
Cilium and VDM - Towards Formal Analysis of Cilium
Policies

Tomas Kulik1 and Jalil Boudjadar2

1 Sweet Geeks
2 Aarhus University, Denmark

Abstract. Industrial control systems are becoming more distributed and inter-
connected to allow for interaction with modern computing infrastructures. Fur-
thermore, the amount of data generated by these systems is increasing due to
integration of more sensors and the need to increase the reliability of the sys-
tem based on predictive data models. One challenge in accommodating this data
and interconnectivity increase is the change of the architecture of these systems
from monolithic to component based, distributed systems. Questions such as how
to deploy and operate such distributed system with many sub-components arise.
One approach is the use of kubernetes to orchestrate the different components
as containers. The critical nature of the industrial control systems however often
requires strict component isolation and network segmentation to satisfy security
requirements. Cilium is a popular network overlay for kubernetes that enables
definition of network policies between different components running as kuber-
netes pods. The network policies are crucial for maintaining the secure operation
of the system, however analysis of deployed policies is often lacking. In this pa-
per, we explore the use of a formal analysis of Cilium network policies using
VDM-SL. We provide examples of Cilium policies, an approach how they could
be formalised using VDM-SL and analyse several scenarios to validate the poli-
cies against a model of simple real-life system.

Keywords: Cilium · Kubernetes · Formal Analysis · Security Policies

1 Introduction

Industrial control systems are undergoing an architectural shift from isolated and often
locally acting to interconnected and remotely accessible. While this trend has been on-
going for over a decade it has shown the need to secure this new architecture [15,12].
The system components are often seen as services that could be accessed remotely as
well as initiate connections to other services. This allows the industrial control systems
to be distributed and modular, allowing for addition of new services as the systems
evolve. The challenges that arise from this approach span multiple areas, the distributed
system must be robust, fault-tolerant, secure and safe. An approach to address the need
for fault-tolerance and robustness could be the use of containerization and orchestration
of containerized system components using kubernetes [16] as adopted by Tesla, Ama-
zon, Gemalto, etc. Deployment on kubernetes allows for scaling, load-balancing and
replication of workloads allowing for increase in overall robustness of the system.



Kulik et al.

The security of such systems requires significant attention of its own. Significant
amount of work has been done on the security of containers themselves [3,5,8,21],
however this covers the problematic of containerized workflows on kubernetes only
partially. The need to manage and secure the internal network within a kubernetes sys-
tem has led to development of many Container Network Interfaces (CNI) enabling for
definition of network policies [15]. This is important as the policy defines actions that
were in the past often relegated to dedicated firewalls. The policies effectively instruct
firewalls on the kubernetes nodes how to segment the network and what traffic flows
shall be allowed within this network. One of the most popular CNIs is Cilium which
utilizes networking based on extended Berkeley Packet Filter (eBPF) often providing
performance and security improvements [22]. The Cilium CNI utilized Cilium network
policies created as kubernetes objects that are processed by the CNI within the deployed
network. In the area of industrial control systems, these policies are used to control the
flow of data such as commands, telemetry, alarms and potential configuration updates.
These data-flows are not necessarily limited to sub-components running in kubernetes
but also external components that either send data to or receive data from a service run-
ning in the kubernetes cluster. The primary task of securing the system using policies is
precisely defining, which parts of the system can communicate and which parts shall be
isolated [6]. This leads to creation of specific corridors that the data can flow through.

One challenge when utilizing the Cilium policies in a heavily distributed system
consisting of many sub-components is how to ensure that the policy configuration is
correct and follows the security requirements for the system [18]. To alleviate this chal-
lenge, a model-based approach with formal validation could be used. Formal methods
have been utilized to provide strong assurances of cyber security properties within many
areas including industrial control systems [11,13]. One formal approach for modelling
of Cilium policies using a formal language and utilizing a scenario based analysis of
these policies is the use of VDM [2].

In this paper, we present a model-based analysis of Cilium policies using VDM-SL
on a real-life industrial control system. We demonstrate the system model and apply
formalized Cilium policies to this model. We model the policies in VDM based on
the actual policies as deployed against a Cilium CNI in a kubernetes cluster. We then
execute different data exchange scenarios within this system and analyze the impact
of the policies on this data exchange. We create the model in a modular way allowing
for addition or removal of policies between the different sub-components as well as
addition or removal of different sub-components.

