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Abstract

This thesis presents a new methodology for Hardware/Software Co-design of embedded systems.
The proposed methodology is based on the modelling language VDM-RT. This new approach
allows system engineers to perform design space exploration at an abstract level earlier in the de-
velopment process. This methodology supports the analysis of real-time deadlines under different
hardware/software architectures, without making use of virtual or actual prototyping. Based on the
information gained during this analysis, system engineers are able to allocate the required system
functionality in hardware and software blocks. This allocation or partitioning process can be done
through a rigorous study of the design trade-offs by applying the VDM-RT methodology. As an
additional advantage, the system engineers are able to specify and capture clearly and unambigu-
ously the system structure and behaviour. Besides presenting this new methodology, this thesis
will show its application in two case studies and present a pragmatic analysis of its performance.
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Chapter1
Introduction

This chapter presents the work carried out in this thesis. We start with a description of the back-
ground of this work in section 1.1, the motivation that lead to its development in section 1.2, and
the thesis goals in section 1.3. The methodology has been applied to two case studies, presented
in section 1.4. A brief review of related work is presented in section 1.5. The typographical con-
ventions used in this thesis are presented in the reading guide, section 1.6. Finally, the structure
of the thesis is described in section 1.7.

1.1. Background

Today efficient embedded systems require hybrid solutions that are able to integrate hardware and
software components. Complexity has grown exponentially over the last few decades, reaching
sizes up to 1 million VHDL Lines Of Code (LOC) [Black&04], even in small sized Integrated
Circuits (IC). On top of the hardware layer, one has to consider the software functionality imple-
mented in the system. Software has challenges similar to the ones introduced by hardware but
typically at a higher level of abstraction. Mastering both hardware and software is a must for all
engineering teams working in the area of quality embedded systems.
An emerging challenge that results from the combination of hardware and software components
in order to create systems, is the functionality allocation. This is also known as the partitioning
process. The partitioning process is the stage in the design process in which it has to be decided
whether a functionality has to be implemented in hardware or in software. This allocation/parti-
tioning process is influenced by multiple factors like price, used silicon area, performance, meeting
real-time deadlines and so on.
In order to master to incorporate such a variety of details in the design process, multiple authors
agree on the possibility of using a heterogeneous modelling approach [Gajski&09, Waddington&06,
Shaout&09]. The abstractions that are introduced in those models are as important as the mod-
elling itself. Abstraction allows engineers to leave out selected details so as to attend to others,
enabling a step-wise approach to system design. Some of the main results of using modelling
techniques in the development process are a better level of problem understanding and a higher
level of confidence in the developed solution.
Current methodologies in embedded systems design are derived from the System-Level-Design
(SLD) approach. SLD pursues the paradigm of specify/explore/refine [Gajski&09]. It aims to
start the development process by modelling at the highest level of abstraction and then perform
refinement down to the final implementation. Hardware/Software Co-Design is a promising SLD

1



Chapter 1. Introduction

approach and a top-down methodology [Wolf03]. This approach is a model-driven engineering
methodology, that aims to derive a system architecture from behavioural models. Deriving the
system architecture implies performing the partitioning process that results in the definition of the
hardware and the software blocks in a well-founded manner.
It would be fair to conclude that the application of modelling techniques play a major role in the
development of new Hardware/Software systems. Models and abstraction are the only avenues
to master the complexity present in today systems. Finally, traditionally it was preferable to im-
plement functionality in software in order to lower the costs. Today’s newer technologies and
lower hardware prices are making possible to start considering hardware or software solutions as
equal candidates. Approaches like Hardware/Software Co-design are gaining importance since
they are focused on developing the functionality to be delivered, postponing the partitioning and
functionality allocation process to a later stage in the process.

1.2. Motivation

This thesis work has been motivated by the author’s interest in the Embedded Systems field. This
interest was fostered in several courses during the Master’s degree. The courses Model driven de-
velopment using VDM++ and UML and Hardware/Software Co-design deserves special mention.
The Model driven development course presented the way concepts like abstraction and formal
modelling can be applied in the development of systems. Through the application of abstraction a
complex problem can be boiled down to its essence, being easier to be approached and solved. A
precise and abstract representation of a system can be created by the use of formal models. This
representation allows the analysis and lays a solid basis for the implementation stage. Hardware/-
Software co-design makes very extensive use of models in order to represent and analyse different
architectural solutions. The applied models in this field can be at different abstraction levels, and
can range from general system models for initial system specification to concrete subcomponent
representations.

There are already several modelling technologies for Hardware/Software co-design in the market.
Every modelling technology presents an associated methodology that describes its application
throughout the development process. Some of these technologies are too generic and, even though
they can be fitted for the purpose of communication and overall analysis, a thorough study of the
problem becomes difficult to perform (e.g. SysML, UML profiles). On the other hand, there are
very specialized technologies that tackle concrete problems in a proficient way, but are weak on
representing more generic scenarios (e.g. Matlab Simulink). It is the author’s belief that there is
a need for a modelling workflow that takes the most beneficial aspects of both approaches and
provides a way to conduct hardware/software design space exploration.

1.3. Thesis goal, approach and scope

This section describes the Master’s thesis goal, the approach used and the scope of this work.

1.3.1 Goals

The main goals of the thesis are:

2
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1. To propose a general purpose methodology based in the VDM-RT modelling language
in order to support the design decisions in the Hardware/Software co-design field.

2. To propose improvements and extensions to the VDM-RT language and the modelling
tool Overture, seeking to contribute on the creation of a modelling tool that can be
applied in a more specialized field.

An additional personal learning goal of this thesis, as important as the previous ones, is to improve
the author’s skills and knowledge in the VDM-RT modelling technology and in the Hardware/-
Software Co-design field.

1.3.2 Approach

The methodology applied in this thesis is structured in two phases, each containing several points
of action.

Phase 1: Study, analysis and reflections
Reading and research activities that will allow the author to: evaluate the need for new method-
ologies and draw the requirements for new methodologies in the case they are needed. The result
of this phase will allow to build the rationale behind the work that will be carried out during the
rest of the thesis. This phase is decomposed in the following steps:

• Research on the state of the art of modelling techniques applied in system-level design.

• Exploration of current processes and workflows used in hardware/software co-design. This
research includes both academic readings and interviews with experts in the field.

• Research on the current challenges in the hardware/software co-design field.

• Additional study on the FPGA technology.

Phase 2: Elaboration
The elaboration phase covers some of the methodological needs detected in Phase 1 by the design
of a VDM-RT methodology for Hardware/Software co-design. This phase is decomposed in the
following steps:

• Development of a VDM-RT based methodology in order to provide partial support in hard-
ware/software co-design decisions.

• Application of the proposed methodology in case studies in order to validate its perfor-
mance.

• Pragmatic analysis of results and evaluation of the proposed VDM-RT based methodology.

1.3.3 Scope

This work will be focused on:

• Proposing a methodology that supports the process of making partitioning decisions during
the development of hardware/software systems.

• Focusing on partitioning decisions that can be reached through the analysing of real-time
deadline accomplishments, interaction between components, and approximate system be-
haviour modelling.
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This thesis does not have as an ultimate goal the implementation of industrial solutions for the
problems presented in the case studies. Actual incorporation of the proposed improvements to the
tool Overture or the modelling language VDM in any of its flavours are out of the scope of this
thesis work.

1.4. Case studies

The proposed methodology has been applied in two case studies. A core part of the thesis has
been the evaluation of different partitionings with regard to real-time deadlines. The first case is
conceptually simple with a single real-time deadline, aiming to show how the methodology should
be applied. The second case is based on a real industrial application and with multiple real-time
constraints and several possible partitionings. A brief description of these cases is provided below,
for further information refer to chapters 5 and 6.

• Development of a servo controller: The servo controller case will present how different
implementation strategies can be modelled by the use of VDM-RT. This case shows the
application of the methodology in a single-process scenario with real-time deadlines. This
is an introductory case study based on the workshop [Speedway11SDK].

• Development of an AVB endpoint device: Audio Video Bridging is a technology that aims
to offer real-time multimedia content streaming over Ethernet network. This technology re-
quires the implementation of protocols for time synchronization (802.1AS), traffic shaping
(802.1Qat) and stream reservation (802.1Qav). The case is ideal for testing the performance
of the methodology in a time-critical, multi-process setting. The modelling focus will be set
on the time critical aspects of AVB. This case study has been provided by Bang & Olufsen.

1.5. Related work

Before starting considering a new approach for Hardware/Software co-design, a review of the
current modelling techniques, methodologies and challenges has been performed. In this section,
only an overview of the considered work is presented. Additional details in existing approaches
will be presented in chapters 2 and 3.

Formal modelling processes for Hardware/Software engineering
[Huang&04] proposed the Software Hardware Engineering methodology, based on the POOSL
modelling language. This methodology is based on a formal object-oriented modelling language.
It has been applied in a number of industrial projects and several tools have been developed
even allowing model compilation. Unfortunately this area of research seems to be inactive. In
his thesis, Verhoef introduces a real-time extension for the formal modelling language VDM
[Verhoef05]. This extension provides the necessary constructs for the evaluation of different
system architectures in a distributed real-time deployment. Additional research and develop-
ment effort has been spent on this and a concrete implementation of this is in the modelling tool
Overture. A complete development process entirely based on the VDM method is proposed in
[Lausdahl&10b, Larsen&09]. This methodology makes use of the VDM-Specification Language,
the VDM-PP Object Oriented modelling language and, finally the VDM-Real Time extension.
This process makes use of formal model during the whole project life-cycle. The tool support

4



Related work

for this process is provided by Overture [Larsen&10b] and by VDMTools [VDMTools]. There
is no previous work related to the application of the VDM methodology in the Hardware/Soft-
ware Co-design field. The current research in VDM is working toward the integration with other
modelling platforms in fields like mechanical co-simulation [DESTECS09] or System-of-Systems
[COMPASS11].

Specialized processes for FPGA based systems
Xilinx presents a development process for FPGA-based system design in [XilinxToolFlow11,
Speedway11EDK]. This workflow is highly tool-oriented and slightly covers the problems as-
sociated to hardware/software co-design of embedded systems. Simulink provides a sophisticated
modelling framework that can be used in many modelling activities [Simulink]. One of these activ-
ities is the modelling of FPGA-based systems. Ou et alin [Ou&05] makes use of Matlab/Simulink
in order to co-simulate different hardware partitions. The same authors propose an interesting
contribution where Matlab models are applied for energy estimation consumption in FPGA soft-
processors [Ou&04]. The existing literature is focused on using Matlab as an specialized tool in
order to create models that will help on taking concrete partitioning decisions. Little effort has
been spent on relating these modelling activities with a complete methodology to be applied for
complete system development.

Combined SystemC - UML profiles based processes
Mischkalla et al. and Prevostini et al. propose the combination of SystemC with UML profiles in
order to create a sustainable modelling-implementation process through the development process
[Mischkalla&10, Prevostini&07]. Such an approach is interesting since two modelling technolo-
gies are combined. This heterogeneous application is taking the most beneficial aspects of both
technologies and mitigates possible shortcomings. However, UML profiles can be limited when it
comes to model execution and SystemC models might be biasing partitioning decisions towards
software (SystemC is a C++ class library). [Mueller&10] describes the approach followed in the
ongoing EU FP-7 project SATURN (SysML Based Modelling Architecture exploration, simula-
tion and synthesis for complex embedded systems). In this approach an addition to Artisan Studio
is used to create SysML models that can be synthesised. The generated code can be co-simulated
in a virtual platform for system verification. Finally, generated code can be deployed in the actual
platform.

The proposed methodology for Hardware/Software Co-design tries to approach the hardware par-
titioning problem, that is not explicitly addressed in the existing VDM-RT development process
[Larsen&09, Lausdahl&10b]. The proposed methodology benefits from several ideas proposed in
the previously cited papers.
One of the most relevant features of the VDM-RT based methodology for hardware/software co-
design is that it is not specialized to address particular problems. This is beneficial from the sys-
tem perspective, as it is better suited than the specialized processes for FPGA-based system. How-
ever, when it comes to solve particular implementation details [XilinxToolFlow11] and [Simulink]
might be more adequate.
Finally, the combination of graphical notations applied in the combined SystemC - UML profile
based processes are interesting and the synthesis possibilities outstanding. Note that this has been
reached after years of development and considerable investments, therefore it will not be fair to
compare the methodologies considering the state of the tools. Considering only the modelling
methods used, it could be conclude that SysML might lead to an informal use of the modelling
technology, implying imprecisions and modelling errors. SystemC is too close to the implemen-
tation language C++ and might alter the focus of the modelling and bias the system engineer to
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more software-based implementations. On the other hand VDM-RT is far from final implementa-
tions of the system, since it is an abstract modelling language by construction. A more in-depth
comparison of these approaches will be provided in chapter 3.

1.6. Reading guide

This thesis makes use of the following conventions:

References:
Articles, books, technical reports, figures and anything that is not the author original work is refer-
enced. The references are placed between square brackets containing the surname of the primary
author and the year of publication, e.g. [Brooks86]. In the case there are several authors for the
same resource the character & will be placed between the surname of the primary author and the
year of publication, e.g. [Black&04]. Finally, in the case the author has published several articles
during the same year, a letter will be added following the year of publication, e.g. [Lausdahl&10b].

Emphasis:
Concepts, words or sentences with special relevance are emphasized in the text by the use of italic.

Guidelines:
General instructions and modelling advice are given in the form of guidelines, that present the
following style:

Guideline 9: Each hardware candidate should be deployed on an individual CPU configured
as a hardware block.

Keywords and language instructions:
C, VHDL and VDM keywords are shown in typewriter boldface. Other instructions are
shown in plain typewriter font.

VDM model listings:
VDM models are placed in listings that present the following style:�

1 private generateCycle: () ==> ()
2 generateCycle() == ();
� �

VHDL code listings:
VHDL source code snippets are placed in listings that present the following style:

1 control_counter_process : process (clk, rst)
2 begin
3 end

C code listings:
C source code snippets are placed in listings that present the following style:
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1 void rc_servo_set_servo_position(int baseaddr,
2 int servo_number,
3 int position);

1.7. Structure

This thesis is organized in seven chapters, of which this introduction is the first. Figure 1.1 presents
the thesis structure in a graphical manner.
Chapters 2 and 3 summarize the theoretical foundation of this work. These chapters will provide
the necessary concepts in System Level Design, Hardware/Software Co-design, Workflows and
Modelling.

• Chapter 2 introduces the concept of abstraction and its application in the Hardware/Software
engineering field. Special emphasis is made in the importance of the partitioning decisions
during the analysis and design phases of the project.

• Chapter 3 gives and overview of the most relevant modelling languages used in system level
design. Together with the languages, workflows that make use of them in order to model
and study Hardware/Software systems are reviewed.

The following chapters present and apply in practical cases a new methodology for design space
exploration in Hardware/Software co-design:

• Chapter 4 presents the VDM-RT methodology proposed by the author. Concrete guide-
lines and modelling advice will be given so it can be applied by a modeller with minimal
knowledge of VDM-RT. A critical view on the methodology will be presented.

• Chapter 5 introduces the case study on servo control. The proposed methodology in this
thesis will be applied in a case that is easy to understand by a reader with minimal knowl-
edge on hardware design. The methodology will be applied from the analysis and design
stage down to the final implementation of two different architectures. This case study will
give the possibility of validating the hypothesis derived from the VDM models against real
implementation details.

• Chapter 6 introduces the second case study of this thesis which is based on the development
of an AVB endpoint device. The system under consideration in this case study is com-
plex and involves several protocols. The VDM-RT methodology will help to detect critical
aspects and to provide information in order to make design decisions. An actual implemen-
tation in this second case study has not been performed due to time limitations. This case
study has been proposed by the commercial electronics manufacturer Bang & Olufsen.

This thesis is concluded in chapter 7, which summarizes and analyses the achieved results. It also
establishes areas in which further work could be performed.

This thesis contains five appendixes. Appendix A provides a list of definitions and abbrevia-
tions of hardware/software terms used in this thesis. Appendixes B and C present the produced
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Figure 1.1: Thesis structure

VDM models for the servo and the AVB case studies respectively. Additional details on represen-
tations and models used at different levels of abstraction are given in appendix D. Finally, more
information about the MATLAB based validation methodology is provided in appendix E.
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Chapter2
System development and abstraction in
hardware/software engineering

This chapter introduces system development and complexity, presenting the rationale for new
methods and tools in section 2.1. Abstraction levels that can be used in a Hardware/Software En-
gineering context are described in section 2.2. The approach System-Level Design and the mod-
elling languages used under it are described in sections 2.3 and 2.4. The concrete System Level
Design approach hardware/software co-design is presented in section 2.5. Finally, the chapter is
summarized in section 2.6.

2.1. Introduction

Before presenting methods, tools and system related abstractions, the term system itself requires to
be defined. According to the Systems Engineering Handbook [INCOSEseh10] a system is defined
as:

"An integrated set of elements, subsystems, or assemblies that accomplish a defined
objectives. These elements include products (hardware, software, firmware), pro-
cesses, people, information, techniques, facilities, services and other support ele-
ments.

