
Using Rely/Guarantee to Pinpoint
Assumptions underlying Security Protocols

Nisansala Yatapanage ANU, Australia
Cliff Jones Newcastle University, UK

Overture Workshop
Milano

2024-09-10

1 / 18



Plan

challenges of formally describing security protocols
and their assumptions
quick reminder(?) of rely/guarantee idea

rely: as assumptions on environment
fault-tolerance = layered assumptions?

our (incomplete) journey
conclusions

Warning: more questions than answers!
about how to model?

2 / 18



Challenge of security protocols

e.g. Needham/Schroeder (N-S) [NS78]

(a1)A: enc([A,NA], pkeym(B))
(b1)B: enc([NA,NB], pkeym(A))
(a2)A: enc([NB], pkeym(B))

flawed!
clear reasoning is non-trivial because of [Low95]

challenge = proper specification!
including assumptions (about attackers, etc.)
contrast with listing the intended steps
. . . and looking for counter examples
it is clear that reasoning is non-trivial because N-S was
around 18 years before Lowe’s attack found

assumptions
there are assumptions under which N-S is correct!
what are the assumptions for Lowe’s “correction”?
can assumptions be used to identify run-time checks?

most appropriate mental/metal tools for this study?
3 / 18



Our mental tools
vs. metal tools (JJH)

abstraction
abstraction
Σ/pre/post

(data) abstraction/reification
Rely-Guarantee conditions

assumption/commitment disctinction
nested for fault tolerance

abstraction, abstraction, abstraction, . . . , abstraction

4 / 18



Data: abstraction, reification
+ data type invariants (DTIs)

data abstraction/reification in development methods
more important than operation decomposition?
most specifications use same collection of base types
predicate restriction = DTI

useful (especially for future proofing)
DTIs as “meta pre/post conditions”

R/G can became long (difficult to understand)
DTI as meta rely/guarantee conditions
reduces length/complexity of R/G conditions

5 / 18



Some mental tools to respond to the challenges

one (common) idea is to abstract from encryption
π-calculus, applied-π, spi-calculus, . . . ?

I have used π-calculus (e.g. Mondex paper with KGP)
but, I feel PAs wrong-level of abstraction

special “belief” logics
??
we try to avoid “belief/thinks” terminology
the protocols are, after all, just code

so, we’re trying to use:
Σ/pre/rely/guar/post

6 / 18



Rely/Guarantee “thinking”

“top down” design/record from abstract specification
basic idea (specs as relations):

pre︷︸︸︷
σ0 · · ·

rely︷ ︸︸ ︷
σi σi+1 · · · σj σj+1︸ ︷︷ ︸

guar

· · · σf

︸ ︷︷ ︸
post

(skip proof rules here, just matching R/G)
in a sense, just “think about assumptions”
restricted expressiveness — has proved useful

7 / 18



“Relying on” the environment

R/G originated as a (top-down) decomposition rule
since applied to rely on non-developed components

physical components
can even “derive the spec of control system” [BHJ20]

of course, don’t just “rely on”
customer/deployer has to agree the assumptions

Furthermore:
layered R/G for fault-tolerance

optimistic rely + ideal behaviour
weaker rely + less desirable guarantee

8 / 18



Needham/Schroeder (N-S)

(a1)A: enc([A,NA], pkeym(B))
(b1)B: enc([NA,NB], pkeym(A))
(a2)A: enc([NB], pkeym(B))

N-S is a testbed, not our final goal

NS(from, to) = sender(to) ∥ receiver()

would be easy, but we are interested in:

NS(from, to) = sender(to) ∥ receiver()∥ other

this is where R/G come in?

9 / 18



Some modelling decisions

Σ has complete history of all Actions (Invent/Msg)
history can only extend
Invent : :Uid Nonce
nonces are unique: unique-nonces is a fudge (probabilistic)
Msg : : rec:Uid sender:Uid content: Item∗

sender is a ghost variable (not knowable)
except . . .
Item = Uid | Nonce

Σ also has (for post-NS):
users:Uid m−→ User

User has intPartner:Uid and knows:Nonce-set

10 / 18



an (optimistic) specification

post-NS says intPartners tie up;
from/to have same knows?
no other user has those Nonces
strong assumptions that would make N-S work:
no-leaks △ can only send invented or received
no-forge △ sign honestly

11 / 18



Lowe’s attack

(a1)A: enc([A,NA], pkeym(I))
(d1)I: enc([A,NA], pkeym(B))
(b1)B: enc([NA,NB], pkeym(A))
(d2)I:skip
(a2)A: enc([NB], pkeym(I))
(d3)I: enc([NB], pkeym(B))

oddities:
A sends to (miscreant) I
only message a1 is signed (properly)
message d1 has a forged signature (important for attack)
message a2 actually gives NB to I!

12 / 18



Lowe’s “correction”

(a1)A: enc([A,NA], pkeym(I))
(d1)I: enc([A,NA], pkeym(B))
(b1)B: enc([B,NA,NB], pkeym(A))
A aborts because B ̸= I

but this is a (post facto) test case
telling, but not a spec
what is the spec?
authentication vs. key establishment [BMS19]

13 / 18



Layered R/G

question each assumption:
can it be checked at run time?
if not, consequences and alternative assumptions
e.g. no-leaks, can’t check, so introduce conforms (not honest)
weaker assumptions

extra check
abort if intrusion detected
implementation has to satisfy both (all) layers of spec
Lowe’s correction still satisfies optimistic spec

closing in on assumptions: conforms ⇒ · · ·

14 / 18



. . . onwards

getting to encryption
certainly not unique to abstract away [SB10]
postponement also delays dec(enc(· · · ))
introduce Skey in User and Pkey per Uid in Σ
new assumptions about visibility, uniqueness, . . .

proof issues
∄ u ∈ · · · · · · · prompts reductio
tempting, but . . .

the “current version” of the paper (not as accepted!)
widen view of system to look at “context”
looks at conforms(sender) + ¬∃u ∈ Uid · · · ·
also conforms(sender) ∨ conforms(receiver)
introduces sessions, . . .

15 / 18



Back to metal tools

Overture tool extensions?
mechanisations of R/G

Diego [MD17]
Ian [HMWC19]
vs. POG for, say, Isabelle

come and join us in the search?

16 / 18



Conclusions

there’s work to do!
choice of best mental tools is not decided?
tool support will matter (cf. CryptoVerif)

17 / 18



References

Alan Burns, Ian J. Hayes, and Cliff B. Jones.
Deriving specifications of control programs for cyber physical systems.
The Computer Journal, 63(5):774–790, 2020.

Colin Boyd, Anish Mathuria, and Douglas Stebila.
Protocols for authentication and key establishment.
Springer, 2nd edition, 2019.

Ian J. Hayes, Larissa A. Meinicke, Kirsten Winter, and Robert J. Colvin.
A synchronous program algebra: a basis for reasoning about shared-memory and event-based concurrency.
Formal Aspects of Computing, 31(2):133–163, 2019.
Online 6 August 2018.

Gavin Lowe.
An attack on the Needham-Schroeder public-key authentication protocol.
Information processing letters, 56(3), 1995.

Diego Machado Dias.
Mechanising an algebraic rely-guarantee refinement calculus.
PhD thesis, Newcastle University, 2017.

Roger M Needham and Michael D Schroeder.
Using encryption for authentication in large networks of computers.
Communications of the ACM, 21(12):993–999, 1978.

Christoph Sprenger and David Basin.
Developing security protocols by refinement.
In Proceedings of the 17th ACM conference on Computer and communications security, pages 361–374,
2010.

18 / 18