The rest of the paper is organized as follows: Section 2 provides the necessary back-
ground on kubernetes objects, Cilium CNI and Cilium policies as well as VDM. Sec-
tion 3 describes the architecture of the system used as a reference in this paper as well
as introduces the data-flows within this architecture. Section 4 provides several network
policies defined as a Cilium policy and shows how the policies apply to the system data-
flows. Furthermore this section then demonstrates formalization of Cilium policies in
VDM. Section 5 describes the use of VDM for scenario-based analysis as well evaluates
the results of the analysis. Section 6 cites relevant related work and Section 7 presents
conclusions and potential future work.



Cilium and VDM - Towards Formal Analysis of Cilium Policies

2 Background

This section presents the background related to Kubernetes, Cilium and the VDM spec-
ification language.

2.1 Kubernetes resources

Kubernetes is a container orchestration system that utilizes an API based approach for a
definition of different resources within a kubernetes cluster [16]. The kubernetes cluster
shall be understood as several individual machines (computers) running kubernetes,
these machines are referred to as nodes. As kubernetes is a vast system, for the scope of
this paper we consider the following resources: kubernetes pod, kubernetes namespace,
kubernetes endpoints, kubernetes network policy and kubernetes deployment.

Kubernetes pod: the pod resource is the smallest deployable computing unit that ku-
bernetes can manage. Every pod can consist of a single or multiple containers. In case
that the pod contains multiple containers, these are usually tightly coupled as the pod is
often understood as running an application. It is therefore typical that pods often run a
single container. For networking purposes, each pod obtains a unique IP address allo-
cated from an internal kubernetes address space. In order for pods to be reachable from
a network outside of the kubernetes cluster, they need to be configured with a forward
facing service that obtains a specific IP address (different from a pod) but routable from
the outside network. This IP address is often provided either be using the IP address of
a kubernetes node or utilizing a load balancer subsystem that issues IP addresses from
a predefined range.

Kubernetes namespace: the namespace resource is a logical unit, often utilized to
isolate sets of other resources (for example pods) from each other. Every namespace is
assigned an internal DNS record so that the namespace could be used as a part of a DNS
lookup. This is a typical case when applications running as pods need to communicate
with a set of different applications running in separate namespaces. In the initial con-
figuration, all pods within all namespace can communicate with all of the other pods as
namespaces are primarily used as a resource name scoping and user segregation.

Kubernetes endpoints: the endpoints resource is a collection of actual endpoints that
are the communication points for a service. In its most basic form, the collection con-
tains an IP address and a port on which the service will be discoverable. The endpoint
can however contain multiple IP addresses and ports as well as information about a
protocol, for example stating that it is a TCP endpoint, as well as its hostname.

Kubernetes network policy: the network policy is an object understood by kuber-
netes and defines how different pods are allowed to communicate with each others. The
policies define ingress rules for the network traffic flowing into the pod or egress rules
for the network traffic flowing out of the pod. While kubernetes policies are primarily
applied to pods, through use of selectors, they could be also applied against namespace
or IP address blocks. The kubernetes network policies provide a basic set of rules for
network segmentation primarily applicable to TCP and UDP protocols.



Kulik et al.

2.2 Cilium and Cilium policies

Cilium is an open source eBPF based CNI created to provide network connectivity to
kubernetes workloads as well as secure and observe the network connectivity [4]. The
Cilium CNI contains several advanced features such as the address resolution protocol
and the border gateway protocol routing support, load balancing, service mesh as well
as security features of transparent encryption and runtime enforcement. Cilium pro-
vides its own network policy object named Cilium policy that significantly extends the
functionality of basic kubernetes network policies.

Cilium policies provide policy definition on the layer 7 protocols of the OSI model [7],
allowing to secure protocols such as HTTP, gRPC and many others. This in turn enables
fine grained policy definitions without being limited to encapsulate all TCP or UDP
traffic. Cilium policies also utilize identity based security, where each pod is assigned a
unique security identity based on the labels (metadata) of the specific pod, decoupling
the security from the IP address of the pod. The benefit of this is that the identities are
based on immutable labels rather than IP addresses that can change.