Besides the system engineering perspective present in the development, that is considering even
facilities and services, the element under study in this thesis is what is defined as product. Both,
[NASAseh10] and [INCOSEseh10] qualify hardware, firmware and software as crucial elements
to produce system-level results.
Systems are developed by carrying out different processes which, according to [INCOSEseh10],
can be classified as organizational, technical and managerial. The development processes pro-
posed in this thesis work falls under the category of technical processes.
The purpose of the lines above is to contextualize the methodologies applied within the technical
processes, that will be discussed in chapters 2, 3 and 4. The ultimate aim of these processes is to
support and perform the development of a product, composed by hardware, software and firmware.

Hardware/Software systems are composed by a wide variety of elements and components of dif-
ferent nature, presenting a growing complexity. This complexity has increased exponentially over
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the last decades and traditional approaches, based on simple methodologies and the engineer’s
experience, are not always enough to tackle the project complexity. [Black&04]. This kind of
situation leads to cause analysis-paralysis1 in the system development process or poor decision
making overlooking at critical details, something that may flyback later on in the project life-cycle.
With the purpose of dealing with this complexity, [Patel&04] proposes to rise the level of abstrac-
tion in system design and to use different methods and tools in system development. A similar
argument is hold by [Black&04]. Gajski in [Gajski&09] presents that it is needed a systematic and
well-founded approach to design combined hardware/software solutions, that supports the speci-
fication phase and provides solid arguments to perform design decisions such as system hardware
partitioning.

The current approach in System Design Methodologies is, according to [Gajski&09], and from
the early 2000s, Specify, Explore-and-Refine methodology, which introduces the so called System-
Level (SL) perspective. This approach is primarily using the concept of abstraction in order to
define different levels. Abstraction levels are enabling an stepwise system development, which
helps on facing a challenging project, in which the development team has limited experience or is
specially complex.

2.2. Abstraction levels overview in a single system

Before going in detail on abstraction levels, the concept of abstraction itself deserve special con-
sideration. There are different definitions explaining what abstraction is focusing on different
aspects. Kramer in [Kramer07] is presenting abstraction as the process of removing detail to sim-
plify and as a generalization to identify the common core. The first definition, which is the most
connected with this thesis work is a quote from Kramer:

"the act or process of leaving out of consideration certain properties of a complex
object so as to attend to others."

In the system development context, abstraction is playing a key role allowing the engineers to
tackle the complexity inherent in hardware/software systems. As Kramer explained and applied
in this context, this tool will allow the designers to consider some of the properties that should be
present in a system without considering others, that will be taken in account further in the devel-
opment process. Therefore, abstraction is a enabling tool to describe the system at different levels
and to perform different kind of analysis.

The way from a system described in terms of inputs and outputs (blackbox approach), to a sys-
tem described with a fully detailed hardware implementation is organized in several layers of
abstraction. All of them are relevant during the development process, providing details in differ-
ent implementation areas. Abstraction is therefore, mainly, a tool to deal with the complexity and
the amount of details present in a system.

In a combined hardware/software context, multiple authors ([Gajski&09, Black&04, Sudhakar05])
agree on six abstraction levels for single-device based systems. The levels that this thesis work is
covering are:

1Common term to refer to over-analysing a situation, causing no productive results and no progress in decision-
making.
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Algorithmic Level: The algorithmic level is focused on the behaviour the system has to imple-
ment. At this level, no description of the hardware implementation is made. The effort
is focused on describing the information the system is receiving, how this information is
processed and which outputs should be provided. At this level it is possible to analyse the
software logic. Relevant aspects could be concurrency, protocols, policies or data consis-
tency.

Interface Level: The interface level incorporates details about the interface between the func-
tionality implemented in hardware and the software components. This level is commonly
referred in the literature as the "programmers view" At this level the hardware partition is
clearly defined. Some of the analysed aspects are data availability, data format and proto-
cols.

Transaction Level: The transaction level view adds timing details to the interface. It offers time
related details that can be useful to estimate real-time deadline accomplishment. Appropri-
ate real-time performance at this level is necessary condition but not sufficient. It is also
know as the "timed programmers view", and models at this level are named Transaction
Level Models (TLM). At the transaction level approximate time details are used to analyse
timing details related to the hardware/software interface.

At a lower level of abstraction we can find the Cycle Accurate Level, the Register Transfer Level
and the Silicon Level. These levels are not relevant for this thesis work and further information
can be found in [Gajski&09].

Figure 2.1: Abstraction levels in a hardware modelling context.

Figure 2.1 is detailing the abstraction levels discussed above. Note that the targeted levels by
this work are at the top of the abstraction stack. The algorithmic level is often stratified in several
sub-layers and varies in complexity. This last issue has to do more with the embedded software
development field rather than with the partitioning process, therefore this thesis will not elaborate
further in that area.
More information about the different representation and models that can be used at each abstrac-
tion level can be found in appendix D.
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2.3. The System-Level perspective

The system-level design approach is aiming to start the design process at the highest abstraction
level of the ones explained above. From this level, the system is represented by an executable
specification that represents the behaviour (Specify). Additional models are incorporated to this
holistic view in order to illustrate different facets of the system (Explore). These models can pro-
vide details on design decisions and serve as a tool to evaluate different configurations. Once
exploration be the means of these models is concluded, additional implementation details are
added (Refine). Each model refinement will be carried out after taking more design decisions,
therefore incorporating more details about the final system. A relevant characteristic of SL design
is to reuse components and Intellectual Property (IP) blocks whenever is possible, minimizing the
development effort.

The system level design approach follow a sound engineering procedure applied during many
years in multiple fields. SL starts with a initial specification, followed by possibilities exploration
and finally model refinement down to actual implementation [Gajski&09].

2.3.1 Different approaches in system-level design

There are three main system-level design methodologies that make use of the approach Speficy-
Explore-Refine introduced above [Shaout&09, Gajski&09]:

Hardware/Software Co-design: also known as top-down methodology or Model-Based Design.
This methodology pursues to model the behaviour of a certain system in order to derive an
architecture from it. Deriving this architecture implies cooperative design of hardware and
software.

Platform-Based Design: this approach allocate the functionality implementing the behaviour to
a previously defined architecture.

Component-Based Design: also known as bottom-up methodology. This methodology starts by
creating the building blocks at the lowest level of abstraction. These blocks will be used in
the creation of the immediate superior layer in the implementation. All blocks are organized
at libraries present at the different abstraction levels.

2.3.2 Application of system-level design approaches

The application of System-Level design methodologies depends on the encountered situation.
Platform-Based Design is the required approach in the case a certain platform has to be used. For
instance, in the case an update over a certain system has to be performed and the architecture for
this system has been already defined. The system might be featuring several processing units, so
the issue considered in a platform based design approach is in which out of these processing units
the functionality has to be allocated.
Hardware/Software co-design will support the development of an optimized platform, supporting
this task with metrics on different factors. The use of this flavour of System-Level design approach
is ideal for development of new products, in which a higher degree of flexibility is present. Design
space exploration is fostered in this approach.
Finally, Component-Based Design requires an extensive creation of components library at each
abstraction level. These components have to be created, ideally, before moving to the superior
layer. It is an arduous task, if not impossible, to make a prediction of exactly which components
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are to be used in a certain product, therefore there have to be components implementing many
different functionalities which are not going to be used in a certain system. As an advantage, the
bottom-up methodology facilitates the creation of re-usable building blocks, clearly allocated in
an abstraction level. This approach could be adequate for a large hardware manufacturer, which
will possibly reuse components in later developments.
From now on, the focus of this work will be the system-level design approach pursuing Hard-
ware/Software co-design.

2.4. Modelling languages in system-level design

The essence of System Level (SL) design, as expressed by [Shaout&09] could be resumed as:

"System Level Design maps a high-level abstract specification model of an entire
system onto a target architecture."

Besides Shaout et al., many authors agree that speaking about System-Level Design without con-
sidering modelling would be impossible. Since the moment in which the concept of abstraction
is present in this way of designing systems, it is clear that certain kind of system representation is
going to be present. This directly implies that models are going to be used, which lead to consider
two issues: a) The kind of languages needed to make such a representation and b) The level of and
kind of details that should be present at this initial, abstract representation. This issue has been
widely discussed in the literature.
At this point, more relevant than reviewing concrete languages, it is more interesting to consider
which possibilities a modelling language should offer in order to be useful in a System-Level De-
sign context. According to [Shaout&09, Gajski&00, Niemann98] a modelling technology used to
specify a system should incorporate facilities to represent the following elements/properties:

Hierarchy: as explained above, increasing size of systems makes necessary to introduce struc-
tures in order to organize system behaviour and architecture. These structures typically have
subordinated components solving part of the problem that they are responsible for. Making
a proper representation of a system structure is a basic feature.

State transition: system operation can always be described as a state machine. Depending on
external inputs (current, previous or both), the state can be in different operational modes or
states of execution. Some embedded systems are purely implemented as state machines, its
use is a common practice at both Software and Hardware level.

Concurrency: in many cases a system is executing several processes or threads at the same time.
There is a leap in complexity from single-task based solutions to multi-task ones, both at
the implementation and specially at the debug stage. The modelling language should be a
tool to support this situation and foresee possible conflicts and concurrency problems.

Synchronization: The need for synchronization modelling support is derived from concurrency.
Race conditions, deadlocks and other concurrency related problems can cause complete
system malfunctioning. Like concurrency problems, these cases can be extremely difficult
to detect. In some situations, problems are detected when the system has been already
deployed. With the introduction of multi-core processors, synchronization must be guaran-
teed even at the hardware level. A modelling language supporting concurrency must support
synchronization in order to be useful in the multi-task domain.
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Interrupt handling: interrupts are common mechanisms in embedded-systems, often used to
signal events. These kind of events may require the interruption of the current task and,
therefore, transition to an alternate state to process them. Some embedded systems are
purely interrupt driven. An modelling language used to model embedded systems must be
able to represent this kind of situations.

Timing: many embedded systems present soft/hard deadlines in its operation. Not satisfying
these deadlines could imply complete system malfunctioning. Modelling constraints of this
kind, specially in concurrent systems is a desirable property.

Constructs to support formal verification: it should be possible to express certain system prop-
erties so logic and discrete mathematics can be used to prove that they are present in the
system. While powerful, formal verification is sometimes far from the embedded engineer
mindset. Strong tool support is required to make formal verification usable in an industrial
setting.

Dynamic behaviour: in the case the system is making use of dynamic scheduling in order to
coordinate software operation, the modelling language, ideally, should provide a way to
represent and analyze it. Dynamic scheduling is often implemented by the use of a Real
Time or ordinary2 operating system.

In [Huang&04], the authors rise the level of abstraction and require different features that a mod-
elling language should present:

Adequate expressive power: the modelling language has to be capable of expressing complex
properties, behaviour and structure.

Platform-independent semantics: the semantics of the language shall not be bounded by a a
certain technology. The use of the language should not be restricted to a concrete platform.

Operational semantics: this property refers to the executability. By executing a model, simula-
tion and/or model-checking techniques can be applied in order to detect inconsistencies and
prove correctness.

Modularity support: as explained above, the possibility of expressing the internals of a compo-
nent and its interfaces is a must.

Automatic and correctness-preserving transformation: the system-level design model should
be a golden model3, that will be refined until the actual system implementation is achieved.
During this process, a large number of refinements and transformations will be applied to
the initial model. By using a tool that is automating these transformations and, furthermore,
ensuring that certain properties are satisfied, the development of the system is easier.

It is difficult to find a modelling language that incorporates all the features suggested by Huang,
Gajski and Niemann. A compromise solution must be reached when deciding on a concrete lan-
guage. Further details on concrete languages and application areas will be introduced in chapter 4.
This requirements are giving an idea about the kind of details that should be present at a System-
Level Design model, or at least considered in an initial specification.

2Non-Real Time Operating System
3Common term to refer to a model that is used as a reference during the whole development process.
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2.5. Hardware/Software co-design

Nowadays embedded system are often implemented in heterogeneous architectures, that combine
dedicated hardware blocks, processors and software components deployed in processors4.
The possibility of using different hardware and software blocks opens a wide range of possibil-
ities when it comes to the architectural design stage. The challenge in this situation is to decide
whether a certain behaviour should be implemented as a software or as a hardware component.
The Hardware/Software co-design discipline provides the tools and the methods to generate ar-
chitecture from behaviour by adding implementation details to the design.

Before digging in to some of the most outstanding aspects about this discipline, it is worthwhile
considering definitions from the literature:

[Schaumont10] defines this discipline as:

"Hardware/Software co-design is the design of cooperating hardware components and
software components in a single design effort."

The same author remarks as well:

"Hardware/Software co-design focus on the partitioning and design of an application
in terms of fixed and flexible components."

[Wolf03] remarks:

"... hardware/software co-design tries to increase the predictability of embedded sys-
tem design by providing analysis methods that tell designers if a system meets its
performance, power and size goals and synthesis methods that let researchers and
designers rapidly evaluate many potential design methodologies."

Finally, [Shaout&09] characterize Hardware/Software co-design as follows:

"... also referred to system synthesis, is a top-down approach. Starts with system
behaviour, and generates the architecture from the behaviour. It is performed by
gradually adding implementation details to the design."

These four quotes jointly give a good overview of what Hardware/Software co-design is: "a single
design effort", what the main focus is: "the partitioning and design", which criterion are relevant
in partitioning: "performance, power and size goals" and, finally, how the system is produced:
"architecture derived from behaviour". The following sections elaborates on the details outlined
by these three authors and presents FPGAs as platforms for using this methodology.

2.5.1 Trade-offs and impact of Hardware/Software co-design

Every system specification presents a certain collection of targets that shall be fulfilled in order
to produce a successful implementation. Some targets, as they were mentioned by [Wolf03], are
specified in the form of requirements that must be satisfied. Other targets, are design variables
that can be optimized in order to produce a higher quality system. In order to consider a design
target as fulfilled, and in order to optimize its variables, it is needed to apply a specific criteria. By

4In this case "processor" is a common term to denote to a "microcontroller", a "Digital Signal Processor" or a
"microprocessor".
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applying it, it is possible to compare solutions and determine which one is valid/better. Connected
criterion with opposite gradients in its optimization function are known as trade-offs.
Considering a trade-off situation; a change on one of the involved variables might have an im-
pact on the rest. For example, raising the frequency of the processor speed up the computation
therefore, the performance. The higher the frequency the higher the energy consumption. In some
cases the higher the temperature of the silicon.
The challenge here is to compromise in order to find the optimum balance in these trade-offs. The
most relevant criterion, that might imply trade-offs from different perspectives in the design space,
are explained below. These criterion is proposed by the author taking inspiration from [Chen&09]
and [Schaumont10].

From a technical point of view, the most important variables that might present trade-offs are:

Performance: The level of abstraction in which a certain solution is implemented has a direct
connection with its performance. By construction, the hardware layer is at a lower level
of abstraction than the software layer. The existing overhead in a hardware functionality
implementation is practically null. A hardware implemented functionality presents a higher
degree of performance in all the cases. A hardware implementation might be more expen-
sive to create in terms of time and material costs.

Flexibility: Functionality implemented as a software component is more flexible in terms of re-
usability and modification. A hardware block is typically suited for a single purpose and
can hardly be reused for a different purpose.

Energy efficiency: energy constraints are present nowadays in many systems. Some systems
require to be energy efficient so their operational life is longer e.g. a battery powered multi-
media system. Others require to be energy efficient in order to be environmentally friendly
e.g. a class-A home appliance. Finally, due to pure physical reasons, the more energy an
electronic device is consuming the more heat is going to be dissipating. This might lead to
performance decrease or even compromise system availability. A system that is operating
at a higher frequency might perform better, but it will consume more energy.

Complexity: The heterogeneity present in a System-On-Chip (SoC), presents a challenge itself.
Considering a hardware block in isolation, several thousands lines of VDHL code have to
be used in order to implement a functionality that might require hundreds in the C program-
ming language. This means that, a hardware implementation is harder to design, create
and maintain. Furthermore, debugging facilities in software are more simple than the ones
available in hardware. The latter kind often implies a combination of external equipment,
in-system logic analyzers5, ... On the other hand a hardware solution generally presents
better performance than a software solution.

Co-design decisions have an impact as well from a managerial point of view. A certain architecture
will present particular time and cost demands:

Engineering hours cost: Development effort is one of the most relevant issues when evaluating
different design possibilities. The amount of man-hours that will be spent in the develop-
ment depends on the available time-budget assigned to the project. A heavily based hard-
ware solution will have a considerably higher demands on engineering development hours
than a combined hardware/software approach.

5An example of in-system logic analyzer is Xilins Chipscope. This tool enables the developer to analyse the logical
signals inside the FPGA. For additional details refer to www.xilinx.com.
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Material cost: Material cost is one of the most relevant recurring design variables. Even mini-
mum savings per unit lead to an important revenue in the long run. This might be in conflict
with with the performance or the energy efficiency variables.

Development time availability: Current product developments are characterized by the short
time-to-market. Reusability of hardware blocks whenever is possible, integration of IP
cores or partitioning are some of the factors that will make certain architecture feasible
within the available time frame for the development.

