
QuickCheck for VDM

Nick Battle1[0009−0001−1523−4964] and Markus Solecki Ellyton2[0009−0000−4606−5019]

1 School of Computing, Newcastle University, UK nick.battle@ncl.ac.uk
2 DIGIT, Department of Electrical and Computer Engineering, Aarhus University, Denmark,

202302976@post.au.dk

Abstract. We describe recent work on a lightweight verification tool for VDM
specifications, called QuickCheck. The objective of the tool is to quickly cate-
gorise proof obligations: identifying those that fail with counterexamples, those
that are probably provable and those that require deeper analysis. The paper dis-
cusses the design of the tool and its use of pluggable strategies for adding extra
checking. We present the results of the tool being used to check a large set of
VDM specifications, and suggest future directions.

1 Introduction

Tools for working with VDM specifications have been able to produce proof obliga-
tions3 for many years. A proof obligation is a small VDM-SL boolean expression,
which should always be true - it should be a tautology. If this can be proved, then some
aspect of the specification has been verified, for example showing that a calculation
never divides by zero.

So formal verification of VDM specifications is centered on the proof or discharge
of proof obligations. However, until recently, tool support for the automatic discharge
of proof obligations was missing.

This situation improved with the introduction of the Isabelle translation plugin for
VDMJ [1,5]. With this plugin, both the original specification and its proof obligations
are translated into Isabelle/HOL, such that the Isabelle prover can then attempt to auto-
matically discharge them.

Although this process is very powerful, it is also very sophisticated, requiring the
user to have a thorough understanding of both the VDM and Isabelle languages. If
issues are encountered with the translation or the discharge of obligations in Isabelle,
these have to be corrected in the VDM source. The workflow is also not trivial, requiring
the user to switch between tool environments, for example.

An ideal proof system would be tightly integrated with the development tool, so that
proof obligations are generated and discharged almost without the user being aware of
them, unless issues are discovered. Of course this is difficult to achieve, but the objective
of the QuickCheck plugin is to make some progress in this direction.

QuickCheck attempts to assist the user by very quickly generating proof obligations
and labelling them with one of three main categories4. Firstly, if a counterexample

3 VDMTools [6] calls them "integrity properties"
4 See https://github.com/nickbattle/vdmj/wiki/Using-QuickCheck

https://github.com/nickbattle/vdmj/wiki/Using-QuickCheck

can be found quickly (an assignment of variables that makes the obligation expression
false), then this is displayed as a warning in the editor and it allows the counterexample
to be debugged. Secondly, if we can quickly determine that an obligation is very likely
to be a tautology, then we can indicate that it is probably provable via a theorem prover.
Lastly, if neither of these is the case, we can indicate that we are not sure whether the
obligation is provable and therefore that a theorem prover should be tried, with care.

Note that the only certain output of the QuickCheck plugin is when a counterex-
ample can be found. The other two categories are not certain without theorem prover
confirmation, but the indication of "probably provable" is still helpful - for example,
these obligations could be discharged at the start easily, leaving the user to focus effort
on the harder cases.

Section 2 looks at the design of QuickCheck and the standard strategies included
with the tool. Section 3 looks at how the tool is integrated with the VDMJ and VDM-
VSCode environments. Section 4 looks at related work, and finally Section 5 considers
future directions.

2 Analysing Proof Obligations with QuickCheck

QuickCheck tries to categorise proof obligations by directly evaluating obligation ex-
pressions. First we give some example proof obligations and show how QuickCheck
processes them. Then we describe how this is achieved with pluggable strategies. The
objective is to categorise POs as either FAILED without a counterexample, probably
PROVABLE or MAYBE, if we cannot decide.

2.1 Proof Obligations

As described above, a proof obligation is a small VDM-SL boolean expression which
must always be true if some aspect of the specification is to always have defined be-
haviour. This analysis complements ad-hoc execution testing and combinatorial testing.