2.3 VDM Specification Language

The Vienna Development Method specification language (VDM-SL) [2] is a ISO stan-
dardized formal language used for modeling and analyzing software systems. Devel-
oped initially at the IBM Vienna Laboratory in the 1970s, VDM provides a rigorous
mathematical framework for specifying and validating the behavior of software com-
ponents. The language supports both abstract and concrete specifications, allowing de-
velopers to describe system properties precisely and unambiguously. The language in-
cludes constructs for defining data types, functions and state transitions, facilitating
comprehensive modeling of both functional and non-functional requirements.

The systems behavior in VDM is specified as a set of functional units (modules or
components), each of which is represented using the state-transition concept enabling
constrained behavior using pre-conditions, post-conditions and invariants, referred to
as contracts [1]. A module may define a state component, which can be constrained
by an invariant. A state component represents the valuation of a set of variables and
parameters, where the enclosing module specifies the functionality to read and update
the current values, in a constrained manner, leading thus to new states in the behavior.
Functionality is defined by means of functions and operations over data types, where
functions cannot read or alter the state directly while operations can. Consequently,
functions are not permitted to call operations unless the operations are declared as pure,
meaning they are restricted from modifying the state but allowed to read it [20].

For efficient testing and debugging, VDM-SL has been extended with traces concept
to assist developers in identifying and refining behavior anomalies. With tool support for
syntax checking, model validation and formal proof using the Visual Studio Code tools
for VDM [17], VDM remains a robust choice for developing high-assurance systems
across various domains.



Cilium and VDM - Towards Formal Analysis of Cilium Policies

3 System Architecture

The system we consider in this paper consists of an industrial control system deployed
within kubernetes, accessible remotely by the operators controlling the physical infras-
tructure. The architecture is depicted in figure 1. The Client shall be understood as a
computer utilized by the operators to access the industrial control system. Using the
Client computer, the operator accesses the Web UI, a web-based user interface that al-
lows access to different features of the system. The features that the system allows is
configuration of the system, for example setting up the information about the controlled
assets, control of the assets and creation of reports about the functionality of the system.
The system also contains a database in order to persist the configuration data and a log
of commands that have been sent to the controlled asset.

Kubernetes
cluster

Client Asset

Web UI CommandDB DAL

Config Report

namespace: NS-Config namespace: NS-Report

namespace: NS-DB

namespace: NS-UI namespace: NS-Command

IP
address

IP
address

Fig. 1. Containerized Industrial Control System

To achieve this functionality the system consist of several modules deployed as con-
tainers within Kubernetes. In the considered deployment, each container is deployed in
a separate pod. The Config module is responsible for loading and saving the system con-
figuration data to the database. The Report module is used to generate reports based on
the operational data from the database, while the Command module provides function-
ality to send commands to the controlled asset, while also storing the metadata about
the commands to the database. All database operations are carried out by the data ac-
cess layer (DAL) module. The Database itself is also containerized and deployed on
Kubernetes. Finally, the system contains an Asset, an external physical device that is
controlled by the system. Each container is deployed in its own namespace with the
exception of the Database and DAL that share a single namespace NS-DB as they form
a logical unit for storing and accessing data.



Kulik et al.

Listing 1.1. Cilium policy for the external client

ap iVers ion : c i l i u m . i o / v2
kind : C i l i u m N e t w o r k P o l i c y
metadata :

name: U I P o l i c y
namespace: NS−UI

spec :
e n d p o i n t S e l e c t o r :

matchLabels :
app: WebUI

i n g r e s s :
- fromCIDRSet:

- c i d r : 1 0 . 2 8 . 1 . 2 / 3 0 #Client CIDR block
t o P o r t s :

- p o r t s :
- port : "443"

4 Formalization of Cilium Network Policies

The system we consider incorporates multiple data-flows. We specifically consider two
system data-flows, both with external connectivity in order to capture most common use
cases of an industrial control system. The first data-flow considers the Client communi-
cation with the system deployed in Kubernetes. This covers the use case of an operator
interacting with the system. The second data-flow represents the use case of sending a
command to the physical asset. This demonstrates the action of controlling an asset by
a system from inside the Kubernetes cluster.