Figure 2.2: Trade-offs in Hardware/Software co-design. Source: [Schaumont10]

The technical criterion could be refined even further and consider more particular details. These
details depend on the problem under study. In [Brogioli&06], the partitioning is performed con-
sidering mainly the real-time deadlines for a 3.5G mobile receiver. In this case the data and
computational related aspects are especially relevant. The goal in this case is to derive an archi-
tecture that fulfils the real-time deadlines. The approach is to improve the performance of the
system. The performance sub-criterion used in this partitioning problem were:

Data spatial location: Data can be stored in a number of different hardware elements in a certain
architecture. Latency, access and setup times or bus usage make a difference when it comes
to read or write data. Where to place the data, besides the used memory technology, will
affect the time performance of a concrete system architecture.

Data level parallelism: Parallel data availability can be exploited from an implementation point
of view. FPGAs and DSPs to some extent are strong on receiving a parallel stream of data
reducing data input latency in the system.

Task level parallelism: An implementation in which multiple elements are solving a complex
problem in a parallel way is considerably more efficient than a serial processing approach.
When combined with a high degree of Data level parallelism, a parallel implementation
might present an outstanding level of performance. However, not all computational prob-
lems are suitable to be solved by parallel computing. For example the image processing
field present numerous algorithms suitable for parallel computing. On the other hand, the
algorithms used in a network interface are not the ideal case for parallel processing.

Computational complexity: An algorithm running in a DSP or CPU might present bottlenecks
that can be detrimental to the overall performance. The solution in many cases comes in
the form of hardware off-loading6, which implies moving the worst performing algorithms
executing in the host processor to a hardware implementation in a FPGA. The criteria to
determine which algorithm is performing best is not always the same and, in many cases,
it is ad-hoc. In some cases the validation criteria can be time deadlines accomplishment, in
other cases throughput, etc...

6A concrete hardware off-loading case will be presented in chapter 5
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These aspects might not be critical or not even present in all applications. The conclusion that
can be drawn is that, besides the general issues described above, particular partitioning sub-goals
might arise in a certain project. This presents, a challenge for a co-design methodology. The
applied techniques should be flexible enough in order to incorporate the heterogeneous details
and particular considerations that each problem might present.

2.5.2 Overview of the Hardware/Software co-design process

There are several methodologies and techniques that can be applied in order to do Hardware/-
Software co-design. All of them are pursuing the objectives described above. Even though they
might differ in techniques, artefacts or performed analysis, all of them follow the overall structure
presented in figure 2.3.

Figure 2.3: Hardware/Software co-design process overview. Source: www.tu-dortmund.de

The system design stage starts with the phase system specification in which functional and non-
functional requirements are defined. In cost estimation, a cost factor for each design alternative
is determined. This cost factor enables the system architects to evaluate the design alternatives
against a set of criterion previously defined. These criterion might be similar to the ones introduced
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above. There are different models that can be used to perform cost estimation. Ad-hoc models,
system models or previous experience are the most typical ways of carrying out this phase. This
phase is where the design space exploration takes place. Once the optimal solution given the
situation has been determined, the Hw/Sw Partitioning takes place. This phase will determine
the system architecture, and will result on the definition of Hardware parts, Interface parts and
Software parts. The next stage in the design is the co-synthesis, in which the Hardware and
Software blocks are created in parallel. A key role in this stage is presented by the refinement
towards hardware specifications and software specifications. The result of the co-synthesis is a
model that can be co-simulated, so hardware and software blocks can be run together in a software
platform. Results can be validated and verified against the initial requirements. In the case the
validation is successful a bitstream for a concrete FPGA and a binary for a certain processor can
be generated and deployed on target. Further testing activities on a real7 hardware platform are
performed and finally on the actual platform. The Hardware/Software co-synthesis and the Real
and Actual hardware testing stages are out of the scope of this thesis.

2.5.3 The role of modelling in Hardware/Software co-design

As explained in sections 2.3 and 2.4, modelling techniques are fundamental tools in the System
Level Design approach. Since Hardware/Software co-design is a model-driven engineering ap-
proach, the relevance of modelling is even greater. Many authors highlight the importance of
models of computation and its application through the design process [Gajski&09, Black&04,
Schaumont10, Shaout&09, Chen&09].

Two concepts are crucial in order to understand models in System Level design and, in partic-
ular, in Hardware/Software Co-design: a) Abstraction and b) Refinement. Both of them have
been already explained in section 2.1. When considering models in this context, and according to
Gajski et al. and Black et al. in [Gajski&09, Black&04], it is important to keep in mind that:

• The less abstract a model is, the closer to the final implementation it is;

• refinement is performed when lower level details are incorporated to a higher abstraction
level model;

• the added details are relevant from the communication or from the computation (function-
ality) point of view and

• the precision of the notion of time can be improved by refinement.

The initial modelling activities start with the creation of a Specification Model (A), this model is
named by [Black&04] as System Architectural Mode (SAM). A SAM model does not incorporate
any notion of time. The main outcome is the causal ordering between processes. The causal
ordering allows to describe what happens before and after considering certain event, in other
words ordering of events and actions. The next refinement considering computation is the Timed
Functional Model (B). At this step time annotations of certain computations and estimated delay
results are incorporated. The first model incorporating an approximated notion of time in both
communication and computation aspects is a Transaction Level Model (TLM) (C). From this
point it is possible to refine the models in terms of communication or in terms of computation.
A TLM model that is reaching a Cycle Accurate representation is called Bus-Cycle-Accurate

7The term real hardware platform refers to an FPGA development board. The term actual hardware platform refers
to the final hardware device, the electronic platform that will be mounted inside the product to be developed.
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Model (BCAM) (D). On the other hand, a TLM model refined in terms of computation is called
Computation Cycle Accurate Model (CCAM) (E). When both BCAM and CCAM models are
combined a Cycle-Accurate-Model (CAM) (F) is obtained.

Figure 2.4: Level of details with regard to communication and time. Source: [Gajski&09]

Figure 2.5 shows a similar model classification, provided in [Black&04]. Following this classifica-
tion, BCAM models are called Bus Functional Models and CAM models are referred as Register
Trasfer Level (RTL) models. Besides different terminology, the interesting issue is that Black
shows intermediate refinements both in the communication and functionality aspects that were
not provided by Gajski. These refinements fall under the category of Transaction Level Models.
Note that, according to this criteria, it is not required to incorporate an approximate notion of time
regarding functionality or communication to reach an RTL (CCAM or BCAM) level of represen-
tation in one of the areas. However, a complete RTL representation of the system is reached when
both communication and computation aspects have been described in the model.

Figure 2.5: Level of details with regard to communication and time. Source: [Black&04]

2.5.4 Outcomes of Hardware/Software co-design

Applying Hw/Sw Co-design in system development provides advantages that are more compli-
cated to obtain from other approaches. Among them, the following must be highlighted:
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• Development of an architecture fitted for a particular behaviour, optimized according to
concrete design criterion.

• Wider exploration of the Design Space, evaluation of multiple architectures before selecting.
[Schaumont10] refers to this as "architectural awareness".

• Reuse of IP blocks in order to reduce implementation effort. Pursues to eliminate the Not
Invented Here syndrome.

• Parallel and cooperative development of hardware and software.

• Consideration of faults, errors and possible problems earlier in the development process.

• Faster time to market, meeting the time requirements of todays business.

• Higher confidence in the achieved design, gained through a model based, well-structured
process.

Current research and successful cases demonstrate that a methodology that is making use of Hard-
ware/Software Co-design ends up creating better and higher quality embedded systems. However,
one has to consider that implementing such a process in a development team, used to work by
following an informal development process is not an easy task. Such a change should be intro-
duced gradually and, to start with, being applied in a small project (risks mitigated). However,
methodology adoption considerations are out of the scope of this work.

2.5.5 Enabling technologies

The main technology behind hardware/software co-design is reconfigurable hardware, which is
supported primarily by FPGAs. FPGA manufacturers are creating custom toolchains especially
adapted for the FPGA hardware they are producing. Both FPGA hardware and development
environments are considered as enabling technologies for hardware/software co-design.

2.5.5.1 FPGAs and Hardware/Software Co-design

A FPGA is a semiconductor based device composed by Clustered Logical Blocks (CLB). The
CLBs implement the logic present in the FPGA and are communicated through buses. The con-
nections between the CLBs are established depending on the functionality that has to be imple-
mented. Therefore, the wire segments that are conforming the buses are connected to what is
called Programmable Switches, which state can be modified to fit the deployed implementation.
The most relevant feature of the technology described above, is that it enables the system developer
to define and reconfigure a hardware structure to fit system design necessities. Some FPGAs
allow hardware reconfiguration even in runtime. Such a flexible platform is idoneous for moving
a certain functionality from the software the hardware side and vice versa. [Wolf03] refers to
FPGAs and its connection with Hardware/Software co-design as follows:

"The platform FPGA seems to be the chip for which co-synthesis was created: The
chip’s internal architecture is exactly what hardware/software partitioning targets."

Current researchers are using FPGAs as primary target platform for the application of Hardware/-
Software co-design techniques. Material costs are decreasing considerably and its versatility,
among other exotic features, is making them the perfect technological choice for many designs.
Acceptance in industry is in constant increment.
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2.5.5.2 Hardware/Software development environments

FPGA vendors are providing the end-users with development environments that facilitate the cre-
ation of hardware and software blocks. Taking as example the tools offered by Xilinx and Altera,
the two main FPGA manufacturers in the market, the kind of tools that are offered are: VHDL
Integrated Development Environments, system builders, software IDEs and some auxiliary tools8.
The used tools in this work are:

System builder: gives the developer the possibility of creating a system with IP cores, proces-
sors and its own hardware components developed with the VHDL IDE. The possibility of
creating heterogeneous FPGA solutions is supported by this tool.

Software IDE: allows the developer to create software for the hardware system defined in the
System builder tool. The application logic developed in this IDE interfaces the hardware
side through a Board Support Package (BSP). The BSP contains the hardware dependant
software necessary to work with the created custom platform. It can be automatically gen-
erated by the tools.

Third parties are providing simulation and modelling tools. An insight on these technologies, and
its connection with the hardware/software co-design process, will be given in chapter 3.

2.5.5.3 Other platforms

There are other platforms in the market supporting the partial reconfiguration of hardware blocks.
It must be remarked that, even though they present some conceptual similarities to FPGAs, none
of them reach the same level of flexibility. In decreasing order of complexity and affordabil-
ity, some of the current available platforms are: Application-Specific Instruction-Set Processors,
Programmable System-on-Chip (PSoC) and microcontrollers featuring Configurable Logic Cells
(CLC). Additional information about PSoCs and microcontrollers with a CLC can be found in
www.cypress.com and [PIC10F320] respectively.

2.6. Summary

Due to the complexity in nowadays system, abstractions and models making use of them have
emerged as a necessity. The chapter has introduced the concept of abstraction and applied it in
the context of system design. Different abstraction levels in hardware/software systems have been
presented, showing which details can be described and analyzed at each of them. System-Level
Design has been presented, remarking its connection with modelling languages and technologies.
Finally, a certain way of doing System-Level Design, called Hardware-Software Co-design, has
been described. The partitioning problem, aspects under study and role of modelling in this ap-
proach has been introduced.
In order to reach a better understanding on how modelling technologies are used in the develop-
ment of new hardware/software systems, it is needed to conduct a more thorough review of the
existing languages and methodologies in the market.

8Front-ends to configure additional hardware or tools to support the debugging process. For example, the applica-
tion Chipscope, from Xilinx, makes it possible to insert a logic analyzer block in the FPGA and monitor the signals in
different lines.
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Chapter3
Modelling techniques, analysis and
methodologies in hardware/software
co-design

This chapter provides an overview of the different modelling technologies and methodologies used
for the hardware/software co-design of embedded systems. We start with the introduction in sec-
tion 3.1, discussing the necessity of abstract modelling languages for representation and analysis.
Section 3.2 reviews different modelling languages used for hardware/software design. Time rep-
resentations used by the languages VDM-RT, SystemC and VHDL are explained in section 3.3.
Section 3.4 analyses some methodologies using the modelling languages described in section 3.2.
Finally the chapter is summarized in section 3.5.

3.1. Introduction

Multiple authors agree that there is a need for platform-independent languages, not directly associ-
ated with hardware or software implementations [Huang&04, Gajski&09]. Platform independent
languages do not alter the partitioning process and avoid biasing. The consequence of avoiding
biasing is to perform partitioning based on technical reasons and not based on the modelling tech-
nology used. Wolf in [Wolf03] refers to the modelling languages and their impact on partitioning
decisions as follows:

"Software languages like C bias the implementation in favour of software, while hard-
ware languages bias the results towards hardware."

As an alternative, it is proposed to describe the system by applying an heterogeneous modelling
approach. This approach proposes to:

• Use a hardware modelling language to represent behaviour that has to be clearly allocated
in hardware and

• use a software modelling language to represent the rest of the system.

Note that, if it can be foreseen that certain part of the system clearly has to be implemented in
hardware, there is no partitioning challenge in that case. Note as well that, if [Wolf03] approach is
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followed, the rest of the system, considered as "not-clearly hardware", will be modelled by using
a software description language. According to the same article "Software languages bias the im-
plementation in favour of software". It will be fair to conclude that this approach will be biasing
the whole implementation towards a software solution.
Even though Wolf’s reasoning is too simplistic, the connection between the modelling language
used and the final design decisions is well-founded. An alternative approach is to make use of
more abstract modelling languages, that are not clearly connected with a particular implementa-
tion technology. The languages Parallel Object Oriented Specification Language (POOSL) and
the Vienna Development Method (VDM) notations are examples of abstract modelling languages
languages. Both languages are not connected with particular implementation technologies and
can therefore be considered as platform-independent.
There are a number of authors proposing to apply heterogeneous modelling, using abstract mod-
elling languages, different Models of Computation (MoC) and graphical modelling languages
([Gajski&09, Shaout&09, Patel&04]). The languages System Modelling Language (SysML) and
Unified Modelling Language (UML) are examples of graphical modelling languages. The MoC
used for System Level Design (SLD) are out of the scope of this thesis work so they are not con-
sidered further in this thesis (additional details are provided in [Gajski&09]).
This chapter provides a description of the modelling languages presented above and some of their
associated methodologies for SLD. Additionally, the specialized languages MATLAB/Simulink
and SystemC are presented. Even though they are not abstract languages, the fact that they are
widely applied in the hardware/software system development field is making them worthwhile
consideration.

3.2. Modelling languages

Two modelling approaches are considered in this work: a) informal modelling and b) formal
modelling. These approaches could be defied as follows:

Formal modelling: that makes use of rigorous techniques, based on discrete mathematics in or-
der to create models. These models are strong in the use of abstraction and precision.
Formal modelling can be applied in the specification, design and verification of software
and/or hardware systems. An example of a formal modelling language could be VDM.

Informal modelling: which does not make use of mathematical techniques in the process of
model creation. Even though they lack formality and, to some extent, precision, they are
strong in communication. An example of an informal modelling language could be the
Unified Modelling Language (UML).

Current approaches in industry are making use of formal modelling mostly in the verification
stage of the project, as a way of ensuring that the system hold certain properties [Gajski&09].
This section is making a distinction between formal and informal methods, but it is important to
keep in mind that the differences between the techniques can be exploited in order to get more
communicative models at variable levels of rigour [Bruel&98].

3.2.1 SysML

The System Modelling Language (SysML) is a graphical modelling language developed specif-
ically to support Model-Based Systems Engineering (MBSE). SysML is a UML profile that is
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reusing some of the UML semantics and incorporating additional ones. This relation is depicted
in figure 3.1.

Figure 3.1: Venn diagram depicting SysML/UML relationship. Source: [SysML1.2]

According to [Rosenberg&10], the four pillars of SysML are supporting modelling the aspects of
the system in terms of requirements, structure, behaviour and parametrics. The application of
requirements diagrams is not directly connected with this thesis work, however the rest deserve
additional consideration:

Structure: represented in SysML by two kind of diagrams: a) block diagrams and b) internal
block diagrams. Block diagrams can represent hardware, software or firmware blocks. In-
ternal block diagrams are used to illustrate the internal composition of each block. They are
making use of parts, ports and connectors.

Behaviour: expressed in SysML by four kind of diagrams: a) use cases, b) activity diagrams, c)
sequence diagrams and d) state machines. Note that these elements are inherited from the
UML language, which only uses them in a software representation context. On the other
hand, SysML make use of them in order to illustrate behaviour in heterogeneous systems.

Parametrics: enables the incorporation of concrete and detailed characteristics and constraints
that the system might present. A parametrics diagram makes use of constraints blocks in a
certain analysis context.

If the elements presented above are analysed, they could be classified in two groups:

(a) New graphical representations: Under this category the diagrams for representing require-
ments, structure and behaviour can be found.

(b) New representations that enables additional analysis: Parametrics makes possible to integrate
analysis with graphical design models.

It can be conclude that: new graphical representations enable the application of a UML based
approach in a generic context, make it possible to incorporate a wider range of details (hardware
and software) and improve the communication outcome of the models; new representations that
enables additional analysis, parametrics, is one of the most relevant SysML contributions, since it
enables the evaluation of engineering trade-offs. As it was explained in section 2.5.1, trade-offs
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are widely present in the Hardware/Software Co-design field.
Even though, SysML is not a methodology and is tool independent, tool support is relevant in the
exploitation of parametrics. A second tool related issue is the code generation support. Some
tools, like Enterprise Architect or Artisan Studio, enable the code generation in different lan-
guages. Here it is important to remark that not only software languages, but hardware description
languages are considered as well. Under the appropriate tool support, a SysML model can be used
to perform design space exploration, partitioning and co-synthesis of the hardware and software
components. A complete case study, illustrating the application of SysML diagrams, usage of
parametrics and code generation, can be found in [Rosenberg&10].