For example, consider a simple function that is intended to return the item at a
particular index in a sequence:

functions
itemAt: seq of nat * nat -> nat
itemAt(list, index) == list(index);

> pog
Generated 1 proof obligation:

Proof Obligation 1: (Unproved)
itemAt: sequence apply obligation in test.vdmsl at line 3:28
(forall list:seq of nat, index:nat &

index in set inds list)

This specification generates a single "sequence apply" proof obligation, which effec-
tively says, for all possible argument combinations, the index is within the set of indexes

of the sequence passed. This obligation is required since, if the condition is not true, the
value of list(index) is not defined (the index is out of range).

A casual consideration of the obligation quickly reveals that it is not always true
(i.e., it is not a tautology), since it is easy to pass an invalid index to the list, such as an
index of 4 with a sequence of [1,2,3]. This means that the specification should be
tightened somehow to either deal with these illegal cases or prohibit them. The simplest
solution is to add a precondition which states that the arguments are legal, as follows:

functions
itemAt: seq of nat * nat -> nat
itemAt(list, index) == list(index)
pre index in set inds list;

> pog
Generated 1 proof obligation:

Proof Obligation 1: (Unproved)
itemAt: sequence apply obligation in test.vdmsl at line 3:28
(forall list:seq of nat, index:nat &

pre_itemAt(list, index) => index in set inds list)

Note that now, there is a guard condition in the obligation, which calls the precondition
of the function. The call to pre_itemAt is a total function, guaranteed to return true or
false, depending on whether or not the precondition is met. This effectively eliminates
the illegal argument combinations from the obligation and it is now a tautology (by
casual observation - this still needs to be proved).

In more realistic examples, it is not easy to determine whether an obligation is true
just by casual observation. This is where tools like QuickCheck are helpful.

2.2 Running QuickCheck

If we run QuickCheck5 on the first version of the specification above (without the pre-
condition), we get the following result:

> qc
PO #1, FAILED in 0.013s: Counterexample: index = 0, list = []

itemAt: sequence apply obligation in test.vdmsl at line 3:28
(forall list:seq of nat, index:nat &

index in set inds list)

> qr 1
=> print itemAt([], 0)
Error 4064: Value 0 is not a nat1 in test.vdmsl at line 3:28

5 We show the VDMJ command line version here for ease of inclusion in the text, but see
Section 3.2 for the graphical version.

3: itemAt(list, index) == list(index)

The FAILED status indicates that the "qc" execution fails, very quickly. It also gives a
counterexample which lists values of the variable bindings that produces a false result.

After the "qc" execution, we can run "qr" on obligation #1, which attempts to eval-
uate the function enclosing the proof obligation, using the counterexample bindings to
deduce the argument values to pass (though this is not always possible). This produces
a runtime error, which is the "problem" that the proof obligation was checking for.

On closer examination, this tells us that the evaluation failed because the nat argu-
ment of zero is not valid for the nat1 index of a sequence - i.e., the type of the index
argument is incorrect as well as there being a missing precondition.

If we change to use the version of the function with the precondition, we get the
following:

> qc
PO #1, MAYBE in 0.023s
>

The MAYBE status means that the validity of the new obligation could not be deter-
mined. QuickCheck could not find a counterexample, so the obligation may be valid,
but we are not certain. Note that the execution time is still relatively quick.

If we change the specification to put an explicit test in the body of the function,
rather than using a precondition, we get a slightly different obligation and QuickCheck
result:

functions
itemAt: seq of nat * nat -> nat
itemAt(list, index) ==

if index in set inds list
then list(index)
else 0;

> pog
Generated 1 proof obligation:

Proof Obligation 1: (Unproved)
itemAt: sequence apply obligation in test.vdmsl at line 5:14
(forall list:seq of nat, index:nat &

((index in set (inds list)) => index in set inds list))

> qc
PO #1, PROVABLE by trivial index in set (inds list) in 0.001s
>

Note that the proof obligation now effectively says, if the index is valid then the index
is valid. This is a very common pattern in proof obligations, and there is a particular

strategy (below) to deal with these common cases, called the trivial strategy. When such
a case is identified, the result is PROVABLE - meaning that a theorem prover ought to
be able to prove this, though strictly speaking we are not certain.