The Cilium policy for the first data-flow defines the specific IP range given as a
Classless Inter-Domain Routing (CIDR) block. The snippet of the policy covering the
specific connectivity is shown in listing 1.1. The policy shall be understood as the
ingress where incoming connection is only allowed from a sub-net 10.28.1.2/30 as ex-
pressed in the fromCIDRSet block, what leaves two usable IP addresses for an external
client software (typically one active and one standby), the connections are only allowed
to the port 443 of the WebUI application as noted within the endpointSelector block by
use of the matchLabels directive.

In order to formalize this policy, we define several modules in VDM. We first create
modules to represent the Application. The application further utilizes a module repre-
senting the Endpoint, which in turn consists of modules CIDR and Namespace. These
modules are all created as vdmsl files in order to create logical structure for the model.
The CIDR definition represents the four blocks of the IP address and the sub-net prefix
length. The CIDR definition is shown in listing 1.2. Similarly, the namespace definition
is a simple definition consisting of a record with two elements shown in listing 1.3.

These definitions are then utilized within the Endpoint definition as shown in list-
ing 1.4. The endpoint could use multiple identifiers such as CIDR, Namespace or label
and additional connection information such as port.



Cilium and VDM - Towards Formal Analysis of Cilium Policies

types
FirstBlock = nat;
SecondBlock = nat;
ThirdBlock = nat;
FourthBlock = nat;
SigBits = nat;

CIDR::
firstBlock : FirstBlock
secondBlock : SecondBlock
thirdBlock : ThirdBlock
fourthBlock : FourthBlock
sigBits : SigBits

Listing 1.2. VDM CIDR definition

types
Name = seq of char;
Id = nat;

Namespace::
name: Name
id: Id

Listing 1.3. VDM Namespace definition

types
EndpointCidr = [CIDR];
EndpointNamespace = [Namespace];
EndpointPort = [nat];
EndpointLabel = [seq of char];

Endpoint::
endpointCidr : EndpointCidr
endpointNamespace : EndpointNamespace
endpointPort : EndpointPort
endpointLabel : EndpointLabel

Listing 1.4. VDM Endpoint definition



Kulik et al.

types
config = (Endpoint * Endpoint);

Policy::
policy : map config to nat

Listing 1.5. VDM Policy definition

The Policy is then modeled as a tuple of endpoints and a directional operator uti-
lizing mapping. The directional operator states whether the endpoint tuple within the
policy is an ingress or an egress policy. In the current model iteration, each policy only
supports mapping between two endpoints. The policy model is shown in listing 1.5.

The application then models a deployed unit (internal or external) and can have
several active endpoints on which it is listening for connections. The application model
is shown in listing 1.6. It further defines an operation responsible for sending data to
other applications within the system. The precondition on this operation checks whether
this application is not only a sink application and can actually send data. The data is
represented as a token type.

types
AppId = nat;
Endpoints = set of Endpoint;
ReceiveOnly = bool;
AppliedPolicies = set of Policy;
SendEndpoint = Endpoint;

Application::
sendEndpoint : SendEndpoint
appID : AppId
activeListenEndpoints : Endpoints
receiveOnly : ReceiveOnly
appliedPolicies : AppliedPolicies

operations
SendData: AppId * AppId * Endpoint ==> ()
SendData(sid, rid, rep) ==

TransferData(sid, rid, rep, mk_token(nil))
pre exists app in set applications & sid = app.appID

and app.receiveOnly = false;

Listing 1.6. VDM Application definition

Finally, the System module holds the state of he overall system by keeping a record
of all the applications deployed within the system as well as all the active endpoints
and deployed policies. In order to build the system, the operator needs to deploy ap-
plications. This is modeled by operation DeployApplication that utilizes the policies



Cilium and VDM - Towards Formal Analysis of Cilium Policies

and endpoints deployed by the use of other operations. A partial content of the System
module is shown in listing 1.7.