• SysML provides intuitive and expressive graphical notation to represent structure and
behaviour.

• Parametrics enables the representation of characteristics and constraints by the use of
numerical expressions, that can be analysed in constraints blocks diagrams.

3.2.2 SystemC

SystemC is an open source class library for the programming language C++ to model digital
hardware. Chen et al. in [Chen&09] show that such a modelling approach is possible due to the
integration of hardware constructs and a simulation kernel. [Black&04], elaborate further on the
SystemC hardware modelling enabling features, which are summarized below.

Time model: which is managed by the simulation kernel. Time is implemented in kernel space,
with a resolution of 64 bits. The time model provides a notion of time to the simulation, but
it does not provide the possibility of instantiating clocks.

Hardware data types: that are close to the hardware representation of data. For example, inte-
gers and fixed-point representation of a user defined width and the four-state logical data
type.

Module hierarchy: so it is possible to represent complex hardware/software structures. Modules
can be connected to other modules in the upper, lower or at the same level using channels.

Communication: simple channels and complex communication buses can be modelled. The first
type with the integrated communication constructs (for example, fifo queues, signals or
ports) the latter, making use of the language in order to model them.

Concurrency model: implemented as a cooperative multi-tasking model. This means that pro-
cesses are responsible to suspend themselves in order to give processor time to other pro-
cess. In other words, the simulation kernel never initiate a context switch (a non pre-emptive
model).

SystemC present a high dynamic range in terms of abstraction [Patel&04]. It is possible to ap-
ply it in order to create SAM models and refine it down to the Register Transfer Level (see
[Black&04, Gajski&09, Chen&09]). Some tools support the generation of VHDL code from
SystemC. This bridges the gap between the hardware and the software development world.
On the other hand, it is generally argued that the use of a programming language in a modelling
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context, influences towards the incorporation of implementation details in wrong levels of ab-
straction. In some cases it is needed to incorporate implementation details, for example, while
performing refinement. In other cases it is negative, for example while creating a model that is
used as initial specification of the system. The key is, from the modeller perspective; a) to have
the abstraction level in which the model under creation is supposed to be clear in mind and b) to
incorporate implementation details only when they are necessary.
Finally, remark that [Wolf03] stated that applying a software modelling language to describe a
system completely, might bias the design decisions towards software solutions.
The last disadvantage SystemC presents, even though it is not exhibited by the class library itself,
is the overwhelming price of the simulation and modelling tools. Even though SystemC can be
compiled with the open source compiler gcc, and executed with a free implementation of bash its
capabilities cannot be fully exploited without the appropriate tool support. Due to its possibilities
and integration with other technologies, special mention deserve the commercial tools CoFluent
Design1 and Modelsim2. Application of this tools in the co-design process are out of the scope of
this thesis work, further details to be found in [Robert&10].

• SystemC is strong in modelling hierarchy and structure.

• The abstraction range covered by this modelling language is very high, ranging from
overall system representation to Cycle Accurate Models.

3.2.3 MATLAB - Simulink

MATLAB is an environment that enables the user to perform complex mathematical calculations.
It is optimized to offer better performance than ad-hoc models developed in programming lan-
guages like C, C++ or FORTRAN [Matlab]. Simulink is a MATLAB extension, used for dynamic
systems modelling and simulations. Its functionality is organized in toolboxes depending on their
application are. These areas range from physical modelling to system verification and validation
[Simulink]. Code generation facilities are integrated as part of Simulink, enabling the tool to gen-
erate code in the programming languages C, C++ and VHDL among others.
Simulink makes it possible to model particular implementations at the TLM level. Furthermore,
hardware blocks provided by Xilinx are already modelled in the tool. This makes it possible to
create system models in the form of block diagrams and analyse the performance before having
the actual hardware. Finally, the generated model in Simulink can be verified against the final
implementation. The implementation can be simulated in a software environment or deployed in
hardware. This link is performed by the Simulink component EDA Simulator Link.
The main advantage that is offered by the combination of MATLAB-Simulink, is the strong tool
support in the modelling of complex systems in terms of: a) Physics and b) Mathematical al-
gorithms. The outcome of using this modelling technology will reach its maximum only if the
problem under study presents a challenge in one of those areas (or both).

1Cofluent official website: http://www.cofluentdesign.com/
2Modelsim official website: http://model.com/
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• MATLAB - Simulink has a remarkable performance when it comes to model mathemat-
ical based processes. Special attention deserves its application in the signal processing
field.

• There are a number of extensions that allow the application of this modelling technol-
ogy in a number of fields.

• The language is not appropriate to model complex structures or concurrent problems.

3.2.4 POOSL

POOSL stands for Parallel Object-Oriented Specification Language. This language was created
at the Technical University of Eindhoven with the purpose of supporting Hardware/Software En-
gineering through System Level Design (SLD). [POOSL] describes its syntax as expressive and
composed by a powerful set of primitives. These syntax primitives are organized around three
layers:

Data layer: POOSL is an Object Oriented language, so data entities are represented by classes.
Information is represented by attributes and associated operations by methods. Data classes
are passive and their methods are sequential.

Process layer: provides the constructs to represent basic active classes. Active classes can be
combined to represent composite processes. Process classes give the possibility of express-
ing concurrent and active behaviours.

Architecture layer: POOSL gives the possibility of defining architecture by the use of clusters.
Clusters are composite structures that combine clusters, process classes and data classes.
A cluster does not extend the behaviour of the individual elements composing it, but uses
them to offer a more complex functionality. Clusters define their interfaces with external
components by the use of messages. Creating clusters insides clusters gives the possibility
of representing hierarchy in POOSL models.

There is an UML profile for the graphical representation of models created under POOSL. Ta-
ble 3.1 shows the relation between the layers and the stereotypes introduced by the POOSL UML
profile (see [POOSL]). In figure 3.2 the graphical representation of these profiles are shown.

Syntax layer Equivalent UML stereotype
Data Layer «data»
Process Layer «process»
Architecture Layer «cluster»

Table 3.1: Equivalence between POOSL constructs and UML stereotypes.

It can be conclude that: the general idea about using the POOSL language (formal representation),
together with the POOSL UML profile (graphical, informal representation), is a clear application
of the ideas proposed by [Bruel&98] (previously discussed at the beginning of section 3.2).

28



VDM-RT

Figure 3.2: Representation of POOSL classes under POOSL UML profile. Source: [POOSL]

.

POOSL is supported by the tool SHESim SHESim is a graphical tool that allow the interactive
composition of the system through blocks. Blocks can be detailed with attributes and methods
and other elements depending on their type. An initial graphical model can be refined with the use
of the actual language. SHESim can interpret the model so execution can be performed.
Code generation is partially covered by the tools. SHE integrates a formal framework for the gen-
eration of Real-Time Control Software. However, computation-intensive software and hardware
synthesis are not currently available.
POOSL is the most relevant enabling tool of the SHE methodology, which will be described fur-
ther in the text.

• POOSL presents platform independent semantics.

• A combined graphical-formal approach has been developed for its application in
POOSL.

• POOSL allows the creation and execution of formal models in order to verify properties.

• The lack of current research makes it not recommended for new projects.

3.2.5 VDM-RT

VDM-RT is the Real Time extension for the modelling language/formal method technique VDM,
the Viena Development Method. The pillars of VDM rely on the the VDM-SL ISO standard
[ISOVDM96short], [Plat&92]. In order to support new problems and satisfy industrial needs, the
language has evolved and several dialects have been developed. The considered dialects in this
work are:

VDM-SL: is the standardized base language use in the formal specification of systems.

VDM++: is the object oriented extension of the language. Concurrency support by the means of
thread and synchronization predicates is provided.
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VDM-RT: is the real time extension of VDM, which allows the modelling of distributed and real
time systems.

Tool support exist on the market in the form of open-source and commercial solutions. Some of
the available tools are:

VDM Tools: commercial tool supporting the base language VDM-SL and the dialect VDM++.
It supports the code generation in the programming languages Java and C++. Reverse en-
gineering can be applied over Java code. It is possible to generate UML diagrams from the
VDM model and perform test coverage analysis [VDMTools].

Overture: open-source tool supporting the base language VDM-SL and the dialects VDM++ and
VDM-RT [Larsen&10c].

One of the most relevant characteristics of the VDM-RT language is the possibility of exploring
different deployment options. From the model perspective it allows to perform static system
deployment. This deployment is made through the use of the CPU and BUS classes.

CPU: represents a single processing unit. VDM modelled functionality can be allocated on a
CPU which will execute it. CPU operation can be configured to run under two different
models First Come First Served (FCFS) or Fixed Priority (FP). Under the FCFS mode, the
CPU will execute a certain number of operations per thread before it is swapped out. On the
other hand, under the FP mode, the CPU will execute threads depending on its execution
priority . Besides the operating policy, the frequency at which the CPU is running has to be
set.

BUS: Buses serve as communication channels between CPUs. Each bus has to be configured in
terms of transmission policy, transmission speed and connected CPUs. The available trans-
mission policies at the time of writing are FCFS and Carrier Sense Multiple Access/Col-
lision Detection (CSMACD). In an static deployment context, buses are configured before
the model execution start, and remain in the specified topology until the end of the model
execution.

Additional work has been carried out in the field of dynamic reconfiguration of VDM models
[Nielsen10a]. The application of this technique would allow the modelling, simulation and anal-
ysis of changing network topologies in a VDM setting. Such an approach would be worthwhile
considering in the modelling of reconfigurable computing systems, which is a hot research topic
with potential applications in the FPGA technology. However, this field is out of the scope of this
thesis.
Additional work has been carried out in the application of these dialects in concrete industrial
cases. Special consideration deserves the application of VDM-RT in modelling and validation of
distributed embedded real-time control systems [Verhoef05, Verhoef08].
For additional information on the VDM modelling language in general and on VDM-RT in par-
ticular, refer to [Fitzgerald&05] and [Larsen&10b] respectively.

• VDM allows the creation and execution of formal models in order to verify system
properties.

• VDM presents platform independent semantics in all its flavours.
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SysML SystemC Simulink POOSL VDM-RT
Hierarchy and modularity ++ +++ ++ +++ +++
RTOS support + ++ ++
State transition +++ ++ + ++ ++
Concurrency and Synchronization + +++ + +++ +++
Timing + + ++ ++ +++
Constructs to support formal verification + +++ ++
Team communication possibilities +++ ++ + + ++ +

Table 3.2: Modelling language comparison

• Strong in representing hierarchy, structure and behaviour in concurrent and real time
scenarios.

• Growing tool support and used in on-going research projects.

3.2.6 Language comparison

Table 3.2 presents a comparison between the presented modelling languages and the different
desirable features described in section 2.4. The languages have been assessed with a scale from
zero to three "+". Zero "+" means that the discussed feature is not supported, three "+" represents
a good support of the considered feature.
In general "Hierarchy & modularity" are properly supported in most modelling languages. The
support for "RTOS and timing" analysis is weaker in modelling languages based in graphical no-
tations. Executable languages are stronger in representing Concurrent and timing aspects. Finally,
graphical languages are stronger in supporting communication across team members. It could be
conclude that a single modelling language cannot cover all the aspects that require representation
and analysis in a Hardware/Software project. A modelling approach in which several modelling
languages are used in order to study the aspects in which they are stronger is the most promising
avenue.

3.3. Time and modelling languages

This section aims to explain how time is represented in different modelling languages and how
time information is affecting system simulation and modelling. The notions of time introduced in
here can be used in order to make a logical system working on discrete basis, react to a continuous
phenomenon like time. Such a system is considered as Real-Time System [Burns&09].
VHDL and SystemC make use of a notion of time that can reach the femtosecond level [Perry02,
Black&04]. Such a precise notion of time is needed because both languages are used to describe
hardware/software systems at the implementation level.
No notion of time is incorporated in the modelling languages VDM-SL and VDM++. In the case
the modeller wants to incorporate a representation of time in models created in these languages, it
will have to be modelled explicitly. A different approach is presented in the real time version of
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the language VDM-RT. The VDM-RT kernel incorporates the notion of time by using time-ticks.
Each time-tick corresponds to the physical notion of time 1 nanosecond.
Additional explanation deserves the real-time mechanisms incorporated in VDM-RT. Time is con-
sidered by new types of threads, and the expressions duration and cycles.
Two different types of threads are available in VDM-RT:

procedural: threads, statements executed until completion. They are subject to scheduling and
descheduling.

periodic: threads, offer the possibility of repeated execution of the instructions contained on it.
The execution frequency together with additional parameters can be set up at declaration
time.

Periodic threads can be precisely adjusted to model the real-time problem under study. These
threads can be tuned by the use of the constructs period, jitter, delay and offset. This
work makes use of the period construct, which express the time interval between successive
executions of the periodic thread. The inverse of the period is equal to the threads execution
frequency.
The VDM-RT language provide constructs to use the notion of time on the created models.

duration: specifies that a certain amount of time units are going to be used in order to execute the
accompanied statement. This duration is absolute and platform-independent. This implies
that no matter the speed of the processing unit, the instruction is going to take x time ticks
to be executed.

cycles: specifies that a relative amount of time units are going to be used in order to execute the
accompanied statement. The instruction cycles expresses the number of CPU clock cycles
required to complete execution. This time information is platform-dependant, total time
required for complete model execution will depend on CPU frequency.

VDM-RT simulation is time-driven. The VDM-RT interpreter integrated in Overture is imple-
menting threading under a pre-emptive paradigm. The scheduler gives a certain amount of time
so each thread can perform computations during this time slice. The duration of this time step is
determined by the minimum duration presented by one of threads considered in the simulation.
In figure 3.3 it can be seen how the time step duration is determined for a concrete case. In this
scenario two CPUs running two different threads are modelled. Since thread 1 running in CPU
1 is taking 2 time units to be executed, that will be the size of the minimum time step. Besides
the scheduling time slices considered above, different policies can be used. These policies are
established with the constructs explain in the beginning of this section.

Figure 3.3: Threading and step size in VDM. Source: [Lausdahl&10b]
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In figure 3.4, the resource scheduling process together with the thread policy section is shown. As
it is shown there is a central component named resource scheduler, responsible for pointing all
the system CPUs at each time step. Each time a CPU is pointed by the resource scheduler, it is
pre-empted for execution. Once a CPU is selected a computation time equals to the time step is
given to it. During that computation time, a certain policy previously defined for the thread will
be applied. In the case the duration of the thread reach an equal value to the assigned time step,
the scheduler will swap out the thread and assign computation time to the next CPU. It is possible
to make such a simulation because there is no drift in the notion of time of each CPU. In other
words, all the CPUs used in the model are synchronized.

Figure 3.4: Resource scheduling. Source: [Lausdahl&10b]

SystemC and VHDL can represent and conduct analysis at the femtosecond level where as
VDM-RT is operating at the nanosecond level. This implies that there is a precision gap of
6 orders of magnitude between the modelling technology VDM-RT and SystemC and VDHL
languages.

3.4. Methodologies

The languages introduced in section 3.2, cannot produce results if they are applied in an unsys-
tematic way or isolated. Therefore, they are used within a methodology or development process.
There are two ways of using models in the development process: a) use ad-hoc models in order to
illustrate and analyse particular aspects of the system and b) use models as a guide in the process
of model-driven engineering approach. An example of the first case: the application of MAT-
LAB models in order to develop the signal processing component of a system. The rest of the
system is not modelled in MATLAB and it is developed using a different approach. The second
approach, model-driven engineering, is applied in all the projects in which a Hardware/Software
Co-design methodology is used. Since the latter kind is the core part of this thesis, this section
will be primarily focused on this approach.
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3.4.1 Xilinx methodology

The non-modelling based methodology introduced in this section is proposed by the tool and
FPGA vendor Xilinx. It must be remarked that, this is a tool oriented methodology, and it is not
forcing or pursuing the application of any SLD methodology like Hardware/Software Co-design.
Therefore, they are mere guidelines on how their technologies and development environments
have to be used. This methodology is located at the implementation level, while the rest presented
in this section start at a higher level of abstraction, considering the system as a whole.
Figure 3.5 shows the tool flow recommended by Xilinx. This flow is used in the creation of the
hardware/software system. As it is depicted, the design starts with hardware. Once the hardware
platform is defined, a BSP containing the hardware drivers is geneterated, so software developers
can create the software logic.
It is important to consider this methodology in the appropriate project stage. Considering a project
in which Hardware/Software Co-design is applied, several project phases have to be accomplished
before using Xilinx methodologies described in [XilinxToolFlow11, Speedway11EDK]. If they
are applied before, the development team might face the risk of starting the implementation phase
too early, without creating a detailed enough specification or without evaluating enough possible
architectures.
The purpose of this section is to show that tool vendors might propose ways of implementing
systems, which are highly biased by the tools they are selling. Pragmatism and analysis of vendors
methodologies have to be done before incorporating them in the whole development process.

