as a standalone tool.
• Allows for various useful expressions in a

template to simplify writing translations.
• Allows for a grammar-inspired translation

strategy.
• Works as a simple markup language with very

limited expressions which are rendered
through the Java package.

Translating VDM-SL: Overview

• Use of the VDMJ compiler classes to produce an AST
structure.

• Type checker objects are used to produce translation
objects.

• Translation objects handle template loading and rendering
to string.

Translating VDM-SL: Visualising translation

• Each module produces an individual tree
structure.

• Each node has a translate() method to
produce the Dafny code.

• Calling the translate() method will also
translate all the children of
the node.

Only non-null fields are shown

Translating VDM-SL: Problems with ST

• Certain translations do not require the use of a
template to translate.

• Using templates for every simple translation would
considerably bloat the project.

• This is where the template would be incredibly simple, I.E.
adding quotes to a string literal.

• Using reusable Java code for these avoids unnecessary
loading and unloading of templates.

• ST can be poor at explaining errors.

Translating VDM-SL: Building up Dafny code

1. Checks and adds any required Dafny attributes to
the function.

2. Calls a separate template to handle the function’s
name and parameters.

3. Calls a separate template to handle the function’s
requires, ensures, and decreases clauses.

4. Checks if the function has been specified, and adds
the body expression if it has.

.translate()

Production of the Helper Module

• Implements nat1, seq1, set1, and optional types into Dafny.
• Provides function implementations for:

• Map overrides/unions.
• Domain/range restriction/exclusion.
• Distributed sequence concatenation.
• Function iteration and compositions.
• Exists1, and Iota functions.

• Lemmas to aid in type ordering proofs.
• Written into Dafny from the VDM language manual.

Demonstration of the tool

What hasn’t been done
• State definitions.

• Attempts have been made, but a global program state is difficult in Dafny.
• Iota expressions.

• Possible to translate but is difficult for the static provers to discharge and can fail when in use.
• Assignments, cases expressions.

• Some patterns are not supported in Dafny assignments/match expressions.
• Field/make expressions for union types.

• The current point of translation loses some important context for translating these properly to
Dafny with the current strategies.

• Sequence comprehension.
• Impossible to translate due to a difference in how VDM-SL and Dafny handle sequence

comprehension.
• Error statements, non-determinism.

• Impossible to translate, these are not included in Dafny by design.

Known Issues

• Language incompatibilities.
• Differences in union type construction cause issues in fully

automated translation.
• Some important context is lost for some translations currently.

• Lacking proof obligations.
• Could be resolved by automatically adding lemmas to manually

discharge.

• Automated casting of types.
• This is handled in some cases but is problematic when comparing

custom number types.

What could have been done better?

• Use of VDMJ class mapping would have been better than
traversing the AST manually.

• Implementation of missing language features.
• Automated production of lemmas to discharge in Dafny.
• Extensions to VDM++ and VDM-RT.

	VDM2Dafny: �An Automated Translation Tool for VDM-SL to Dafny
	Aims and Objectives
	Background: Languages
	Background: Translation Tools
	Why Dafny?
	Required Technologies
	Grammar Rules
	String Templates
	Translating VDM-SL: Overview
	Translating VDM-SL: Visualising translation
	Translating VDM-SL: Problems with ST
	Translating VDM-SL: Building up Dafny code
	Production of the Helper Module
	Demonstration of the tool
	What hasn’t been done
	Known Issues
	What could have been done better?