state SystemSt of
applications : Applications
policies: Policies
endpoints: AllEndpoints
appData: AppData

init s == s = mk_SystemSt({},{},{},{|->})
end

types
Applications = set of Application;
Policies = set of Policy;
AllEndpoints = set of Endpoint;
AppData = map AppId to seq of token

operations

pure GetApplication: AppId ==> Application
GetApplication(aid) ==

let app in set applications be st app.appID = aid
in
return app;

DeployApplication: AppId * Endpoint * set of Endpoint * bool *
set of Policy ==> ()

DeployApplication(aid, sendEp, recEps, ro, pols) ==
let app = mk_Application(sendEp, aid, recEps, ro, pols)

in (
applications := applications union {app}

)
pre forall a in set applications & a.appID <> aid
post exists a in set applications & a.appID = aid;

TransferData: AppId * AppId * Endpoint * token ==> ()
TransferData(sapp, rapp, rep, d) ==

appData(rapp):=appData(rapp) ^ [d]
pre exists ep in set endpoints & ep = rep and
exists p in set policies & (dom p.policy = {mk_(rep,

GetApplication(sapp).sendEndpoint)} and rng p.policy = {0})
or (dom p.policy = {mk_(GetApplication(sapp).sendEndpoint, rep)}

and rng p.policy = {1})
post card elems appData(rapp) = card elems appData~(rapp) + 1;

Listing 1.7. VDM System state and actions definition

The TransferData operation under the System module represents data transfer from
one application to another on a system level. This could be utilized by any two ap-



Kulik et al.

plications existing within the system state. It holds a precondition ensuring that the
endpoints used within the data transfer are a part of a policy that is deployed within the
system. The precondition checks if either an ingress or an egress policy allows for this
data transfer. The helper operations for system setup, such as creation of endpoints and
creation of policies is shown in listing 1.8. These operations are primarily present to
provide complete interpretation of system deployment and network policy setup.

CreatePolicy: Endpoint * Endpoint * nat ==> Policy
CreatePolicy(inEp, outEp, io) ==

let pol = mk_Policy({mk_(inEp, outEp) |-> io})
in (

policies := policies union {pol};
return pol

)
pre forall pol in set policies & pol.policy <> {mk_(inEp, outEp)

|-> io}
post exists pol in set policies & pol.policy = {mk_(inEp, outEp)

|-> io};

CreateEndpoint: CIDR * Namespace * nat * seq of char ==>
Endpoint

CreateEndpoint(cidr, ns, pt, lbl) ==
let ep = mk_Endpoint(cidr, ns, pt, lbl)

in (
endpoints := endpoints union {ep};
return ep

)
pre forall ep in set endpoints & ep <> mk_Endpoint(cidr, ns, pt,

lbl)
post exists ep in set endpoints & ep = mk_Endpoint(cidr, ns, pt,

lbl);

Listing 1.8. Helper operations for system deployment

The second data-flow Cilium policy is shown in listing 1.9. This policy allows for
communication of the Web UI towards the controlled physical asset, specifically from
the command module towards the controlled asset as an egress policy and from the
WebUI to the Command module as an ingress policy as well. For demonstration pur-
poses, we consider the egress part of this policy covering the communication from
the Command application, as specified under the app: Command, to the CIDR block
10.29.1.23/28 on port 5443.

Listing 1.9. Cilium policy for the external commanding

ap iVers ion : c i l i u m . i o / v2
kind : C i l i u m N e t w o r k P o l i c y
metadata :

name: Command− P o l i c y
namespace: NS−Command



Cilium and VDM - Towards Formal Analysis of Cilium Policies

spec :
e n d p o i n t S e l e c t o r :

matchLabels :
app: Command

i n g r e s s :
- fromEndpoints :

- matchLabels :
app: WebUI
i o . kubernetes . pod . namespace: NS−UI

e g r e s s :
- toCIDRSet:

- c i d r : 1 0 . 2 9 . 1 . 2 3 / 2 8
t o P o r t s :

- p o r t s :
- port : "5443"

While the model components could be utilized to formally express parts of the Cil-
ium policies, it is important to note that the model in its current iteration has several
limitations. The policy can only contain a single endpoint, routing is not modeled limit-
ing the analysis to basic network policies where higher layer protocols are not modeled.
Chaining of policies has also not been considered in this work, and as such larger sce-
narios with multiple components with interacting policies could only be expressed with
significant effort. We however consider this work a necessary stepping stone for defin-
ing how Cilium policies could be formalized in VDM.