Figure 3.5: Xilinx Microblaze development tool-flow. Source: [Speedway11EDK]

3.4.2 A MATLAB - Simulink based methodology

The official MATLAB methodology is considering primarily the verification of hardware/soft-
ware designs. A brief summary of the verification approaches supported by MATLAB - Simulink
is provided in the appendix E. Since this thesis is focused in the partitioning process, these veri-
fication strategies are not relevant. There is research work using MATLAB/Simulink as a tool for
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design space exploration. [Ou&05] is proposing the application of MATLAB in order to evaluate
different partitionings through the use of model based simulation. This approach is aiming to cre-
ate high-level abstractions in order to represent processors, buses and dedicated hardware blocks.
The equivalence between models and actual implementations is shown in figure 3.6. [Ou&05] is
considering these models as high-level abstraction representations, while still they are defined as
cycle-accurate. Some authors do not consider, cycle-accurate models to be at a high abstraction
level. The explanation behind is that, according to Ou, the simulation will consider the number of
actual clock cycles used to perform each computation. Instead of cycle-accurate, the model could
be more precisely considered as cycle aware. Since not all the cycle related information is taken
in consideration, the simulation performance regarding time is improved in orders of magnitude.

Figure 3.6: Proposed approach by [Ou&05]

Note that this modelling approach is not tackling the energy performance of the simulated solu-
tions. According to [Ou&05], additional research has to be done in order to incorporate consump-
tion considerations. One of the proposed ways to model and analyse this issue is by adding an
instruction-level energy estimation. Energy estimations require a more detailed modelling of the
final implementation [Ou&04] and are out of the scope of this thesis work.

3.4.3 A combined SysML - SystemC based methodology

This approach is proposed by the EU-FP7 project SATURN. SATURN (SysML bAsed modeling,
architecTUre exploRation, simulation and syNthesis for complex embedded systems). An overall
description of the phases proposed by SATURN is presented in [Mueller&10]. The design process
starts with modelling the requirements by using SysML Requirements diagrams. Structure and
behaviour can be described by the use of the correspondent diagrams presented in section 3.2.1.
The SATURN modelling frontend, based on Artisan Studio, provides tool support to generate
SystemC and C code from this graphical description. Generated results can be co-simulated a
SystemC simulator is supporting the hardware simulation and QEMU is supporting the software
simulation in a virtual machine. Further analysis can be performed with MATLAB/Simulink.
Once the co-simulation of different candidate architectures has been performed, and a final one
has been chosen. Hardware can be synthesized and software loaded in the FPGA CPU. The
infrastructure supporting this process is shown in figure 3.7.
One of the relevant proposals introduced in the SATURN project, shown in [Mueller&10], are the
equivalences between the SystemC language and the graphical notation based on SysML. Simi-
lar considerations were presented in [Mischkalla&10, Prevostini&07]. In figure 3.8 the applied
equivalences in this case are shown.
There is not much documentation about the SATURN project because it is still under development.

3.4.4 The SHE methodology

SHE stands for Software Hardware Engineering methodology. This methodology is using the
POOSL modelling language introduced in section 3.2.
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Figure 3.7: SATURN SysML based methodology. Source: [Mueller&10]

Figure 3.8: Proposed equivalences between SystemC and SysML. Source: [Mueller&10]

This methodology starts with the requirements stated in plain English. The requirements specifi-
cation output is composed by several documents and artefacts. These elements are informal and
its structure might vary. This depends on the requirements engineering techniques applied in each
case. Requirements elicitation process and formulation techniques are not considered by the SHE
methodology.
The core issues that might influence the design are extracted from these documents, and an Es-
sential Specification is produced. This specification presents essential behaviour and essential
structure. As a result of this phase a conceptual solution is obtained. Upon this basic specification
refinement is performed in order to create an Extended Specification. The extended specification
phase incorporates details enough to perform design decisions and evaluate engineering trade-
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offs. Even though it is not shown in figure 3.9 and according to [POOSL], the proposed solution
is validated against the initial requirements. In the case this validation, or some part of it, is not
successful, it is possible to go back to the Extended Specification and refactor part of it. In the case
more radical changes are required it is possible to go back to the initial Essential Specification.
Once the partitioning is definitive and supported by the model analysis, the implementation takes
place.
Implementation is partially supported by the tool SHEsim. Implementation of real time control
software is possible, but more complex software or hardware VDHL code generation is not sup-
ported.
The SHE methodology and the modelling language POOSL has been applied in a number of in-
dustrial cases provided by leading companies in the technology sector (Siemens, Alcatel, IBM
and Lucent among others). Despite industrial applications and a considerable list of publications,
it is not clear from [POOSL] if this research line is active (last related publication in year 2007
and last industrial case in year 2005).

3.4.5 A VDM-RT based methodology

This methodology relies heavily on the application of VDM models in order to support all the
project phases and activities. Due to its integration with the project lifecycle, its application is
shown embedded in a V-model. The following approach is proposed by [Larsen&10a].

The application starts with the system specification and requirements capture, supported by the
use of use-case diagrams (UML, SysML) and VDM-Specification Language. The result of these
two models are reflected in a VDM++ sequential model, that helps on modelling a sequential sys-
tem description. The principal outcomes of such a model is the hierarchical characterization of the
system, introduction of the causal ordering of events and an abstract approximate notion of time.
A concurrent model is derived in order to show the concurrent aspects of the system. Threads and
synchronization predicates are incorporated to the concurrent VDM++ model.
Once basic structure and concurrent behaviour has been specified, the modeller can create a real-
time model of the system by using VDM-RT. The accomplishment of real-time deadlines can
be studied at this point. As an additional step, distributed real-time models can be evaluated.
The models explained above, have evolved from an initial specification to a distributed real-time
model (finally refined to the implementation). This flow of information is shown in figure 3.10 by
green arrows. In the horizontal plane, purple arrows are representing the acceptance activities that
are performed at each level, and how the models developed previously can act as a reference for
validation.

The application of the VDM technology is under continuous research. Some of the on-going
EU FP-7 projects DESTECS and COMPASS, are extending the language and the tool support in
order to cover a wider area. Both projects are relevant in the hardware/software co-design area.
DESTECS allows the co-simulation of physical systems. COMPASS is focused on formalising
the interaction between systems, that together conform Systems-of-Systems. Note that physical
interaction with the environment and logical interaction with other systems, are factors that might
have an impact in partitioning decisions. Further research on the combination of COMPASS and
DESTECS and its application in hardware/software co-design still has to be done. However, that
study is out of the scope of this work.
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Figure 3.9: Overview of the SHE engineering design methodology. Source: [vanderPutten&07]

3.5. Summary

This chapter has presented several modelling languages with very different approaches to system
modelling. Graphical languages like SysML and UML and informal languages like SystemC
and Matlab/Simulink have been reviewed. Formal languages like POOSL and VDM have been
presented. Different methodologies associated to the reviewed modelling languages have been
described. This chapter has shown the need of new modelling languages and/or methodologies that
allow the system engineer to put aside implementation considerations and focus on the problem
under study at a high level of abstraction.

38



Summary

Figure 3.10: VDM based methodology. Source: [Larsen&10a]
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Chapter4
A VDM-RT based modelling methodology
for Hardware/Software engineering

This chapter is presenting the proposed methodology for the hardware/software co-design of em-
bedded systems, the core part of the thesis. Section 4.1 gives an overview of the rationale and
aim of the methodology presented. Section 4.2 describes the proposed methodology. This descrip-
tion is built on top of the existing VDM-RT development process [Larsen&09] and makes special
emphasis on how it can be applied in order to take Hardware/Software co-design partitioning
decisions. The methodology is complemented by the early model evaluation against a prototype,
which is described in section 4.3. Proposed improvements to the VDM technology are presented
in section 4.4. Section 4.5 describes how new platforms can be incorporated to VDM-RT. Finally,
the chapter is summarized in section 4.6.

4.1. Introduction

This chapter presents the VDM-RT modelling methodology proposed in this thesis work in order
to provide support to the Hardware/Software Co-design of embedded systems. The goal is to
provide a way to tackle the fundamental problems in hardware/software co-design described in
chapter 2. The only avenue to accomplish this objective is to apply a systematic methodology,
based on the ones presented in chapter 3. The intent of the proposed VDM-RT methodology is
to provide the system engineer with a tool to describe and analyse Hardware/Software systems
from a formal perspective, that will allow him to perform design space exploration earlier in the
project life-cycle. A number of guidelines based on the approach explained in the chapter will
be given. The guidelines give modelling advice according to the hardware/software co-design
process proposed in this chapter.

4.2. Methodology description

The presented methodology is structured in three modelling stages and one exploration phase.
The methodology starts with the early production of sequential VDM models, that will start being
far away from the final one but will help on getting familiarized with the problem under study.
Finally, a sequential VDM model with enough details to take partitioning decisions later on in the
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process will be created. This candidate model will be moved to a concurrent VDM model, with the
purpose of focusing on the concurrent behaviour of the system. A real-time VDM model will be
derived from the concurrent model, substituting the very limited notion of time for a more precise
one. In the exploration phase, the real-time VDM model will be evaluated as a distributed real-
time model. It is here where VDM-RT possibilities for supporting hardware/software co-design
decisions have to be studied more in detail. Note that this is a "waterfall-like" process, in which
errors introduced in the sequential system model can have a very negative impact in the rest of the
modelling stages and exploration phases.

Figure 4.1: Methodology overview.

4.2.1 Creation of a sequential model of the system

The first step of the methodology consist on the creation of a sequential VDM model. As the
name says, this model is representing the system operation in a sequential model, modelling the
operation execution in a sequence of steps. The notion of time incorporated in this model is very
limited, and can only be used to determine whether an event is happening before or after another,
considering the system deployed in the same computation unit.
The purpose of such a model is to represent the most relevant entities involved in system operation.
The relevant term refer to entities that fall directly under the following categories:

Model entities: represent elements that are a straightforward logical representation of an existing
entity in the physical world that has to be processed by the system. For example, a clock
class that represents a device to measure time in a model of a time synchronization system
(more details about this on a concrete example in chapter 6).

Entities with core behaviours: that represent crucial processes in the system operation. An ex-
ample of this kind of entity would be an entity responsible for the generation of a Pulse
Width Modulated signal controlling a motor (more details about this on a concrete example
chapter 5).

System boundaries: that represent the limits of the system. Boundary entities define how and
where the system is interacting with the environment.

At this point of time, a "raw" sequential model has been created. Taking advantage of the Object
Oriented (OO) techniques, the model can be expressed by a UML class diagram. OO techniques
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from the software engineering world can be applied, for example design patterns. Once the struc-
ture of the system has been created, operational details, used data and system properties can be
incorporated.

Guideline 1: The sequential VDM model gives the possibility of focusing on the key hard-
ware/software entities to be considered for partitioning. It is a pre-condition to reach a good
understanding of the system before moving to more complex modelling.

Guideline 2: In the case the problem under study is new to the modeller, it is difficult to
create a useful model in the first attempt. In this case, the creation of the model should be
iterative, and this process should be used as a tool to help on system understanding.

4.2.2 Creation of a concurrent model of the system

The concurrent VDM model of the system is an intermediate step between the sequential VDM
model and the real-time VDM model. In this model, the entities with core behaviours most likely
will be active classes, with threads running the key operations identified in the sequential model.
Additional effort has to be spent on ensuring a safe concurrent access to shared data. The notion
of time will remain in discrete timesteps, as defined in the firsts sequential models. In order to
make the threads advance progressively, the TimeStamp pattern presented in [Lausdahl&10b]
can be used.

Guideline 3: It is important to make sure that all the synchronization issues are tackled during
the concurrent modelling phase. If not, problems may arise during the RT modelling phase.
Fixing synchronization problems in the RT modelling phase is altering the focus of that phase
and it might be more complex.

4.2.3 Creation of a distributed real-time model

The distributed real-time VDM model introduces three major changes: the introduction of a new
notion of time, the introduction of a RTOS layer and the possibility of deploying different model
entities in different computation units. This third modelling stage allows to get the models closer
to real systems performance.

Guideline 4: The first step in the process of moving to the real-time world is the creation of
a non-distributed real-time model. This model is an intermediate step between the concurrent
and the distributed real-time model. In this case all the objects will be deployed in the same
CPU.

The notion of time introduced by the TimeStamp class should be removed and the Overture
time reference should be used instead. In the case there were threads using sleep calls based on
TimeStamp, they should be refactored to use the information provided by the time expression.
In the case this sleep period was constant in time, the thread could be modelled as periodic.
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4.2.4 Evaluating hardware partitions from VDM-RT models

This methodology proposes the application of VDM-RT CPUs in order to model a hardware par-
tition. It is possible to create a coarse-grained model of the hardware partition if this process
is carefully applied. The key principle behind it is that there should be a difference of orders of
magnitude in the processing speed between CPUs emulating a general-purpose CPU and a CPU
emulating an specialized hardware block (hardware partition).
The communication between the CPU emulating the hardware block and the CPU emulating the
general-purpose CPU will be modelled as a BUS with a very high bandwidth, orders of magnitude
above the bandwidth used in order to represent a pure software-based communication. The reason
behind using a high bandwidth is to simulate how a hardware block is using a register mapped
scheme for interaction with the control software. This process can be repeated with different al-
ternative system definitions easily. The Overture log files are a powerful tool in order to study the
real-time evolution of the system. More details will be provided in the case studies (chapters 6
and 7).

Guideline 5: A VDM-RT CPU that represents a hardware partition should be configured with
a processing speed orders of magnitude higher than general-purpose CPUs.

Guideline 6: A VDM-RT BUS that communicates a hardware partition with a general-
purpose CPU should be configured with a very high bandwidth. This bandwidth should be
orders of magnitude higher than the ones used to communicate general-purpose CPUs running
software.

Guideline 7: The instruction time will give the value of the notion of time at invocation
time. It is a good idea to use it several times during the critical operations under study are
being run. This will give an overall idea of the time spent by different operations. Custom
logs can be generated, with the advantage of being able to get the relevant data faster than by
comprehending the Overture logs.

4.2.4.1 Evaluation of a single hardware partition

The study of a system that is making use of a single specialized hardware partition is a straight-
forward application of the idea presented above. The steps could be summarized as follows:

1. Identify the component that is going to be executed in hardware.

2. Define a separate CPU configured with a processing speed orders of a magnitude above the
speed used in the general-purpose CPUs.

3. Communicate the defined CPU through a bus with a very high bandwidth with the general-
purpose CPU. The general-purpose CPU is running the rest of the entities as software com-
ponents.

4. Deploy the functionality that should be running in hardware in the CPU defined in step 2.

5. Analyse the possible improvement in the system performance.
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Guideline 8: In the case the communication to be modelled is not as fast as the one that could
be achieved by a registered mapped configuration, the bus bandwidth can be lowered.

4.2.4.2 Evaluation of several hardware partitions

In some situations it is desirable to consider how the system would be performing in the case
several components are deployed in hardware. Considering the process described above, the most
intuitive approach to model such a scenario would be to define a second CPU and deploy the
hardware candidates there. However, this process turns to be erroneous and can lead to false
results. A more concrete example is presented in order to explain this challenge.
Consider a system that is modelled by three components: A, B and C. Components B and C
depend directly from component A, that needs to be communicated with them. Components B
and C do not present any kind of interaction between them. The system designer is interested
on evaluating the performance of the system when A is running in a general-purpose CPU and B
and C are off-loaded to specialized hardware blocks. In the case the process explained above is
applied, the system would be deployed as illustrated in figure 4.2.

Figure 4.2: Wrong usage of the hardware partition.

If such a deployment is performed, the specialized hardware block would not be acting as such. In
this scenario the CPU representing the specialized hardware block will be behaving as a hi-speed
CPU with an OS running two threads. Naturally, such a model could possibly be performing
better than a purely software based architecture. These improvements are still not reflecting how
a hardware off-loading for components B and C would be performing.
The correct way of performing the hardware off-loading evaluation is to make a deployment like
the one presented in figure 4.3. As it can be seen, two CPUs (HardwareA and HardwareB) repre-
senting specialized hardware partitions have been introduced. Both CPUs are communicated by
hi-speed BUSes to the general-purpose CPU (Controller). Component A is deployed in Controller,
components B and C are deployed in HardwareA and HardwareB respectively.
In the case the components B and C would be interacting, a hi-speed bus should be connecting the
CPUs in which they are deployed, in this case HardwareA and HardwareB.

Guideline 9: Each hardware candidate should be deployed on an individual CPU configured
as a hardware block.
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Figure 4.3: Correct usage of the hardware partition.

4.2.4.3 Modelling complex communication between partitions

The BUS class provided by Overture allows the modelling of a bus under the policy First Come
First Served <FCFS>. In some cases it might be interested to make use of other policies. Two
possible situations in which this would make sense could be:

1. A system in which not all the information sources have the same priority when it comes to
access the transmission medium.

2. A system with different kind of policies depending on if the information is sent or received.

Since these cases are too particular, it is understandable that are not incorporated by default in
the language. However, both scenarios can be easily modelled in VDM-RT controlling how the
component is accessing the bus. The idea is to make use of a Proxy class that implements the
desired policy. Figure 4.4 illustrates how this pattern could be applied in the second example
presented above. In this case the BUS is communicating using CPU1 and CPU2. The BUS is
accessed through a Proxy class. This class specifies that a policy has to be applied over the data.
However this policy is abstract and has to be implemented in derived classes. IncomingData
and OutgoingData are specific implementations of Proxy, that will implement the required
policy depending on if the information is received or sent. The interaction with the Proxy class
within the component is straightforward, in this case there is a controller class Logic making use
of it.

