Using Rely/Guarantee to Pinpoint

Assumptions underlying Security Protocols

Nisansala Yatapanage ANU, Australia
Cliff Jones Newcastle University, UK

Overture Workshop
Milano
2024-09-10

1/18

@ challenges of formally describing security protocols
and their assumptions

@ quick reminder(?) of rely/guarantee idea

e rely: as assumptions on environment
e fault-tolerance = layered assumptions?

@ our (incomplete) journey
@ conclusions

Warning: more questions than answers!
about how to model?

2/18

Challenge of security protocols

@ e.9. Needham/Schroeder (N-S) [NS78]

(al)A: enc([A, NA], pkeym(B))
(b1)B: enc([NA, NB], pkeym(A))
(a2)A: enc([NB], pkeym(B))

o flawed!
e clear reasoning is non-trivial because of [Low95]
@ challenge = proper specification!
e including assumptions (about attackers, etc.)
e contrast with listing the intended steps
... and looking for counter examples
e it is clear that reasoning is non-trivial because N-S was
around 18 years before Lowe’s attack found
@ assumptions
e there are assumptions under which N-S is correct!
e what are the assumptions for Lowe’s “correction”?
e can assumptions be used to identify run-time checks?

@ most appropriate mental/metal tools for this study?
3/18

Our mental tools

vs. metal tools (JJH)

abstraction
abstraction

Y. /pre/post
(data) abstraction/reification
Rely-Guarantee conditions

e assumption/commitment disctinction
e nested for fault tolerance

abstraction, abstraction, abstraction, ..., abstraction

4/18

Data: abstraction, reification

+ data type invariants (DTls)

@ data abstraction/reification in development methods
more important than operation decomposition?
@ most specifications use same collection of base types
@ predicate restriction = DTI
o useful (especially for future proofing)
e DTIs as “meta pre/post conditions”
@ R/G can became long (difficult to understand)

e DTI as meta rely/guarantee conditions
e reduces length/complexity of R/G conditions

5/18

Some mental tools to respond to the challenges

@ one (common) idea is to abstract from encryption
@ m-calculus, applied-r, spi-calculus, ...?

e | have used 7-calculus (e.g. Mondex paper with KGP)
e but, | feel PAs wrong-level of abstraction

@ special “belief” logics
e ?7?
e we try to avoid “belief/thinks” terminology
the protocols are, after all, just code

@ so, we're trying to use:
e X /pre/rely/guar/post

6/18

Rely/Guarantee “thinking”

@ “top down” design/record from abstract specification
@ basic idea (specs as relations):

pre rely

= ——

0’0 LY O'ia'i+1 ... Ujo—j+1 .. O'f
N——

guar

~
post

@ (skip proof rules here, just matching R/G)
@ in a sense, just “think about assumptions”
@ restricted expressiveness — has proved useful

7/18

“Relying on” the environment

@ R/G originated as a (top-down) decomposition rule

@ since applied to rely on non-developed components
e physical components
e can even “derive the spec of control system” [BHJ20]

@ of course, don't just “rely on”

customer/deployer has to agree the assumptions
Furthermore:
@ layered R/G for fault-tolerance

e optimistic rely + ideal behaviour
o weaker rely + less desirable guarantee

8/18

Needham/Schroeder (N-S)

(al)A: enc([A, NA], pkeym(B))
(b1)B: enc([NA, NB], pkeym(A))
(a2)A: enc([NB], pkeym(B))

N-S is a testbed, not our final goal

NS(from, to) = sender(to) || receiver()
would be easy, but we are interested in:
NS(from, to) = sender(to) || receiver()| other

this is where R/G come in?

9/18

Some modelling decisions

@ X has complete history of all Actions (Invent/Msg)
@ history can only extend
Invent : : Uid Nonce
nonces are unique: unique-nonces is a fudge (probabilistic)
Msg ::rec: Uid sender: Uid content: Item*
sender is a ghost variable (not knowable)
except ...
o Jtem = Uid | Nonce

@ X also has (for post-NS):
users: Uid = User

@ User has intPartner: Uid and knows: Nonce-set

10/18

an (optimistic) specification

@ post-NS says intPartners tie up;
from/to have same knows?
no other user has those Nonces

@ strong assumptions that would make N-S work:
no-leaks 2 can only send invented or received
no-forge & sign honestly

11/18

Lowe’s attack

(al)A:enc([A, NA|, pkeym(I))
(d1)I: enc(]A, NA], pkeym(B))
(b1)B: enc(|[NA, NB], pkeym(A))
(d2)I: skip

(a2)A: enc([NB], pkeym(I))
(d3)I: enc(|NB], pkeym(B))

@ oddities:

@ A sends to (miscreant) 1

e only message al is signed (properly)

e message dI has a forged signature (important for attack)
@ message a2 actually gives NB to 1!

12/18

Lowe’s “correction”

(al)A: enc([A, NA], pkeym(I))
(d1)I: enc(]A, NA], pkeym(B))
(b1)B: enc([B,NA, NB], pkeym(A))
A aborts because B # I

@ but this is a (post facto) test case
telling, but not a spec

@ what is the spec?
authentication vs. key establishment [BMS19]

13/18

Layered R/G

@ question each assumption:
can it be checked at run time?
if not, consequences and alternative assumptions
e.g. no-leaks, can’t check, so introduce conforms (not honest)
@ weaker assumptions
e extra check
e abort if intrusion detected

e implementation has to satisfy both (all) layers of spec
Lowe’s correction still satisfies optimistic spec

@ closing in on assumptions: conforms = - - -

14/18

... onwards

@ getting to encryption
e certainly not unigue to abstract away [SB10]
e postponement also delays dec(enc(---))
e introduce Skey in User and Pkey per Uid in 3
e new assumptions about visibility, uniqueness, ...
@ proof issues
@ fue------ prompts reductio
e tempting, but ...
@ the “current version” of the paper (not as accepted!)

e widen view of system to look at “context”
o looks at conforms(sender) + —3u € Uid - - - -
@ also conforms(sender) V conforms(receiver)
@ introduces sessions, ...

15/18

Back to tools

@ Overture tool extensions?
@ mechanisations of R/G

e Diego [MD17]

e lan [HMWC19]

e vs. POG for, say, Isabelle

@ come and join us in the search?

16/18

Conclusions

@ there’s work to do!
@ choice of best mental tools is not decided?
@ tool support will matter (cf. CryptoVerif)

17/18

References

T P N N T AN P N 11

Alan Burns, lan J. Hayes, and Cliff B. Jones.

Deriving specifications of control programs for cyber physical systems.
The Computer Journal, 63(5):774-790, 2020.

Colin Boyd, Anish Mathuria, and Douglas Stebila.

Protocols for authentication and key establishment.
Springer, 2nd edition, 2019.

lan J. Hayes, Larissa A. Meinicke, Kirsten Winter, and Robert J. Colvin.

A synchronous program algebra: a basis for reasoning about shared-memory and event-based concurrency.
Formal Aspects of Computing, 31(2):133-163, 2019.
Online 6 August 2018.

Gavin Lowe.

An attack on the Needham-Schroeder public-key authentication protocol.
Information processing letters, 56(3), 1995.

Diego Machado Dias.

Mechanising an algebraic rely-guarantee refinement calculus.
PhD thesis, Newcastle University, 2017.

Roger M Needham and Michael D Schroeder.
Using encryption for authentication in large networks of computers.
Communications of the ACM, 21(12):993-999, 1978.

Christoph Sprenger and David Basin.

Developing security protocols by refinement.
In Proceedings of the 17th ACM conference on Computer and communications security, pages 361-374,
2010.

18/18