2.3 QuickCheck Plugin Design

As stated above, QuickCheck determines the validity or otherwise of a proof obligation
by directly evaluating the obligation expression.

Most proof obligations include nested forall or exists expressions that quan-
tify over type binds6. Type binds cannot be evaluated by the VDMJ interpreter if the
types concerned are infinite, but it is very common to have obligations that reason about
infinite types. So QuickCheck has to solve three problems: firstly, how to enable the in-
terpreter to evaluate type binds with a finite subset of infinite types; secondly, how to
select a finite subset of values from an infinite type to test; and thirdly, how to interpret
the evaluation result, to correctly indicate whether the obligation may be provable or
provide a counterexample.

The first problem was relatively easy to solve. The VDMJ interpreter was instru-
mented in such a way that forall and exists expressions can be given sets of
values for any type binds that they contain. If any evaluations return false, the bindings
concerned are saved to potentially be used as counterexamples (if the overall result is
false).

The third problem was also relatively easy to solve, though care has to be taken
with complex nested expressions and error cases. If QuickCheck cannot determine the
status with confidence, the MAYBE status is returned. If an evaluation takes too long,
a TIMEOUT status is given. If an obligation cannot be executed7, an UNCHECKED
status is given.

So the most complex part of QuickCheck is the selection of binding values that at-
tempt to find counterexamples. There are a variety of different ways to do this, each
being a compromise between trying very many values that are generated without so-
phistication, and trying comparatively few values, selected with more effort.

Because there are different ways to select values, the QuickCheck design allows
for pluggable "strategies" to be created and added by users, and the tool is delivered
with a set of strategies built-in. Several strategies may be combined in a single run of
QuickCheck.

Every strategy is passed the following information:

– The proof obligation, including its expression and its location in the specification
– A list of type binds in the obligation to generate values for
– An execution Context to allow things to be evaluated during generation, like type

invariants.

And every strategy can return the following information:

6 For example, forall a:nat &... means for every "a" of type "nat"...
7 This happens for obligations generated from within VDM operations, where there is insuffi-

cient information about the state of the system.

– A map of binding variable names to lists of possible values
– A hasAllValues flag indicating whether all bindings have all possible values for

their types (i.e., that all types are finite and fully populated)
– A (dis)proved indicator

QuickCheck applies all of the configured strategies to each proof obligation, combin-
ing all of the generated values into one binding map. If no strategy claims to have
(dis)proved the obligation, the combined bindings are used to instrument the obligation
expression which is then evaluated to see whether it is true, false, or generates an error.

The overall status is derived from the result of the evaluation, whether the obligation
is a forall or exists expression, whether a strategy claims to have (dis)proved the
obligation and whether the hasAllValues flag is set.

2.4 Built-in Strategies

As mentioned above, QuickCheck uses pluggable strategies to generate bindings to test,
and the tool comes with a set of strategies built-in, as follows:

– The fixed strategy. This is the simplest strategy, which by default will generate a
fixed set of values for each possible VDM type. The value generation process starts
with primitive types (nat, int, bool, char and so on). These generate a fixed
set of values of the type, with the numeric values including zero, if possible (zero
is a value that often causes problems, hence counterexamples). For example, if 100
integers were generated, the strategy would produce {-50, ..., 49}. Then
compound types (sets, sequences, records, tuples etc.) are generated using fixed
combinations of the values of the constituent fields (subject to any type invariants
that may apply).

An alternative option for the fixed strategy is to use a small configuration file to
define explicit value sets for each binding. Lines of the configuration file are of the
form <type bind> = <set expression>, which evaluates the set expres-
sion and assigns the values generated to the type bind, when this name/type occurs
in any obligations. This is useful to generate very specific sets of values that may
be relevant to the testing of a particular specification.