Guideline 10: Use a proxy class in order to incorporate a more complex behaviour in the
transmission/reception of data. As an additional advantage, Proxy classes separate access
to the physical communication medium from the system logic, which leads to a lean model
structure.

4.2.4.4 Modelling external measuring hardware

During the development of hardware systems it is very common to use external equipment like
oscilloscopes or logic analysers. The purpose of such equipment is to monitor the value of a sig-
nal over time. There are no classes in VDM-RT implementing oscilloscopes or logic analysers,
but certainly some log facilities can be built into the models to provide a similar function. The
process to log data is based on a class that obtains the values of the target variable over the model
execution time. Once model execution is finished, data is dumped to a file and ploted using a third
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Figure 4.4: Application of a proxy class

party application. The critical part of the logging process is how the data is obtained. Logging
implies introducing additional logic in the model. The execution of this logic might alter time
related results.
The most simple way to avoid altering time results is to deploy the logging functionality in the
virtual CPU and force the class containing the variable to be monitored to store its values periodi-
cally in the log class by using a pushValue operation. This operation should be defined as a an
async log class method and its invocation should preceded by a duration(0).

Guideline 11: Using graphics is a fast way of evaluating the I/O signals that are fed/generated
by a certain architecture. A second advantage is that models generating a visual output are
better at communicating modelling results to development team members. Finally, keeping
together models and generated plots are a good way to document the designs.

Guideline 12: In general, log operations must be preceded by duration (0), otherwise
the time spent on logging will affect model execution results.

4.3. Early prototype generation and model validation

Taking one step further in the proposed process, a preliminary prototype implementing some of
the proposed functionality could be produced. The value of generating a prototype with regard to
the models created in the previous stages, is that it is possible to compare the model predictions
with a preliminary implementation. In the case the models have been created correctly, resem-
blance between the created model and the preliminary implementations is expected, at least in
the conceptual model. Some FPGA manufacturers provide tool support in order to profile the
produced implementations. Combining the prototype performance, measured by dedicated test
equipment (scopes, logic analysers) and assessed with a previously defined criteria with profil-
ing information, can be a way to obtain feedback from a real implementation. In the case the
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events/behaviour/performance problems predicted in the models are present in the preliminary
hardware implementation, confidence in the generated designs will be supported by well founded
design decisions. In the case the obtained results are differing in aspects like time units, while
still keeping the expected results, scale factors can be introduced in the models. Finally, if the
obtained results are not related to the model predictions, there is a problem in the model, in the
prototype, in the measurements or in a combination of all these elements. The solution to such
issues depends on the particular case.

Guideline 13: Early feedback incorporation improves the models and bridges the gap be-
tween abstract representations and real implementations. In order to exploit the application of
models in the development process, it is important to keep aligned models and produced/gen-
erated components.

4.4. Proposed improvements to the VDM technology

Since the Overture platform is in continuous development, and this work is carried out in the same
institution in which this Master’s thesis work is presented, it is interesting to discuss possible
additions that could be done in order to improve the tool. Most of these additions/new features
are directly connected with the hardware/software co-design field. Others would be beneficial in
general, and would increase the value of the tool.

Models of new platforms: It would be desirable to have new specialized hardware blocks ready
to use in the form of a VDM-RT library. These blocks could be modelling specialized pro-
cessors like DSPs, microcontrollers or bus interfaces. A certain set of benchmarks could
be run over different platforms and its results incorporated as concrete CPUs able to host
components. The benchmarks could evaluate the time it takes to perform certain mathe-
matical operations, communication through built-in buses, etc... Results could be mapped
to concrete VDM-RT CPUs. Performance evaluation over these platforms could be more
reliable and closer to reality.

Model profiler: Some of the coverage information generated by Overture could be extended so it
incorporates the time it has taken to execute each operation. This information can be already
extracted from the generated overture log files. However, it is something that has to be done
manually for each operation. The possibility of generating such a model profile would
simplify the analysis activities, by making the information easier to be read and found.

Improved bus support: The current bus configuration is limited to the First Come First Served
policy. A general-purpose bus with a transmission/reception logic that could be user defined
would be very interesting from the system design perspective. Such a field could contain
the logic to filter packets, introduce noise, establish priorities or cause delays.

Automatic variable monitoring: In some cases it is interesting to monitor the evolution of a vari-
able over time. Overture could incorporate the possibility of automatic plotting of certain
variables selected by the user. This new feature is currently under development.

Code generation: Such a feature would bridge the generated models during the design phase
with the implementation activities. In the case full code generation is not possible it would

48



Modelling new platforms under VDM-RT

be interesting to have at least the stub of the application. Even though this would not be
a considerable leap forward regarding implementation time, it establish a relationship be-
tween models and code. This relation can be backtracked and models can act as a reference
for the developers.

Annotations for Real-Time deadline evaluation: A strong point of VDM-RT is the possibility
of real-time deadline accomplishment evaluation. In the case a language could be used in
order to define the real-time languages, Overture could automatically generate a report after
model execution presenting which deadlines have been missed and when. This idea has
been evaluated in [Ribeiro&11] and it is currently under development.

4.5. Modelling new platforms under VDM-RT

Some of the proposed improvements to the VDM technology like "Improved bus support" or
"Models of new platforms" would require to study the aspects that characterize real BUSes and
CPUs, which aspects are relevant for incorporation and which additions to the VDM language
would be needed. These additions could be implemented as new constructs or as annotations. In
this section some of the required additions to model new CPUs are considered.
Incorporating models of new platforms could be carried out by subclassing the VDM-RT CPU
class. A microcontroller is an interesting platform in the hardware/software development area. In
this case, a worthwhile considering feature would be the addition of interrupts. This would imply
that the microcontroller CPU constructor would need to register an interrupt, a microcontroller
class method would have to associate this interrupt with a triggering event and, finally, a micro-
controller class method would have to associate the interrupt with an operation defined in the logic
running in the microcontroller. Finally, the Microcontroller class constructor would have to skip
the scheduling policy. This detailed example is shown in the VDM listing below.�

1 instance variables
2 int1 : Interrupt := new Interrupt(priority);
3 event1 : Event := new Event(Timer‘onTimerOverflow);
4 mcu : Mic := new Mic(speed, int1);
5

6 public static timer : Timer := new Timer(10,event1);
7 public static counter : Counter := new Counter(timer);
8 public static ledControl : LEDdriver := new LEDdriver(counter);
9

10 operations
11 public System : () ==> System
12 System () ==
13 (
14 mcu.event(int1, event1);
15 mcu.setOp(int1,LEDdriver‘turnOnLED);
16

17 mcu.deploy(ledController1);
18 mcu.deploy(counter);
19 mcu.deploy(timer);
20 );
� �
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Considering as a second example a Digital Signal Processor1, some of the operations deployed
on it are executed with the same performance if compared to a general-purpose CPU. However,
other mathematically complex operations run orders of magnitude faster under DSPs. Since a
DSP is a specialized CPU, subclassing could be used in order to inherit the common features with
CPUs. The use of annotations would allow to characterize operations and functions in VDM as
DSP efficient without having to alter the description of their logic. This example is shown in the
VDM listing below.�

1 -- DSPefficient
2 private fft: () ==> ()
3 fft() =
4 is not yet specified
5 post doneFlag = true and overflow = false;
� �

4.6. Summary

This chapter has presented a VDM-RT based methodology for the Hardware/Software co-design
of embedded systems. An overall view of the methodology has been provided and special em-
phasis has been made on the proposed additions to support the partitioning decisions. A set of
guidelines have been presented.
As it has been argued above, there is no perfect methodology in order to design systems. It is the
belief of the author that the proposed methodology compensate several shortcomings of existing
ones, such as the high degree of specialization of Matlab based workflows, the complex setup
of the SATURN methodology or the lack of planning and analysis in a Xilinx based approach.
Comparisons aside, pragmatism should be present when selecting the modelling technology.
The following chapters 6 and 7 will present two case studies in which the VDM-RT hardware/-
software co-design methodology is used. These case studies will give a practical insight on the
methodology.

1Specialized processor with a high performance in heavy mathematical computations (e.g. computer vision algo-
rithms, digital filtering algorithms)
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Chapter5
Introductory case study: RC servo control

This chapter applies the methodology presented in chapter 4 in a concrete case study. This case
study ties together all the previous information presented so far. A model-driven approach will be
applied in this problem, and it will be shown how implementation details are abstracted, as de-
scribed in chapters 2 and 3. This chapter shows the importance of Hardware Software Co-Design.
The chapter is structured in four sections. An introduction to basic servo control will be given in
section 5.1. The application of the modelling methodology will be presented in section 5.2. An
actual implementation will be described in section 5.3. Analysis of the different implementations
and reflections on the correlation between the modelled architectures and the final implementa-
tions will be provided in section 5.4. Finally, a summary of the chapter is given in section 5.5.

5.1. Introduction to basic servo control

The problem presented in this chapter is the control of a servo motor. Servo motors are electro-
mechanical devices able to orientate its axis between 0 and 180 degrees. Servos contain a direct
current (DC) motor, several gears, a potentiometer and an electronic control board. The electronic
control board acts as an internal servo motor controller and as an interface between the servo and
the external controlling device. A detailed internal view of the servo is shown in figure 5.1.

Figure 5.1: Servo internals. Source: hitecrcd.com

The servo electrical connections are: Vcc in order to power the servo, GND electrical ground
required in all electrical devices and Signal the control signal used to command the servo. The
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control signal is Pulse Width Modulated. A signal of these characteristics will change the duration
of the pulse according to target position for the servo. Therefore, there is a direct connection
between the pulse duration and the final servo position. Note that the frequency of the signal
remains constant, the only parameter that changes is the duty cycle.
The required command signals vary from one servo to another, and it is something that the servo
manufacturer might change. It is common to use pulses between 1ms to 2ms in order to control
the servo. The period of the control signal normally varies from 18ms to 25ms (55 to 40 Hz).
The period of the control signal depends as well on the servo manufacturer. In order to reach a
correct servo operation it is a requirement that the servo is pulsed at the required control frequency,
otherwise jitter will take place.

Figure 5.2: Typical servo control signals. Source: seattlerobotics.org

Figure 5.2 is an example showing the working principles introduced above. In this particular servo
case the pulse duration is 18ms. This means that the signal control frequency is working at 55Hz.
The pulse width will vary between 1ms to 2ms, representing 0 and 180 degrees respectively.
Intermediate pulse widths can be used in order to position the servo at different angles of the
described semicircle.
The partitioning decision in this case is that a servo controller can be implemented in software
or in hardware. In the case the servo is controlled from a software component deployed in a mi-
crocontroller without an OS, the solution will consist on toggling a logical output between low
and high values respecting the required timing constraints. These can be established by inserting
properly wait routines in between the toggling functions. In the case the solution is implemented
in hardware, the functionality will be exactly the same but implemented in VDHL, and running
independently from the software side. Additional details on both implementations will be pre-
sented in the following sections. Even though functionality can be reached in several ways, timing
constraints will play a major role on deciding upon a concrete implementation.

5.2. Modelling of a servo controller

Following the thesis aim of illustrating model-based engineering using the VDM method, the first
step in this case study is to model the problem. The modelling flow will proceed according to the
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process explained in chapter 4.

5.2.1 Sequential model

The first step is to create a sequential model of the problem under study. This model will allow
to represent unambiguously the entities involved in the system and the causal ordering of events
(application of guideline 1).
This model is composed by the following entity classes:

Controller: represents the main control logic responsible for the system operation. In terms of
hierarchy this would be the top-module of the system.

PWMgenerator: represents the logic used for the generation of the PWM signal described in the
previous section.

Clock: periodic signal regulating the execution of the model. This signal is a logical notion of
time: the simulated time.

GPIOinterface: represents a hardware block. It represents the boundary between the microcon-
troller unit and the environment. GPIO stands for General Purpose Input Output. Each
GPIO channel has an associated pin in the microcontroller package. This pin can be at low
level (0 Volts) or high level (5 Volts1). The GPIO hardware block is mapped to a control
register that can is loaded with the control value, determined by the algorithm running in
the microcontroller CPU.

Additional classes have been used to run the simulation. These classes are mere helpers and
not as relevant as the ones introduced above. However they are relevant in order to generate the
simulation results.

PositionLogger: keeps track on the target positions issued by the system control logic. This class
will generate a Comma Separated Value (CSV) file with the targeted positions.

Sampler: offers the same functionality as an oscilloscope. In this model implementation this
class is sampling the outputted GPIO values. It can be attached to different GPIO lines
in order to simulate a multi-channel scope. However, this functionality has not been used
in the servo case. Once simulation is completed the sampler class is able to dump all the
readings in a CSV file.

Figure 5.3 shows a UML class diagram illustrating the relations between the entities presented
above. The model is started and configured by the Environment class, which will be responsi-
ble as well for tearing down the execution (in this case only dumping the acquired signals to files).
The Environment class will access as well the simulation clock represented by the Clock entity.
Each time a clock tick is generated by the Clock, a sequence of timeStep operations will be
triggered from the environment in all the instantiated classes. This can be seen in the code listing
below. Each class that holds an active responsibility is implementing a timeStep operation.�

1 while (clk.getSimTime() <= simTimeMax) do
2 (
3 currentSimTime := clk.getSimTime();
4 controller.timeStep(currentSimTime);

1Considering Transistor Transistor Logic (TTL)
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5 pwmUnit.timeStep();
6 sampler1.sample();
7 clk.tick();
8 );
� �

In the case of the PWMgenerator entity, the timeStep operation is triggering the execution
of the generateCycle operation. This operation is responsible for creating the control signal
that is provided to the servo. The code listing below shows how it has been modelled in VDM. An
internal tickCounter variable is representing the number of ticks that will be used to generated
a full PWM cycle (composed by the high and low state). The high state of the PWM signal starts at
logical tick 0 and ends at logical tick tickLimit. As described in the model, these boundaries
will be triggering the setOn and setOff operations causing, therefore, the proper logic level
transition in the associated GPIO class instance.�

1 private generateCycle: () ==> ()
2 generateCycle() ==
3 cases tickCounter:
4 (0) -> setOn(),
5 (tickLimit) -> setOff(),
6 others -> skip
7 end;
� �

Figure 5.3: UML class diagram view of part of the sequential model.
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The main outcome of the creation of a sequential model of the system is the unambiguous rep-
resentation of the system hierarchy, and the separation of responsibilities among entities. An
additional advantage derived from the application of the VDM methodology is the possibility of
executing the models under different scenarios, something that is not that easy to do under UML2.
The notion of time incorporated in the model is used in order to determine the ordering of events.
However this notion of time is not sufficient in order to study time dependant properties of the
system, something that will have to be studied in the real time models. Concurrent operation is
not incorporated in the sequential model either.
The execution of the model produces as a result a CSV file that can be plotted (application of
Guidelines 11 and 12). The resulting plot is a representation of the generated PWM signal by the
modelled system. In this case the tool gnuplot and a set of bash scripts have been used in order
to generate the signal plot. Figure 5.4 show the predicted signal output by the VDM sequential
model.

Figure 5.4: Generated servo control signal.

5.2.2 Concurrent model

The concurrent model gives the possibility of showing the concurrent aspects of the systems. The
outcomes of such a model are to present behaviours that should be running in parallel and to study
how these behaviours are interacting in a safe manner. In this model the timestamp pattern is
used. This pattern allows a smooth conversion from the sequential to the concurrent world, by
the introduction of a thread barrier. This barrier allows the regulation of the time progression,
making sure that at least all the threads have been executed timeStep once before making the
simulation clock advance one time unit More details on this pattern can be found in can be found
in [Lausdahl&10b].
Figure 5.5 presents a simplified UML class diagram of the concurrent VDM model. Attributes
and methods are not shown in this class diagram in order to increase readability. These details can
be consulted on the previous class diagram 5.3. Stereotypes «thread» and «synchronized»
are used in order to display the concurrent behaviour of the entities.

2Some Computer Aided Software Engineering (CASE) tools available in the market provides the necessary facil-
ities to execute UML sequential models and generate different execution traces. An example of such a tool is IBM
Rational Rhapsody. These tools are complex and expensive. An additional advantage is that, executable UML models
have to be following the syntax specified by the UML standard. The result is a syntactically correct and executable
model.
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Figure 5.5: Concurrent model simplified UML class diagram.

