Introduction

VDM2Dafny:

An Automated Translation Tool for VDM-SL to Datny

Integrated Master’s dissertation project presentation

yoeorddy punoisyoeg

Adam Winstanley — Leo Freitas

uorenyeAy]

Introduction

Aims and Objectives

* Establish translation environment from Dafny to VDM.
e Part of a master’s dissertation within 2 months time constraints.

yororddy punoisyoed

* Cover relevant subset of VDM-SL for translation to Dafny

e Targets parts of VDM-SL which overlap with Dafny implementations.
e Dafny VDM preamble library.

* The approach to translation aims to be extensible and modifiable.

UOIJeNeAT]

oIju]

Background: Languages

Background
* Both target languages are:
» Specification languages. =
* Formally defined. E
* Possible to extend current translations with the object-oriented 3

features of VDM++, as Dafny supports this paradigm.

* Dafny has:
* Native support of the .NET platform with compilation to .dll libraries
e Powerful static program verifiers (e.g. SAT/SMT solvers).
* Natively supported translation capabilities to other languages.

Uor)en[eAr

oIju]

Background: Translation Tools

Background
* Existing translation tools:
* VDM2UML -
* VDM2C S
. VDM2Java 3
* VDM2lsa

* Translation through as an VDMJ compiler plugin

* Works within tools for development in VDM.

uorenyeAy

oIju]

Why Dafny?

Background

* Built-in compatibility with the .NET platform.
* Automatically compiled C# libraries, which extends the number §
of compatible modern languages that VDM can access. :
=

 Similarities between the languages. There are a few missing
features in Dafny.

e Additional features in Dafny:
* Built on top of the Boogie platform.
* User declared lemmas for improved proof automation.
* Natively supports classes in specification.

uorjen[eA]

oIuy

Required Technologies

Background
* The tool operates as a plugin for the VDMJ compiler.
* V\DM2Isa from the VDMToolkit was used as a basis for: =
* Hooking into VDML. E
 Structure of the project. =

e Command registration code.

 String templates are used to produce translations.

UOT)eneAL]

Grammar Rules

* Formal rules by which a language is
defined.

* Generally use Backus-Naur Form
notation to describe the syntax.

* These rules are available for both
Dafny and VDM.

* Translation strategies were devised
with these rules in mind.

[1]: Dafny Reference Manual. Available at: https://dafny.org/latest/DafnyRef/DafnyRef#g-type
[2]: VDM Language Manual 10. Available at: http://lausdahl.github.io/overturetool.github.io/files/VDM10 lang man.pdf

Type = DomainType | ArrowType

DomainType_ =
(BoolType | CharType | IntType | RealType
| OrdinalType | BitVectorType | ObjectType
| FiniteSetType | InfiniteSetType
| MultisetType
| FiniteMapType | InfiniteMapType
| SequenceType

punoisyoey oIyuf

| MatType

| StringType_
| ArrayType_
| TupleType

| MamedType

: [1]

type = |bracketed type|
basic Lype
quote type;
composile Lype
union type

[product type
optional type

|
|
|
|
|
|
| [set typel
|
|
|
|
|

Approach

seq Lype
map type
partial function type
|?!r'r~f: name|

|l],.r|:u|: vanably ; [2]

ToTyen[eAR]

https://dafny.org/latest/DafnyRef/DafnyRef#g-type
http://lausdahl.github.io/overturetool.github.io/files/VDM10_lang_man.pdf

String Templates

punoisyoeyg oIyuf

* Originally a part of Antlr.
* Separated as a standalone tool.

* Allows for various useful expressions in a

template to simplify writing translations. Asjiseadn

* Allows for a grammar-inspired translation
strategy.

* Works as a simple markup language with very
limited expressions which are rendered
through the Java package.

uoreneAy

Translating VDM-SL: Overview

e Use of the VDMJ compiler classes to produce an AST

structure.

* Type checker objects are used to produce translation

objects.

* Translation objects handle template loading and rendering

to string.

AST

——Traverse—m

TC objects

—Construct—

Translation
Objects

Load
template

ST

| Render

template

Approach

Dafny

punoisyoryg oIjuy

UOoIjeneAT]

Translating VDM-SL: Visualising translation

* Each module produces an individual tree

structure.

* Each node has a translate() method to
produce the Dafny code.