– The random strategy. This strategy generates primitive values using a pseudo-random
number generator. Numeric values are strongly biased to be around zero (since
counterexamples with small values are easier to understand) though progressively
larger values are used as more and more are generated. For example, the first inte-
ger is in the range -10 to +10, the next is -20 to +20, and so on. As with the fixed
strategy, values of compound types are generated using combinations of the values
of the component fields, but using pseudo-random selection.

By default, the pesudo-random number generator is seeded from the system clock,
but a seed can be provided to give repeatable random values.

– The trivial strategy. This strategy takes advantage of the fact that proof obligations
are often of a very predictable form, and trivially true. For example, a specification
will often guard against a condition with a test (like x<>0) before performing an

evaluation that depends on that condition (like 1/x). The proof obligation for the
division will therefore be something like x<>0 => x<>0. This is trivially true,
so this strategy looks for these common patterns and immediately concludes that
the obligation is probably provable.

– The finite strategy. This strategy looks for bindings where the type concerned has a
finite number of values (and not too many of them). For example, set of bool
has four possible values. In this case, instead of selecting a subset of the values of
the type, the strategy can systematically generate all values of the type, and pass
back the hasAllValues flag.

This is important because if all bindings in an obligation have all values checked,
and none of the combinations cause the obligation to be false, the obligation can be
claimed as probably provable.

– The search strategy. This strategy looks for VDM boolean sub-expressions in the
obligation, where a single variable is compared to a constant via an operator (for
example x > 0). In these cases, it is easy to generate a a single bind value that
would cause the expression to be false (in this example, setting x = 0).

Note that the strategy takes no account of the context in which the boolean sub-
expression occurs, so it is very naive, but extremely fast. If it only helps to find a
counterexample in rare cases, that is worth spending a microsecond or two calcu-
lating the value.

– The direct strategy. This strategy takes a different approach to the others, in that
it ignores the obligation expression. Instead, it uses the kind of obligation and its
location information to decide what the obligation is trying to verify. The strategy
then verifies the same thing via "direct" means.

For example, a cases-exhaustive obligation tries to verify that the patterns in a
cases expression that has no others clause will match every possible value
passed. The proof obligation expression states this, but the form of the obligation is
quite complex (a cascade of exists expressions, one for each clause). The direct
strategy looks at the source expression and performs the matching test directly on
the clause patterns. If all possible values match one of the patterns, the obligation
is probably provable. The other strategies would almost certainly return a MAYBE
status for the obligation.

2.5 Polymorphic Functions

VDM can define polymorphic functions, and proof obligations generated from these
functions may use the same polymorphic type parameters. For example:

functions
f[@T]: seq of @T * nat -> @T
f(s, i) == s(i);

> pog
Generated 1 proof obligation:

Proof Obligation 1: (Unproved)
f: sequence apply obligation in test.vdmsl at line 3:16
(forall s:seq of (@T), i:nat &

i in set inds s)

> qc
PO #1, FAILED in 0.008s: Counterexample: i = 0, s = [],

T = real

f: sequence apply obligation in test.vdmsl at line 3:16
(forall s:seq of (@T), i:nat &

i in set inds s)

Notice that the proof obligation includes a @T type and the "qc" execution found a
counterexample with the type parameter bound to real. However, this binding was
not produced by the strategies, which are only capable of generating type binds (i.e.,
variable name/value pairs).

By default, QuickCheck will bind all type parameters to real. But in cases where
this is not sensible, a @QuickCheck annotation is available, which allows a list of sen-
sible types to be specified for each polymorphic function. For example:

functions
-- @QuickCheck @T = set of nat, set of bool;
f[@T]: seq of @T * nat -> @T
f(s, i) == s(i);

> qc
PO #1, FAILED in 0.002s: Counterexample: i = 0, s = [],

T = set of (nat)

f: sequence apply obligation in test.vdmsl at line 4:16
(forall s:seq of (@T), i:nat &

i in set inds s)

Now we see that the @T parameter is bound to set of nat, and both types in the
@QuickCheck list would have been tried.

Quantifying over specification types sensibly is a complex area, and difficult to
automate in the strategies, but this is potentially an area for future work.