From the VDM perspective, the model infrastructure is constructed by the Environment class.
The threads are started from this entity as well, which will block until the finishing condition has
been reached.�

1 start(clk);
2 start(pwmUnit);
3 start(controller);
4 start(sampler1);
� �

Then Environment class makes sure all the threads have progressed at least one time unit by in-
voking the static operation contained in the TimeStamp class WaitRelative. The TimeStamp
class maintains as well the notion of time used in the simulation.�

1 while timerRef.GetTime() <= simTimeMax do
2 (
3 timeStep();
4 Environment‘timerRef.WaitRelative(1);
5 );
� �

The most outstanding change in the VDM models is that now all the active classes, which are
running in threads, are incorporating a thread section in the class body. This thread section defines
the concurrent behaviour the class is going to present. Thanks to organizing the model evolution
in the form of discrete timeSteps contained in a single function, the evolution towards a con-
current version is relatively simple. As an example, the concurrent aspect of the PWMgenerator
class is presented in the code listing below. As it is shown in the model, the timeStep operation
will be running once and then the thread will block until it is notified by the timeStamp instance
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class (declared as timerRef). The thread will be executing continuously until the Environment
class finishes the execution.�

1 thread
2 while true do
3 (
4 timeStep();
5 Environment‘timerRef.WaitRelative(1);
6 );
� �

The timeStep operation invoked from the while loop, is modelling exactly the same behaviour
as the one presented in the sequential model subsection. Besides detailing the active behaviour
of the system, synchronization primitives have been used in order to ensure a safe concurrent
execution (application of guideline 3). The primitive mutex has been used in order to express
the necessity of mutual exclusion between readings and writings during the information exchange.
The most significant case is present at the GPIO class, which is updated by the PWMgenerator
and sampled by the Sampler class. The used protection is shown in the next code listing. As it
is modelled, the state presented by a certain gpio bit can be consulted if it is not being updated.
Additionally, a certain bit cannot be being altered at the same point of time.�

1 mutex(setLow,setHigh);
2 mutex(setHigh,getState);
3 mutex(setLow,getState);
� �

At this point of the modelling stage, a model that presents proper structure, hierarchy and be-
haviour, besides a concurrent operation description has been reached. The next step in order to
study how the system behaves in real time and under different deployments (different architec-
tures).

5.2.3 Distributed real-time model

The distributed real time VDM model brings the possibility of exploring the real time behaviour
of the previously developed models. Besides studying real time properties, different architectural
candidates can be evaluated. In order to model these architectures, the deployment class has
been incorporated to the model:

Deployment: defines the system infrastructure by the use of processing blocks (CPU) and com-
munication interfaces (Buses). It contains the static class declarations of the modelled en-
tities. This class is also responsible for deploying the modelled entities in the processing
units.

Since the notion of time is provided by the overture kernel, the clock class is not needed. The
changes in the classes can be seen in the class diagram depicted in figure 5.6. Methods and
attributes are not displayed in order to increase readability of the diagram. For additional details
refer to figure 5.3.
Initially, a non-distributed real time mode has been created. In this model all the components are
deployed in the same CPU. Even though this does not provides information in order to perform
partitioning decisions, it gives the possibility to make sure that the model is working correctly
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Figure 5.6: Distributed Real-Time model simplified UML class diagram.

under the Overture real-time kernel before moving to the architectural exploration phase (guideline
4).
During the exploration phase, three different architectures have been studied. Two of them are
pure software solutions and a third one is making use of a dedicated hardware partition for the
PWM signal generation.

5.2.3.1 Architecture 1: an OS-less software based solution

This architecture is purely based on software. The PWM signal generation logic is deployed
together with a controller class in a CPU. The GPIO block has been deployed in a separated
hardware block communicated at a very high speed (guideline 6) with the CPU software controller.
The purpose of such a high bandwidth in the bus used is to model the fast access to a hardware
component mounted in the same chip as the CPU. The separated hardware block representing the
hardware partition is running at a frequency orders of magnitude above the general purpose CPU
frequency (guideline 5).
An overview of the architecture as generated by Overture is shown in figure 5.7.

Figure 5.7: Architecture of the software based solutions.

The deployment of the entities has been carried out as described in the UML deployment diagram
shown in figure 5.8.
In order to study the load response of the CPU running the PWM generation logic, the function
timeConsumer has been introduced. This function is taking processing time progressively each
time the controller thread is executed. Therefore, the longer the simulation has been running the
more time the timeConsumer function will be taking.
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Figure 5.8: Deployment diagram of the software based solutions.

In order to maintain the proper time limits in the signal, duration statements have been used.
In this version of the model the generateCycle operation in the PWMgenerator class has
been modelled as shown in the listing below. In this concrete case the target PWM signal has
a pulse duration of 2 milliseconds and a low state duration of 18 milliseconds. The toggleBit
operations are not considered in the time analysis, since the time it takes to toggle the hardware
output is orders of magnitude below the phenomena we want to study (generation of a signal in
the millisecond range). The increment of the runCount has not been considered either, since
this is a model dependant parameter that will not be present in the actual implementation.�

1 duration (2E6) outputInt.toggleBit(1);
2 duration (18E6) outputInt.toggleBit(1);
3 duration (0) runCount := runCount +1;
� �

The PWMgenerator thread is modelled as a procedural thread that runs until completion. The
controller thread is modelled in the same way. The purpose behind this modelling decision is to
avoid using periodic constructs, that will be used under an RTOS based implementation.

The generated signal by the OS-less based software solution can be seen in figure 5.9. In this
diagram three control pulses can be seen. The duration of the pulses is correctly generated in
all three cases. The separation between control pulses is incorrect. This means that the system
is failing to generate the control pulses at the required frequency. Note that the time between
the second and the third control pulses is considerably higher than time between the first and
second pulse. The separation between the pulses keep augmenting while the model execution
progresses, making the situation even worse. This means that a pure software based solution
would be correct in the case the CPU is not loaded excessively. Load boundaries would depend
on concrete platforms, however, the same situation would appear at certain point of load if this
control scheme is used. Remark as well that this architecture is the fastest to implement and the
cheapest in terms of used silicon area (assuming that a processing unit is already present in the
system). Generation of the PWM signal from a OS-less based software solution, while plausible,
should be carefully considered due to is load sensitivity.
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Figure 5.9: Generated control signal by the OS-less software only solution.

5.2.3.2 Architecture 2: a RTOS based software solution

The second architecture evaluated for this case study is making use of a Real Time Operating Sys-
tem (RTOS). The purpose is to exploit the scheduling possibilities that such a software solution
offer in order to respect the hard real time deadlines. The used deployment and hardware architec-
ture are exactly the same as the one introduced in section 5.2.3.1. However the scheduling policy
in the CPU unit has been altered from First Come First Served to Fixed Priority. Additionally the
time dependant functionality (generateSignal) has been given a higher priority than the controller
operations, which are not time critical. Both aspects are illustrated in the following model listing:�

1 controller : CPU := new CPU(<FP>, 1E9);
2 ...
3 controller.setPriority(PWMunit‘generateSignal,10);
4 controller.setPriority(Controller‘timeConsumer,1);
� �

As it can be imagined, this second software based approach is able to generated the PWM signal
properly and respecting the deadlines (see chart on the right side of figure 5.10). It is interesting
to study the impact of turning off the priorities and evaluate whether this approach is still valid. In
the case no higher priority is given to the generate signal operation, the model is indicating that
some deadlines will be eventually missed (see chart on the left side of figure 5.10). Finally, a more
detailed view on the correctly generated control signal is depicted on the left side of figure 5.11.
This architecture is more complex that the OS-less software based solution. It is possible to use
an open-source RTOS and achieve the expected results. Economically speaking this would not
be necessarily more expensive. From the resource consumption point of view, it is clear that this
solution requires additional hardware infrastructure (more memory and a dedicated timer to be
used by the RTOS). In principle, no additional silicon are would be required.

5.2.3.3 Architecture 3: a combined hardware/software solution

The last evaluated architecture is considering a hardware partition for the generation of the PWM
signal, which is show in figure 5.12.
This architecture has been defined in VDM as shown in the next model listing. Since the PWM
generation block is deployed in a hardware block, the chosen frequency is orders of magnitude
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Figure 5.10: Generated signals by the RTOS based software only solution.

Figure 5.11: Generated signals by the RTOS based with priorities and the Hardware based solu-
tions.

Figure 5.12: Architecture of the hardware based solution.

above the controller frequency (guideline 5). The hardware partition is running at a frequency of
1E9, while the controller is running at 1E5. The communication between the CPU and the hard-
ware blocks is established through hi-speed buses, modelling the available high speed interfaces
between hardware and software (guideline 6).�

1 PWMgenerator : CPU := new CPU(<FCFS>, 1E9);
2 controller : CPU := new CPU(<FCFS>, 1E5);
3 gpioBlock : CPU := new CPU(<FCFS>, 1E9);
4 controlRegister : BUS := new BUS(<CSMACD>,
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5 72E13,
6 {PWMgenerator,
7 controller}
8 );
9 controlRegister2 : BUS := new BUS(<CSMACD>,

10 72E13,
11 {PWMgenerator,
12 gpioBlock}
13 );
� �

The deployment used in this case is depicted in the UML diagram show in figure 5.13. As it can
be seen, each entity has been mapped to a separate processing unit.

Figure 5.13: Deployment diagram of the hardware based solution.

The logic used is the same as the one explained in section 5.2.3.1. The generated signal is depicted
in figure 5.11 on the right. As it can be seen, this architecture is able to generate the PWM signal
correctly and within the established time frames. The use of a separate block for the PWM signal
generation makes the generated signal independent from the CPU load. The signal is generated
correctly no matter how much the CPU is loaded.

This solution is the most adequate regarding performance. On the other hand it requires more
silicon area on the FPGA since an additional hardware block has to be deployed on it. In the
case an IP block is ready to integration additional development effort would not be necessary.
In the case no IP block is available, the required time for VHDL development would have to be
considered in the project time budget.
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5.3. Implementation of the servo controller

The studied implementations were originally presented in [Speedway11SDK]. The presented re-
sults in this section relates the extracted information from the implementation and analyses the
results. In addition these results are related to the formal models presented above. The study of
the information provided by the actual implementation allows the evaluation of the Hardware/-
Software partitioning decisions, and bridges the gap between abstract representation and real im-
plementation (application of guideline 13).

5.3.1 Preliminary details

The models presented in the previous section are making use of a CPUloader function that de-
lays the execution at a constant rate of 1 millisecond per iteration. This function is not performing
any specific calculation. In this implementation, the CPUloader software component has been
substituted by an algorithm finding prime numbers. This computational complexity of the algo-
rithm causes a variable execution time per execution. The fact that the CPUloader is different
does not affect the study of the real-time deadlines fulfilment. The purpose of the models were to
illustrate how a delay was affecting the servo control problem, not to model how that delay was
created (abstracted detail).

5.3.2 Implementing the conflictive architecture

This architecture is based on a pure software solution. The control logic is running together with
the CPUloader function on the same CPU and without any kind of operating system. The
servo is controlled by the software implementation of the logic described in the sequential VDM
model. The function responsible for the generateCycle functionality described in VDM is
adjust_servo_manually. The most relevant parts of this function are the sleep routines
millisleep and usleep, which obtain the appropriate point of time in which the GPIO has to
be toggled in order to generate the PWM signal. The variable high_time_us is used in order
to calculate the duration of the pulse in order to reach the target position, determined by the coded
expression in the function. Note that this expression vary depending on the used servo.

1 void adjust_servo_manually(int baseaddr,
2 int servo_number,
3 int position)
4 {
5 int high_time_us;
6 high_time_us = 700 + ((2000/256) * position);
7 millisleep(25);
8 rc_servo_assert_manual_output(baseaddr, servo_number);
9 usleep(high_time_us);

10 rc_servo_deassert_manual_output(baseaddr, servo_number);
11 }

In the code listing presented below, the main control loop is shown. In this loop the performed
operations are the servo control operation and the auxiliary cpu loader operation (findPrime).

1 while(latest_prime_found < highest_prime_to_find)
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2 {
3 adjust_servo_manually(XPAR_AXI_RC_SERVO_CONTROLLER_0_BASEADDR,
4 1,
5 0x00 + servo_value);
6

7 latest_prime_found = findPrime(latest_prime_found,
8 highest_prime_to_find);
9 }

5.3.3 Implementing the optimal architecture

The optimal architecture is offloading the PWM signal generation by the use of the IP block
axi_rc_servo_controller. The prime number finder is still run in the system processor.
The structure of the used IP block can be seen in figure 5.14. The figure shows that the device
is clocked, represented by >0 on the upper left corner, that it has one signal output, represented
by 1- in the upper right corner, and that it is attached to the AXI interface of the microblaze
processor. Figure 5.15 shows the device deployed together with other slaves in the final hardware
design. As example of other hardware blocks, two GPIO blocks 4-bit with connected to LEDs and
switches and an Serial Peripheral Interface Flash memory controller are shown. These blocks are
irrelevant to the problem under study, however they give an idea of the variety of devices that can
be integrated in the system.

Figure 5.14: IP block implementing the servo control functionality.

Figure 5.15: IP block deployed.

Even thought the use of an IP block abstract the system engineer from VHDL details, it is worth to
inspect how the PWM generation logic is implemented in hardware. The VHDL implementation
of the PWM block is shown in the next code listing. The PWM block is organized around a state
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machine, which is implemented by the use of a case statement. This state machine presents three
possible states: "initial or reset state", "low period" and "high period". A counter is used in order
to determine which state should be the next one. The counter is controlled by a clock dependant
process. The values the counter may present vary from 0 to servo_PWM_clock_periods.
This second variable represents the number of elapsed clock periods per PWM cycle. As it
can be imagined the number of clock cycles has to be much higher than the desired target fre-
quency for the PWM signal in order to get a good resolution. The value the counter is pro-
viding is compared with the number of required low_pulse_width_clock_periods and
high_pulse_clock_periods in order to trigger a transition in the state machine or remain
in the same state.

1 servo_control_out <= ’0’;
2 reset_control_counter <= ’0’;
3 case current_state is
4 when reset => reset_control_counter <= ’1’;
5 next_state <= low_period;
6

7 when low_period =>
8 if (control_counter >= low_pulse_width_clock_periods) then
9 reset_control_counter <= ’1’;

10 next_state <= high_period;
11 else
12 next_state <= low_period;
13 end if;
14

15 when high_period => servo_control_out <= ’1’;
16 if (control_counter >= high_pulse_width_clock_periods) then
17 reset_control_counter <= ’1’;
18 next_state <= low_period;
19 else
20 next_state <= high_period;
21 end if;
22 end case;

1 control_counter_process : process (clk, rst)
2 begin
3 if clk’event and clk = ’1’ then
4 if reset_control_counter = ’1’ then
5 control_counter <= 0;
6 elsif (control_counter = servo_PWM_clock_periods) then
7 control_counter <= 0;
8 else
9 control_counter <= control_counter + 1;

10 end if;
11 end if;
12 end process;
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The most interesting conclusion that can be drawn from this analysis, is that the logic behind the
PWM generation in VHDL is the same as the one modelled in VDM. Besides the control logic,
the VHDL implementation contains the required logic to interact with the processor. The IP
servo control block is integrated as a slave hardware device, mapped to a control register in the
microblaze processor. From the software side, the servo is controlled by invoking the function
rc_set_servo_position, which will take as a parameter the register address, the servo
number and the target position. The IP hardware block will be continuously polling the associated
register and repositioning the servo according to the hold value. This process is run in parallel and
independently of the state of the software functionality running in the microblaze CPU.

1 void rc_servo_set_servo_position(int baseaddr, int servo_number,
2 int position)
3 {
4 servo_number--;
5 if (servo_number >=0)
6 rc_servo_set_servo_register(baseaddr,
7 8 + (servo_number*4),
8 position);
9 }

5.3.4 RTOS based solution

A third possible implementation, which has been explored from the VDM-RT context, is the in-
tegration of a Real Time Operating System. This third design alternative has been studied but
not implemented in the FPGA. However, similar results to the ones exhibited by the VDM-RT
model can be expected. The considered RTOS for this implementation have been Xilikernel and
FreeRTOS. Xilikernel is not a viable option for new designs or research activities. Xilinx repre-
sentatives have stated in informal conversations that Xilikernel is not a priority for Xilinx when it
comes to development effort and maintenance. As an alternative they highly recommend the use
of FreeRTOS 3.
As it was explored in the RTOS based VDM model, the generation of the control signal could be
incorporated in a periodic thread that is executed at a period of 20ms. A thread (called task in
FreeRTOS) can be used as shown in the next code listing. One of the most relevant parameters
of the thread creator is the function entry point. In this case, the entry function will be associated
to the generate signal function, as it was shown in the models. The execution of this task will be
started by a software timer, which will be generating an interrupt every 20ms. The task should be
executing the generateSignal functionality within a critical section, so a preemtive context
switch will not occur. Interrupts should be deactivated before entering the critical section.

1 portBASE_TYPE xTaskCreate(
2 pdTASK_CODE entryPoint,
3 const portCHAR * name,
4 unsigned portSHORT usStackDepth,
5 void * Parameters,
6 unsigned portBASE_TYPE uxPriority,

3FreeRTOS is open-source and is available for download at http://www.freertos.org/.
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7 xTaskHandle * callback // If needed
8 );

The next code listing shows the thread signature that should be used in a FreeRTOS based imple-
mentation.

1 xTaskCreate(
2 generateSignal,
3 "RCservoControl",
4 SMALL_SIZE,
5 (void*)targetTime,
6 HIGH_PRIORITY,
7 NULL
8 );

While possible, this software implementation can be highly inefficient, since the system can be
busy generating the PWM signal up to 10% of the time. Besides performance considerations, a
more critical situation could be that other real-time events are not being processed because the
PWM task is being served.