 Calling the translate() method will also
translate all the children of

the node.

module MyModule
definitions
functions

Add: int * int -> 1int

Add(a, b) == a + b

end Test
[odue | Approach
v v v
Imports Definitions Exports
Add: Function
k4 4’
| params: Parameters | | body: Add expression |
R o
a:int b int a: variable b: variable
(Parameter)| |(Parameter) expression expression

Only non-null fields are shown

punoisyoryg oIjuy

UOoIjeneAT]

Translating VDM-SL: Problems with ST

punoisyoryg oIjuy

 Certain translations do not require the use of a
template to translate.

e Using templates for every simple translation would
considerably bloat the project.

* This is where the template would be incredibly simple, I.E.
adding quotes to a string literal.

* Using reusable Java code for these avoids unnecessary
loading and unloading of templates.

Approach

e ST can be poor at explaining errors.

66 range(first, last) ::= <<
67 (set tmp | <first> <= tmp <= <last> :: tmp)
68 >>

expressions.stg 66:44: doesn't look like an expression

UOoIjeneAT]

Translating VDM-SL: Building up Dafny code

FunctionDecl(func) ::= <<

function [<if(func.attribute)><func.attribute><endif>kFunctionNameAndParams(func)>|: <func.returnType>

l<FunctionClauses(func)>|3
<if(func.specified)>{
<func.body> 4
F<endif>

>>

1. Checks and adds any required Dafny attributes to

the function.

2. Calls a separate template to handle the function’s
name and parameters.

3. Calls a separate template to handle the function’s
requires, ensures, and decreases clauses.

4. Checks if the function has been specified, and adds
the body expression if it has.

Add: int * int -> int
Add(a, b) == a + b;

.translate()

l

function Add(a: int, b: int): int
{

a+b

hy

Approach

punoisyoryg o0Iju[

UOTJeN[RAT]

Production of the Helper Module

punoisyoryg oIjuy

* Implements natl, seql, setl, and optional types into Dafny.

* Provides function implementations for:
* Map overrides/unions.
* Domain/range restriction/exclusion.
* Distributed sequence concatenation.
* Function iteration and compositions.
e Existsl, and lota functions.

Approach

* Lemmas to aid in type ordering proofs.
e Written into Dafny from the VDM language manual.

UOoIjeneAT]

Demonstration of the tool

What hasn’t been done

 State definitions.
* Attempts have been made, but a global program state is difficult in Dafny.

* |ota expressions.
* Possible to translate but is difficult for the static provers to discharge and can fail when in use.

* Assignments, cases expressions.
* Some patterns are not supported in Dafny assignments/match expressions.

* Field/make expressions for union types.
* The current Eoint of translation loses some important context for translating these properly to
Dafny with the current strategies.
* Sequence comprehension.
* Impossible to translate due to a difference in how VDM-SL and Dafny handle sequence
comprehension.
* Error statements, non-determinism.
* Impossible to translate, these are not included in Dafny by design.

yoeorddy PpuUNoOIsSyORE oIu]

Evaluation

Known lIssues

* Language incompatibilities.
» Differences in union type construction cause issues in fully
automated translation.
* Some important context is lost for some translations currently.

yoeorddy PpuUNoOIsSyORE oIu]

* Lacking proof obligations.

* Could be resolved by automatically adding lemmas to manually
discharge.

e Automated casting of types.

* This is handled in some cases but is problematic when comparing

custom number types.
Evaluation

What could have been done better?

* Use of VDMJ class mapping would have been better than
traversing the AST manually.

* Implementation of missing language features.

yoeorddy PpuUNoOIsSyORE oIu]

* Automated production of lemmas to discharge in Dafny.
e Extensions to VDM++ and VDM-RT.

Evaluation

	VDM2Dafny: �An Automated Translation Tool for VDM-SL to Dafny
	Aims and Objectives
	Background: Languages
	Background: Translation Tools
	Why Dafny?
	Required Technologies
	Grammar Rules
	String Templates
	Translating VDM-SL: Overview
	Translating VDM-SL: Visualising translation
	Translating VDM-SL: Problems with ST
	Translating VDM-SL: Building up Dafny code
	Production of the Helper Module
	Demonstration of the tool
	What hasn’t been done
	Known Issues
	What could have been done better?