2.6 QuickCheck Performance

QuickCheck has been tested on a large number of legacy specifications, of all VDM
dialects, that are distributed with the Overture tool. See Table 1.

We consider that PROVABLE and FAILED results are useful, and hence across all
dialects, QuickCheck has produced useful results for about 28% of proof obligations. If
we disregard the UNCHECKED obligations, that figure rises to 41%.

VDM-SL VDM++ VDM-RT Totals %age
#Specs 50 51 13 114
#POs 4964 2830 435 8229
PROVABLE 878 323 37 1238 15.04%
- by trivial 141 91 3 235 2.86%
- by finite 227 135 16 378 4.59%
- by witness 109 30 7 146 1.77%
- by direct 401 67 11 479 5.82%
MAYBE 2077 781 108 2966 36.04%
FAILED (counterexample) 942 128 5 1075 13.06%
UNCHECKED 1057 1598 285 2940 35.73%
TIMEOUT (5s) 10 0 0 10 0.12%

100.00%
Table 1. QuickCheck results for Overture example specifications

In terms of the evaluation performance on individual obligations, the time taken8

depends on the status returned9. See Table 2.
VDM-SL VDM++ VDM-RT Average (ms)

PROVABLE 4.1 4.4 1.7 3.3
FAILED 10.4 3.1 11.2 8.2
MAYBE 45.5 49.3 13.3 36.1

Table 2. QuickCheck performance per obligation, in ms.

Note that PROVABLE obligations are generally the fastest. This is because when a
strategy can claim provability, it does not need to generate any further potential coun-
terexamples. FAILED obligations are a bit slower, because these need to evaluate a po-
tentially large number of values before the counterexample is found. Lastly, the MAYBE
case is typically the slowest, because it has to exhaust all of the possible values before
concluding that it cannot be sure.

We consider that "a few milliseconds" per obligation is fast enough to justify the
"Quick" title of the tool. In practice, this means that most specifications can have all
their POs processed without a significant disruption to workflow.

3 QuickCheck Tool Integration

QuickCheck is implemented as a plugin in both the VDMJ command line and VDM-
VSCode graphical environments. This means that a Java jar containing the tool simply
has to be added to the classpath, and the features of the tool automatically become
available (i.e., new "qc" and "qr" commands appear, or new UI options are enabled).
The core processing of the two plugins is identical, but there are some differences in a
thin "wrapper" layer around that, to make the functionality available to the two envi-
ronments.

8 On a 2.4GHz Core i7, with 32Gb RAM.
9 The variation in performance between dialects reflects the nature of the example specifications

used, rather than being due to QuickCheck.

3.1 VDMJ Integration

QuickCheck is executed via the "quickcheck" command, which is usually abbreviated
to "qc". The -? option to the command gives a listing of its options:

Usage: quickcheck [-?|-help][-q|-v][-t <secs>]
[-i <status>]* [-s <strategy>]* [-<strategy:option>]*
[<PO numbers/ranges/patterns>]

-?|-help - show command help
-q|-v - run with minimal or verbose output
-t <secs> - timeout in secs
-i <status> - only show this result status
-s <strategy> - enable this strategy (below)
-<strategy:option> - pass option to strategy
PO# numbers - only process these POs
PO# - PO# - process a range of POs
<pattern> - process PO names or modules matching

Enabled strategies:
fixed [-fixed:file <file> |

-fixed:create <file>][-fixed:size <size>]
search (no options)
finite [-finite:size <size>]
trivial (no options)
direct (no options)

Disabled strategies (add with -s <name>):
random [-random:size <size>][-random:seed <seed>]

>

Hopefully these options are intuitive. The output also lists the strategies that are enabled
and disabled. By default, everything is enabled except the random strategy10, but this
can be changed by using one or more -s options. And by default "qc" will process all of
the obligations in the current module or class (changed with the default command).

Note that the strategies that generate a large number of possible values come with
a -<name>:size option to override the default. Increasing this makes evaluation
slower, but more likely to catch counterexamples.