5 Formal Analysis

The formal analysis we conducted considers the two previously described data-flows.
In both cases, two scenarios has been created, one with communication allowed by the
policy and a second one with a policy violation. For the first data-flow, the analysis
scenario is shown in listing 1.10. The first operation of the analysis sets up the two ap-
plications, the client and the WebUI while assigning the correct endpoints and policies.
In the second operation, the client attempts to transfer data to an unauthorized endpoint.

Scenario1: () ==> ()
Scenario1()==
(

dcl ep1 : Endpoint := CreateEndpoint(mk_CIDR(10,28,1,2,30),
mk_Namespace("-", 0), 0, "");

dcl ep2 : Endpoint := CreateEndpoint(mk_CIDR(0,0,0,0,0),
mk_Namespace("NS-UI",1), 443, "WebUI");

let pol = CreatePolicy(ep2, ep1, 0)
in
(

DeployApplication(1, ep1, {}, false, {pol});
DeployApplication(2, ep2, {ep2}, true, {pol});



Kulik et al.

appData := appData munion {2 |-> []};
SendData(1,2,ep2)

)
);

Scenario1PolicyViolation: () ==> ()
Scenario1PolicyViolation()==
(

dcl ep1 : Endpoint := CreateEndpoint(mk_CIDR(10,28,1,2,30),
mk_Namespace("-", 0), 0, "");

dcl ep2 : Endpoint := CreateEndpoint(mk_CIDR(0,0,0,0,0),
mk_Namespace("NS-UI",1), 443, "WebUI");

dcl ep3 : Endpoint := CreateEndpoint(mk_CIDR(10,28,1,4,30),
mk_Namespace("-", 0), 0, "");

let pol = CreatePolicy(ep3, ep1, 0)
in
(

DeployApplication(1, ep1, {}, false, {pol});
DeployApplication(2, ep2, {ep2}, true, {pol});
appData := appData munion {2 |-> []};
SendData(1,2,ep2)

)
);

Listing 1.10. First data-flow analysis

The first operation succeeds while the second operation has caused an expected precon-
dition violation on the TransferData operation.

The second data-flow is similar in nature to the first one, however it considers an
egress data path. The analysis of this scenario is shown in listing 1.11. Again, in the
scenario operations, two components are setup in this case: the command and the asset;
where the command sends data to the external asset. In the second operation within this
scenario, the command tries to egress data to an unauthorized endpoint.

Scenario2: () ==> ()
Scenario2()==
(

dcl ep1 : Endpoint := CreateEndpoint(mk_CIDR(10,29,1,23,28),
mk_Namespace("-", 0), 5443, "");

dcl ep2 : Endpoint := CreateEndpoint(mk_CIDR(0,0,0,0,0),
mk_Namespace("NS-Command",1), 0, "Command");

let pol = CreatePolicy(ep2, ep1, 1)
in
(

DeployApplication(1, ep1, {}, false, {pol});
DeployApplication(2, ep2, {ep2}, false, {pol});
appData := appData munion {1 |-> []};
SendData(2,1,ep1)

)



Cilium and VDM - Towards Formal Analysis of Cilium Policies

);

Scenario2PolicyViolation: () ==> ()
Scenario2PolicyViolation()==
(

dcl ep1 : Endpoint := CreateEndpoint(mk_CIDR(10,29,1,23,28),
mk_Namespace("-", 0), 5443, "");

dcl ep2 : Endpoint := CreateEndpoint(mk_CIDR(0,0,0,0,0),
mk_Namespace("NS-Command",1), 0, "Command");

dcl ep3 : Endpoint := CreateEndpoint(mk_CIDR(0,0,0,0,0),
mk_Namespace("NS-Web",1), 0, "WebUI");

let pol = CreatePolicy(ep2, ep1, 1)
in
(

DeployApplication(1, ep1, {}, false, {pol});
DeployApplication(2, ep2, {ep2}, false, {pol});
appData := appData munion {1 |-> []};
SendData(2,1,ep3)

)
);

Listing 1.11. Second data-flow analysis

Similar to the first scenario, the first operation succeeds while the second one leads
to a precondition violation. The scenario execution time was negligible and scenario
specification time could be considered fast enough once the model building blocks have
been created.

