
The 21st Overture Workshop

10th March 2023

Specification-based
CSV Support
in VDM

Leo Freitas1

Aaron John Buhagiar2

1. School of Computing, Newcastle University

2. Translational and Clinical Research Institute, Newcastle University

1

Introduction
• Standard (RFC4180) data exchange format

• Ubiquitous use in a myriad of domains

• Data science applications

• Medical data and embedded

• Payment systems

• Many variations and versions are used

• VDM standard CSV has limitations

• We created an improved CSV library with:

• Data validation formal specification

• Ease-of-use

• High performance

• Distributed with the VDM Toolkit [1]

[1] https://github.com/leouk/VDM_Toolkit

https://github.com/leouk/VDM_Toolkit

VDM standard CSV Library

• Slow and error-prone (e.g. low-level IO)

• Line-by-line parsing in VDM

• Limited support for various CSV formats

• Only hard-coded IO native calls available
• Limits CSV performance and formats variety

• Imported data is of a wildcard (?) type
• Users have to further introspect meaning

• Different from CSVReader
• CSV as user data not structural information

3

Design
Principles

4

S
A
F
E

ccurate

imple

ast

ffective

Types and Parsers

• CSV Lib offers basic types for column typing

• Multiple parses are available

Simple: Ease of Use

• Accessible entry points that
abstract from IO native calls

1) Out-of-the-box setup
2) Configurable (e.g. CSV settings)

• Allows direct native calls for
better extensibility and
control (3)

• Data validation can be

formally specified

6

1

2

3

Simple: Configurable Setup

7

• CSV entries strong typing defined
through semantic headers as:
• Column Name

• Datatype

• Default Value

• Cell invariant

• Column Invariant

• CSV settings define expected file
properties as:
• Presence of blank lines

• Existence of a header row

• Comment string

Simple: Reporting

• Simple and descriptive reporting
• Short rows (i.e. not enough columns)

• Declared type violations (e.g. string for nat)

• User defined invariant violations

• Provides cell locations for correction

• Striving to have a strongly-typed CSV

8

Accurate

• Checks on imported data
• Short rows
• Declared header type validation

• User defined invariants
1. Cell invariants
2. Column invariants
3. Row invariants
4. File Invariants

• Lambda abstractions capture
invariants as record fields

• Invariants return a Reason

9

1

2

3

4

Accurate: Cell Invariant

• Invariants that act upon
cells directly

• Allows for cell validation

• Examples
• Upper/lower bounds

• Cell text validation

• Specific value enforcement

• etc…

10

Accurate: Column Invariant

• Column-wide invariant

• Allows for validation per
header across rows

• Example
• Uniqueness

• Dependence

11

Accurate: Row Invariant

• Row-wide invariant

• Allows for validation per
row across all headers

12

• Examples
• Consistency

• Dependence

• Redundance

Accurate: File Invariant

• Invariant across all CSV cells

• Example
• Dependence

• Redundancy

13

Fast

14

Effective

• Multiple CSV format variants
• Better tolerance to CSV format variability (e.g. CSV UTF8, MS-DOS, Mac, etc.)

• Delegate CSV format type to parsers (e.g. formalisation of CSV format itself)

• Ease of use: use of VDM state and operations as entry points

• Improved validation, error handling and reporting

• Faster performance through multiple CSV parsers

15

Effective

• Tested on multiple CSV format variants
• CSV UTF8, MS-DOS and Mac

• Applied to multiple domains
• ScubaTx organ preservation device medical device logs

• UNOS (United Network for Organ Sharing) lung transplant history logs

• EMV payment system transaction logs

• Personalised medicine DSL “certificate of treatment”

• Neonatal dialyser finite state machine control system definitions

• Etc.

16

Library Architecture

17

Future Work

• Implementation of debugging
environment

• Improved variety of CSV formats

• Nested CSVs

• CSV Settings

• More CSV data types

• Multiple CSV headers per file

18

Thanks for Listening

	Slide 1: Specification-based CSV Support in VDM
	Slide 2: Introduction
	Slide 3: VDM standard CSV Library
	Slide 4: Design Principles
	Slide 5: Types and Parsers
	Slide 6: Simple: Ease of Use
	Slide 7: Simple: Configurable Setup
	Slide 8: Simple: Reporting
	Slide 9: Accurate
	Slide 10: Accurate: Cell Invariant
	Slide 11: Accurate: Column Invariant
	Slide 12: Accurate: Row Invariant
	Slide 13: Accurate: File Invariant
	Slide 14: Fast
	Slide 15: Effective
	Slide 16: Effective
	Slide 17: Library Architecture
	Slide 18: Future Work
	Slide 19: Thanks for Listening