The output of the "qc" command is a list of the checked status of each obligation
processed, together with any counterexample or witness values found. For example:

> qc
PO #1, PROVABLE by direct (body is total) in 0.003s
PO #2, PROVABLE by witness c = 0, r = 0 in 0.0s

10 This is because the random strategy and the fixed strategy are very similar, but fixed
usually produces better results.

PO #3, PROVABLE by direct (body is total) in 0.001s
PO #4, PROVABLE by witness b = {} in 0.001s
PO #5, PROVABLE by finite types in 6.232s
PO #6, PROVABLE by finite types in 0.0s
PO #7, MAYBE in 0.001s
PO #8, MAYBE in 0.001s
PO #9, MAYBE in 0.104s
PO #10, UNCHECKED
PO #11, MAYBE in 0.007s
PO #12, TIMEOUT in 6.356s
PO #13, UNCHECKED
PO #14, UNCHECKED
PO #15, PROVABLE by direct (body is total) in 0.001s
>

A PROVABLE by witness result is when a strategy has found a binding that makes an
existential obligation true11.

The "qcrun" command, usually abbreviated to "qr", is much simpler to use and can
only be executed with one proof obligation number. Note that "qc" must have been
executed first, in order to generate the counterexample needed for "qr" to attempt to
debug the obligation.

> qr 1
Obligation does not have a counterexample/witness. Run qc?

> qc
PO #1, FAILED in 0.002s: Counterexample: i = 0, s = []

f: sequence apply obligation in test.vdmsl at line 3:16
(forall s:seq of nat, i:nat &

i in set inds s)

> qr 1
=> print f([], 0)
Error 4064: Value 0 is not a nat1 in test.vdmsl at line 3:16
3: f(s, i) == s(i);
MainThread>

Note that the "qr 1" command is equivalent to the "print f([], 0)" command shown,
because those are the counterexample values found by "qc". Generally, "qr" tries to
match the counterexample bindings to the enclosing function’s parameters. With com-
plex obligations this may not be possible.

11 And it ought to state the strategy used.

3.2 VDM-VSCode Integration

The VDM-VSCode integration provides a graphical alternative to the command line-
based VDMJ interface. The integration is included with version 1.4.0 and newer of
the VDM VSCode extension for Visual Studio Code. Using the integration requires no
additional setup, as the QuickCheck plugin comes bundled with the extension and the
intricacies of adding the Java jar to the classpath are handled automatically.

The Proof Obligation Generation (POG) view shown in Figure 1 acts as the main
point of interaction with QuickCheck. It is from within this view that the tool is exe-
cuted, where the results of the execution are presented, and where further debugging is
initiated. As a rule of thumb, it usually only takes a few seconds to check all the obliga-
tions of a specification, with the exception of very complex specifications or when using
enhanced strategies. During an active execution, the incremental progress of checking
is displayed in a notification box, where the user is also able to cancel checking prema-
turely. To reduce the time required to check obligations, a search filter can be applied
prior to executing QuickCheck, since only the visible subset of proof obligations are
checked. Upon successful execution of QuickCheck, the statuses of the proof obliga-
tions are updated in the view, possibly turning into links. Clicking on one of these links,
opens up the QuickCheck Panel at the bottom of the PO View, showing supplemental
information about the associated proof obligation, including the strategy used and an
optional error message. If QuickCheck found counterexample or witness values, these
are shown in a table in the QuickCheck Panel along with a button to start a debug session
with these values bound to the identifiers listed in the table.

Fig. 1. QuickCheck in the VDM VSCode Extension.

QuickCheck is optionally configurable via a file named “quickcheck.json” in the
“.vscode” directory at the root of the project. If no such file exists, QuickCheck falls
back to a set of sensible defaults. If the configuration file does exist, but leaves out

certain settings, these take on their default values. The following example configuration
sets the timeout to 10 seconds, overriding the default of 1 second, and configures the
strategies to use:

{
"config": {

"timeout": 10
},
"strategies": [

{
"name": "fixed",
"enabled": true,
"size": 1000

},
{

"name": "direct",
"enabled": false

},
{

"name": "trivial",
"enabled": true

},
{

"name": "search",
"enabled": false

}
]

}

It is worth noting that some strategies take additional parameters aside from the com-
mon “name” and “enabled” parameters. Looking at the configuration of the “fixed”
strategy above, the “size” parameter stands out as one of these strategy-specific config-
urations. It is up to the implementer of the strategy to decide on the interpretation of the
configuration.