6 Related Work

Security analysis of containers in Kubernetes is crucial for ensuring the robustness
and integrity of containerized applications in a dynamic orchestration environment. Re-
cently, due to the large scale adoption of Kubernetes and container networks in general,
many studies have explored the security analysis and enhancement of industrial control
system deployed via Kubernetes [5,15,19,11,3,21]. Mostly, such analysis focuses on
investigating whether the behavior of the integrated applications and nodes complies to
the security policies such as container isolation, access controls, and network policies.

The authors of [19] proposed Kubanomaly, a neural network based anomaly detec-
tion tool for the Kubernetes platform. It relies on monitoring the behavior for Kuber-
netes containers and a neural network classification model to identify abnormal behav-
ior patterns. Although achieving high performance in attacks recognition, Kubanomaly
may result in a considerable overhead time. Moreover, it cannot provide an absolute
guarantee as the accuracy depends on the training dataset.

In [15], the authors proposed Bastion, high-performance security enforcement tool
that relies on extending the container hosting platform with an container-aware com-
munication sandbox. The extension is built upon different services enabling to monitor
and isolate the inter-container traffic to prevent access from other peer containers. This



Kulik et al.

approach demonstrated a security improvement, however it may result in expensive
overhead due to the dynamic of applications in the containers network.

The authors of [9] presented a status-based namespaces inspection as a security
function to detect anomalous processes and prevent escape behaviors in cloud dockers.
The proposed security enhancement is a kernel inline function designed to detect the
user calls that involve different kernel stack space names by looking at the processes
history, kill the process and track the malicious user behind the container.

The authors of [10] introduced Verikube, an efficient verification tool for container
networks. Verikube relies on a graph structure to represent policies, so that to reduce
memory consumption and computation time for verification, and run the containers
data through the graph to verify whether a policy is violated or not. Such a verification
is carried out using the Yices2 SMT solver.

Yifan et al [14] introduced a container network policy verification, for applications
orchestrated by Kubernetes, using an incremental approach where only the configura-
tion changes are subject to verification. It relies on the labeled access control to con-
tainers as a sparse reachability relationship verified at runtime using a bimatrix analysis
to reduce the performance overhead of verification.

7 Conclusion

In this paper, we have investigated the use of VDM for security analysis of Cilium
policies. While the work is ongoing, several cases could already be formalized and
analyzed as VDM scenarios. This has shown the potential of VDM to play a significant
role in the analysis of modern systems based on software defined networks. Namely, we
have presented basic building blocks as VDM modules that could be utilized to express
a basic Cilium policy. While we have demonstrated how a standalone analysis could
be carried out, our future plans are to integrate the VDM analysis into the deployment
pipeline, where the Cilium policies are analyzed against a set of predefined scenarios
before they are deployed to a production system. We further plan to expand the modules
presented in this paper to allow for analysis of higher layer protocols as well as simpler
definition of policies, where a single policy can capture multiple endpoints and also
consider both ingress and egress communication directions. Besides, we plan to utilize
combinatorial testing feature of VDM in order to automatically create significant test
coverage. One additional idea for improvement is the use of External Format Reader of
VDMJ to automatically translate Cilium policies to VDM entities.

References

1. Alagar, V.S., Periyasamy, K.: Vienna Development Method (1998)
2. Bjørner, D.: The vienna development method (vdm) software specification & program syn-

thesis. In: Mathematical Studies of Information Processing: Proceedings of the International
Conference Kyoto, Japan, August 23–26, 1978. pp. 326–359. Springer (2005)

3. Brady, K., Moon, S., Nguyen, T., Coffman, J.: Docker container security in cloud computing.
In: 2020 10th Annual Computing and Communication Workshop and Conference (CCWC)
(2020)

https://yices.csl.sri.com/


Cilium and VDM - Towards Formal Analysis of Cilium Policies

4. Budigiri, G.: Secure and scalable policy management in cloud native networking. In: Pro-
ceedings of the 24th International Middleware Conference: Demos, Posters and Doctoral
Symposium (2023)