4 Related Work

QuickCheck is inspired by the testing tool for Haskell [4,2]. This approach has been
adopted by other verified language environments, such as Isabelle [7,8], that use a li-
brary called “QuickCheck” [3].

5 Future Work

The QuickCheck tool is effectively a "hook" into VDMJ which allows further proof
features to be added, initially as extra pluggable strategies (see 2.3). The following
ideas may be worth exploration:

– Integration with an SMT solver. If proof obligations can be translated into Dafny,
or SMTLIB directly, it would be possible for SMT solvers like Z3 or CVC to work
on the discharge of obligations via a QuickCheck plugin.

– Improved analysis for UNCHECKED operation POs. We need to improve the qual-
ity of POs generated from operations to allow them to be checked. This will be a
challenge for the object oriented dialects.

– Using AI to find counterexamples. Proof obligations have a very regular form, be-
cause they are predictable consequences of the original VDM source. It may there-
fore be possible to train a machine learning model to recognise obligation patterns
and suggest counterexamples, if we can find enough training data.

– Quantification over polymorphic types. As mentioned in Section 2.5, it is difficult
for QuickCheck to automatically quantify over polymorphic types, especially given
the context of a particular specification. This would require a deeper analysis of the
specification to choose sensible type parameters.

Acknowledgements We are grateful for the support of the European Union, Newcastle
University, Aarhus University and the Poul Due Jensen foundation. In particular, we
thank Leo Freitas and Peter Gorm Larsen for their invaluable help on testing early
versions of the tool. We also thank the reviewers for valuable feedback on the original
version of this paper.

References

1. Battle, N.: VDMJ User Guide. Tech. rep., Fujitsu Services Ltd., UK (2009)
2. Bird, R.: Introduction to Functional Programming using Haskell. Prentice Hall Europe (Apr

1998). https://doi.org/10.5555/130648
3. Bulwahn, L.: The New Quickcheck for Isabelle. In: Hawblitzel, C., Miller, D. (eds.) Certified

Programs and Proofs. pp. 92–108. Springer Berlin Heidelberg, Berlin, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-35308-6_10

4. Claessen, K., Hughes, J.: QuickCheck: A lightweight tool for random testing of Haskell pro-
grams. SIGPLAN Not. 35(9), 268–279 (Sep 2000). https://doi.org/10.1145/357766.351266

5. Freitas, L., Jones, C.B., Velykis, A., Whiteside, I.: How to say why. Tech. Rep. CS-TR-1398,
Newcastle University, www.ai4fm.org/tr (November 2013)

6. Larsen, P.G.: Ten Years of Historical Development: “Bootstrapping” VDMTools. Journal of
Universal Computer Science 7(8), 692–709 (2001). https://doi.org/10.3217/jucs-007-08-0692

7. Nipkow, T.: Term rewriting and beyond — theorem proving in Isabelle. Formal Aspects of
Computing 1, 320–338 (1989)

8. Nipkow, T., Wenzel, M., Paulson, L.C.: Isabelle/HOL: A Proof Assistant for Higher-order
Logic. Springer-Verlag, Berlin, Heidelberg (2002). https://doi.org/10.1007/3-540-45949-9

https://doi.org/10.5555/130648
https://doi.org/10.5555/130648
https://doi.org/10.1007/978-3-642-35308-6_10
https://doi.org/10.1007/978-3-642-35308-6_10
https://doi.org/10.1145/357766.351266
https://doi.org/10.1145/357766.351266
https://doi.org/10.3217/jucs-007-08-0692
https://doi.org/10.3217/jucs-007-08-0692
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/3-540-45949-9

	QuickCheck for VDM