5. Budigiri, G., Baumann, C., Mühlberg, J.T., Truyen, E., Joosen, W.: Network policies in ku-
bernetes: Performance evaluation and security analysis. In: 2021 Joint European Conference
on Networks and Communications; and 6G Summit (EuCNC/6G Summit) (2021)

6. Creane, B., Gupta, A.: Kubernetes Security and Observability. " O’Reilly Media, Inc." (2021)
7. Day, J., Zimmermann, H.: The OSI reference model. Proceedings of the IEEE 71(12), 1334–

1340 (1983)
8. Flauzac, O., Mauhourat, F., Nolot, F.: A review of native container security for running appli-

cations. Procedia Computer Science 175, 157–164 (2020), the 17th International Conference
on Mobile Systems and Pervasive Computing (MobiSPC),The 15th International Conference
on Future Networks and Communications (FNC),The 10th International Conference on Sus-
tainable Energy Information Technology

9. Jian, Z., Chen, L.: A defense method against docker escape attack (2017)
10. Kang, H., Shin, S.: Verikube: Automatic and efficient verification for container network poli-

cies. IEICE TRANSACTIONS on Information and Systems 105(12) (2022)
11. Kulik, T., Dongol, B., Larsen, P.G., Macedo, H.D., Schneider, S., Tran-Jørgensen, P.W.V.,

Woodcock, J.: A survey of practical formal methods for security. Form. Asp. Comput. 34(1)
(2022)

12. Kulik, T., Tran-Jørgensen, P.W.V., Boudjadar, J.: Formal security analysis of cloud-connected
industrial control systems. In: Innovative Security Solutions for Information Technology and
Communications (2019)

13. Kulik, T., Tran-Jørgensen, P.W., Boudjadar, J., Schultz, C.: A framework for threat-driven cy-
ber security verification of iot systems. In: 2018 IEEE International Conference on Software
Testing, Verification and Validation Workshops (ICSTW) (2018)

14. Li, Y., Jia, C., Hu, X., Li, J.: Kano: Efficient container network policy verification. In: 2020
IEEE Symposium on High-Performance Interconnects (HOTI) (2020)

15. Nam, J., Lee, S., Seo, H., Porras, P., Yegneswaran, V., Shin, S.: {BASTION}: A security en-
forcement network stack for container networks. In: 2020 USENIX Annual Technical Con-
ference (USENIX ATC 20). pp. 81–95 (2020)

16. Poulton, N.: The kubernetes book. NIGEL POULTON LTD (2023)
17. Rask, J., Madsen, F., Battle, N., Macedo, H., Larsen, P.: Visual studio code vdm support. In:

18th International Overture Workshop (2021)
18. Shamim, M.S.I., Bhuiyan, F.A., Rahman, A.: Xi commandments of kubernetes security: A

systematization of knowledge related to kubernetes security practices. 2020 IEEE Secure
Development (SecDev) pp. 58–64 (2020)

19. Tien, C.W., Huang, T.Y., Tien, C.W., Huang, T.C., Kuo, S.Y.: Kubanomaly: Anomaly de-
tection for the docker orchestration platform with neural network approaches. Engineering
reports 1(5) (2019)

20. Tran-Jørgensen, P.W.V., Kulik, T., Boudjadar, J., Larsen, P.G.: Security analysis of cloud-
connected industrial control systems using combinatorial testing. In: Proceedings of the 17th
ACM-IEEE International Conference on Formal Methods and Models for System Design
(2019)

21. Wenhao, J., Zheng, L.: Vulnerability analysis and security research of docker container. In:
2020 IEEE 3rd International Conference on Information Systems and Computer Aided Edu-
cation (ICISCAE) (2020)

22. Wüstrich, L., Schacherbauer, M., Budeus, M., Freiherr von Künßberg, D., Gallenmüller,
S., Pahl, M.O., Carle, G.: Network profiles for detecting application-characteristic behavior
using linux ebpf. In: 1st Workshop on eBPF and Kernel Extensions eBPF ’23 (2023)


	Cilium and VDM - Towards Formal Analysis of Cilium Policies