5.4. Evaluating the implemented architectures

In this section two implementations will be evaluated. These architectures correspond to the OS-
less software solution and to the combined hardware/software solution. The results provided
by this evaluation were initially predicted by the models presented above, which were used to
make the partitioning decisions of the system. In a real development setup, only the most suited
architectural candidate will be selected for implementation. In order to validate the thesis that
VDM-RT models can provide the necessary information to make partitioning decisions, the two
opposite architectures have been evaluated. As it will be presented below, the performance of the
different solutions was properly anticipated by the abstract VDM-RT models.

5.4.1 Evaluation of the conflictive architecture

Xilinx Software Development Kit provides a tool to profile the execution of a certain application.
The advantage of the Xilinx profiler is that the evaluation is performed when the application is
running on the actual hardware, providing real measurements instead of predictions. The profiler
has been used in order to evaluate the performance of the "software only" implementation. In
order to get more meaningful results, the serial traffic has been eliminated by commenting out the
print statements in the application. The reason behind this is that a considerable amount of time
is used in order to send information through the console. This process may mask the potential
bottlenecks that may appear in the real application. After eliminating the print statements and
some preliminary profiler setups, a test run can be executed. This test run offered the results
shown in figure 5.16.
The time critical functions adjust_servo_manually and calculate_servo_position
are taking 0.26% and 0.49% of execution time respectively. On the other hand the CPU loading
function findPrime is requiring 9.75% of execution time, and invoking arithmetic functions that
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Figure 5.16: Software based solution profiling.

are requiring almost 50% of processing time if considered together (hudivsi3 and umodsi3).
This shows that the software bottleneck is introduced by the CPU loading function findPrime.
This function is making the control function adjust_servo_manually missing its real time
deadlines. The profiler shows how the problem predicted by the VDM-RT models is present in
the actual system implementation.
Besides detecting the conflictive situation by the use of the profiler, it is possible to monitor the
generated PWM signal with a scope, and study how it changes over time.
During the first seconds of execution, it can be seen how the PWM signal is generated properly,
respecting the time limits for the pulse and at the required frequency. Figure 5.17 shows both
constraints on the left and right scope dumps respectively.

Figure 5.17: High pulse duration and correct signal period.

After the system has been running for a period of time of approximately 20 seconds, it is possible
to appreciate the problems that arise if the software only architecture is used. Figure 5.18 on the
left shows how the spacing between two consecutive control pulses is taking up to 1.3 seconds,
orders of magnitude greater than the initial 25 ms deadline. Moreover, since the CPU loader is
consuming processing time at a variable rate, the delay introduced in the control pulse generation
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Figure 5.18: Generated control signals after 20 seconds of operation.

is varying as well. This makes the control error variable during system operation. Uneven spacing
between the control pulses can be seen in the chart on the right in figure 5.18.

5.4.2 Evaluation of the optimal architecture

The optimal architecture, which makes use of a hardware block for the PWM signal generation,
has not been profiled. This second solution has been directly deployed into the FPGA and its
generated signal monitored with the scope. An overview of the generated signal can be seen in
figure 5.20. As it is depicted, the spacing between the control pulses seems to be correct and
evenly distributed. The measurement was repeated at different moments of time over several
minutes with no changes.
In order to take a closer look at the signal, the timebase was decreased. This allowed to analyse the
duration of the control pulse and the exact separation between consecutive pulses. The duration
of the control pulse, shown in figure 5.19 on the left is correct, presenting a value of 1.76ms.
The separation between two consecutive control pulses, shown in figure 5.19 is correct as well,
presenting a value of 29.4 ms.

Figure 5.19: Detailed view of the generated PWM signal by the IP PWM block.
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Figure 5.20: Overview of the generated PWM signal by the IP PWM block.

5.4.3 Physical results

In order to see the results of both architectures physically, a servo was connected to the GPIO
pin in the FPGA. When the software only architecture was in use, it was possible to see the jitter
in the servo axis after a short period of operation. The jitter was increasing considerably until
a full oscillation between 0 and 180 degrees was reached. Remark that a continuous operation
under this control signal can damage the servo itself. If the servo is performing a critical control,
the consequences of missing the real time deadlines can be serious depending on the concrete
application. The hardware based architecture was physically studied as well. As it was predicted
by the VDM RT models and shown by the scope analysis, the target position is maintained constant
making impossible to move the servo axis. In this case, a complete implementation was possible to
be carried out due to the existing literature, material and the simplicity of the case study. However,
there are different control cases that are challenging, where different logical control strategies and
partitionings might have an impact on the physical performance of the solutions. These more
complex cases can be harder to implement, and a model-based setting is the only way to perform
the design space exploration required in order to perform a sound partitioning. Evaluation of
partitionings and performance of different control logic can be performed by VDM (discrete event
modelling). On the other hand, the study of a continuous time process is hard to perform under
a modelling environment like VDM. In this kind of scenario, a tool like DESTECS can be a
good solution in order to contextualize partitioning decisions and analyse their impact on the
physical environment. Additional information on the DESTECS EU FP7 project can be found on
[Broenink&10].

5.5. Summary

This chapter has presented how a VDM-RT based modelling methodology can be applied in the
hardware software co-design of embedded systems. The methodology has helped to evaluate sev-
eral architectures and decide on a concrete implementation, making use of IP-cores. Finally, the
system implementation has been carried out. Feedback from that concrete implementation has
been obtained through application profiling. With demonstration purposes, a conflictive architec-
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ture has been implemented as well. Correlation between created models and actual results has
been shown.
The VDM models have helped on creating an unambiguous representation of the system, that can
be executed under different scenarios. By applying modelling it has been possible to represent the
hardware/software co-design partitioning issues and analyse the performance regarding real-time
deadline accomplishment. Even though the servo case is simple from a technical point of view,
creating models that provide the same kind of information as the one obtained from VDM models
using, for example, SysML, could have been more complex.
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Chapter6
Case study: Development of an AVB
endpoint device

This chapter is focused on a complex industrial case study, the hardware/software co-design of
an Audio Video Bridging (AVB) endpoint device. The methodology proposed in chapter 4 will be
applied. This chapter is structured in seven sections. An introduction is presented in section 6.1.
An overall description of the AVB protocol will be given in section 6.2. The relevant aspects for
the hardware partitioning of the system will be presented in section 6.3. The created models for
the hardware/software co-design of the system will be presented in section 6.4. Evaluation of
different architectures will be described in section 6.5. The outcome of the model would be briefly
evaluated in section 6.6. Finally, section 6.7 summarizes the chapter.

6.1. Introduction

This chapter presents a second case study proposed by the home electronics manufacturer Bang
& Olufsen. The focus of this case is the specification and analysis of an Audio Video Bridging
compliant endpoint device. The preliminary analysis will create the basis for the hardware soft-
ware co-design of the system, and it will assist in making the initial partitioning decisions of the
system.

6.2. Description of the AVB protocol

The AVB protocol is used in the transmission of multimedia content over AVB compliant net-
works. It provides the necessary mechanisms to ensure the real-time deadlines associated with
this kind of content, as well as the bandwidth reservation and the facilities to avoid traffic
bursting. The AVB protocol is a layer 2 transport protocol according to the Open Systems Inter-
connection (OSI) classification. This protocol is specified in the standard [IEEE-std1722-2011].
This standard specifies that in order to create an AVB compliant device the following protocols
have to be supported:

802.1AS: time synchronization protocol. This protocol is responsible for distributing a common
notion of time among all the nodes that belong to the AVB network.
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802.1Qav: stream reservation protocol. This protocol is responsible for allocating 75% of the
available network bandwidth for transmission of AVB traffic.

802.1Qat: traffic shaping protocol. This protocol ensures that the traffic is sent over the network
smoothly and at a constant pace.

IEEE1722 can be used on top of multiple media layers. These physical mediums include optical fi-
bre, wireless networks and Ethernet. The main development effort at the time of writing is focused
on the 802.3 physical layer (Ethernet). Note that AVB has nothing to do with TCP/IP. TCP/IP traf-
fic can be used in parallel to IEEE1722, for example, in order to send control commands. TCP/IP
is not necessary in order to stream multimedia content with AVB. A contextualized view of the
involved protocols and layers is depicted in figure 6.1. An overview of AVB and its relation to
these protocols is given in [Garner&07].

Figure 6.1: Protocol stack showing the involved protocols in AVB. Source: [IEEE-std1722-2011]

Due to its timing performance, the AVB protocol application is not limited to the transmission
of multimedia content. Current developments include industrial automation and robotics. Even
though these areas are currently being researched, the immediate business case for AVB is the
home entertainment market.

6.2.1 The traffic shaping protocol 802.1Qav

The traffic shaping protocol is known as well as a "queuing and forwarding protocol". All the
network equipment in an AVB network must be compliant with the traffic shaping protocol. This
protocol is specified in [IEEE-Std802.1Qav-2009]. The purpose of this protocol is to provide
a uniform traffic at a constant pace. By applying traffic shaping bursting traffic is avoided. A
second consequence of its application is that the receiver buffers are not overflowed. The traffic
shaper creates several time slots and assigned them to AVB and other traffic (for example, TCP/IP
traffic) depending on the listener capabilities and the time deadlines. This scheme resembles the
Time Division Multiplexing (TDM) technique used in many communication systems. Figure 6.2
shows the basic structure of a traffic shaping unit. The shaper is composed by two multiplexers, a
Priority-Based multiplexer and a Timing aware scheduler. The latter is the only multiplexer with
access to the physical medium. The Priority-based scheduler manages non-critical data, such as
TCP/IP traffic. This traffic is delivered as best-effort to the Timing aware scheduler. The queues
for critical traffic, for example AVB traffic, are labelled as Class 4/5 queues, and are directly
connected to the final multiplexer. Finally, the timing aware scheduler classifies the traffic and is
responsible for putting the data on to the physical medium when it is scheduled. Further details
on the protocol operation are out of the scope of this thesis work. For additional information refer
to [Garner&07] and the standard [IEEE-Std802.1Qav-2009].
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Figure 6.2: AVB and TCP/IP traffic managed by packet filtering. [Garner&07]

6.2.2 The stream reservation protocol 802.1Qat

AVB is effective in time-sensitive content transmission in part due to the network resources that
are allocated for its operations. This process is done by applying the stream reservation proto-
col, specified in [IEEE-Std802.1Qat-2010]. The application of the stream reservation protocol
makes it possible to minimize jitter and guarantee a deterministic low latency. All the network
equipment in an AVB network must be compliant with the stream reservation protocol in order to
enable operation. The stream reservation protocol uses the Virtual Local Area Network (VLAN)
tagging mechanism in order to filter the network packets before they are transferred to the physi-
cal medium. This implies that the packet filtering process is carried out in a very low layer of the
communications stack, and can be done by using bitwise operators. The process of configuring the
network trees is more complex and involves a dialogue between the talker (information source)
and the listener (information sink). Additional details on protocol setup, maintenance and opera-
tion are out of the scope of this work. For further details refer to [Garner&07] and the standard
[IEEE-Std802.1Qat-2010].

6.2.3 The time synchronization protocol 802.1As

This protocol is specified in [IEEE-Std802.1As-2011]. According to this standard, a device that
is able to receive or generate time corrections is called Time Aware System (TAS). Each TAS is
considered as a system by itself. Therefore, the term system should not be associated with the set
of devices conforming the network. A network composed by several TAS could be considered as
a network of systems.

6.2.3.1 TAS Structure

Each TAS is composed by several modules. These modules are depicted in figure 6.3. A brief
description of each module is presented in the following lines:

Media Dependant Layer: is responsible for the access to the physical medium. Functions that
vary depending on the used physical connection are implemented at this layer.

Port Sync: is the information entry point for the TAS. Each Port Sync is attached to a Media
Dependant Layer access point.
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Site Sync: retrieves the information from every Port Sync structure present on the system. It
coordinates the time information dissemination depending on the port functionality. It acts
as an interface between the registered ports and the Clock Slave and the Clock Master.

Clock Master: is present only in the case a TAS is Grand Master capable. In the case the TAS
is the Grand Master, the Clock Master will be generating the time information that will be
sent to the rest of the TAS present in the network. In the case the TAS is not acting as Grand
Master, the Clock Master will be registering the difference between the time information
received and the time information generated by itself. In the case the current Grand Master
leaves the network, and this TAS assumes that role, then it is aware of the existing difference
in time, avoiding potential discontinuities.

Clock Slave: is responsible for receiving the time information from the Site Sync entity and pro-
cessing it. The time information will be made available to the time consuming application
through the interfaces implemented by the Clock Slave. The time information will be noti-
fied to the Clock Master in the case the TAS is not acting as the network Grand Master, in
this case the above explained offset will be computed by the Clock Master.

Figure 6.3: Overall structure of a Time Aware System. [IEEE-Std802.1As-2011]

Ports may present different roles: Master, Slave, Passive or Disabled. The Master Ports in a TAS
are sending the information to other TAS, which are listening in the Slave Ports. Therefore, there
is a one-to-one association between each Master and Slave port. Passive and Disabled ports are
used to avoid loops in the network topology. These kind of ports are not playing an active role
in the network operation. Figure 6.4 shows a Grand Master Time-Aware Bridge connected to a

76



TAS Behaviour

Time-Aware Bridge. As it is shown all the ports of the Grand Master are acting as Master ports.
The second port is connected to the slave port of the Time-Aware Bridge. This second device is
forwarding time information over the two lower master ports. Left and right ports are configured
as Passive ports, and are not sending nor receiving time information.

Figure 6.4: A Time-Aware Bridge connected to a Grand Master. [IEEE-Std802.1As-2011]

6.2.3.2 TAS Behaviour

The time synchronization is a two step process in which two separated messages have to be sent.
These messages are the SyncEvent and the FollowUpMessage.

SyncEvent: signals the point of time in which the time information is sent to a slave.

FollowUpMessage: contains the necessary information to compute the point of time in which the
SyncEvent was originated at the Master. The follow up has to be generated after the Sync
Event was sent, so the precise timestamp of the sending event can be obtained. Further
details will be provided in the example below.

The FollowUpMessage is composed by the following fields:

Precise Origin Timestamp: is the original timestamp generated at the Grand Master when a
SyncEvent was sent to the Media Dependant Layer.

Cumulative Rate Ratio: is the ratio between the frequency of the master TAS and the slave TAS.
Each TAS will generate a different cumulative rate ratio. Further details will be presented
in the coming example.

Correction Field: time correction computed at every node after forwarding the SyncEvent. Fur-
ther details will be presented in the coming example.

Remark that the Precise Origin Timestamp remains constant, and it is never altered by the TASs
that are sending a modified Follow Up Message. Only the information contained in the Cumulative
Rate Ratio and Correction Field is altered. An example is given below in order to give a better
explanation of the synchronization process.
The example network is composed by four TASs. The first system is acting as Grand Master. The
remaining three systems are connected one after another (daisy chained). Device two and three
are bridges, since they can communicate with more than one TAS and forward information. The
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devices are deliberately operating at different frequencies to make the example more illustrative.
A deployment diagram of this network is shown in figure 6.5. Frequency is specified the generic
unit pulses per time unit (ppt). Time is specified in time units (tu).

Figure 6.5: Example network scenario.

The synchronization process starts with the slave ports measuring the propagation delay and re-
trieving the frequency of the devices with master ports. Once the frequencies for each master
device associated to each slave port have been determined, the Neighbour Rate Ratio for each
TAS is computed. The Neighbour Rate Ratio is defined in equation 6.1.

NeigbourRateRatioTAS#n =
Freqn
Freqn−1

(6.1)

The product of two or more Neighbour Rate Ratio will produce the Cumulative Rate Ratio. This
figure allows to compare time measurements carried out in a certain node in relation to the Grand
Master. The Cumulative Rate Ratio is computed by applying the equation 6.2.

CRRTAS#n =
FreqTAS#1

FreqGM
·

n∏
2

FreqTAS#n

FreqTAS#n−1
(6.2)

Which is equivalent to equation 6.3.

CRRTAS#n =
n∏
1

NeighbourRateRatioTAS#n (6.3)

Considering TAS # 2, its Cumulative Rate Ratio would be computed as shown in equation 6.4.

CRRTAS#2 =
FreqTAS#1

FreqGM
·
FreqTAS#2

FreqTAS#1
=

FreqTAS#2

FreqGM
(6.4)

Any measurement performed at the TAS #2 can be multiplied by the Cumulative Rate Ratio com-
puted for that TAS, having as a result a time measurement related to the time base used in the
Grand Master.
Table 6.1 shows the result of applying systematically these expressions to the Time Aware Systems
deployed in the example network.
After a delay of 10 time units, introduced by the physical link layer, the Sync Event sent by the GM
is received and timestamped by the TAS#1 producing the IngressTimeStamp. The Sync Event is
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GM TAS#1 TAS#2 TAS# 3
Freq 30 10 20 10
Neighbour Rate Ratio 1 10/30 20/10 10/20
Cumulative Rate Ratio 1 1 * 10/30 1 * 10/30 * 20/10 1* 10/30 * 20/10 * 10/20

1 = 1/3 = 0.33 = 2/3 = 0.66 = 1/3 = 0.33

Table 6.1: Neighbour Rate Ratio and Cumulative Rate Ratio computation

GM generated Follow Up Message Values
Precise Origin Timestamp A
Cumulative Rate Ratio 1
Correction Field 0

Table 6.2: Grand Master Follow Up Message

followed by the Follow Up Message. TAS#1 forwards the Sync Event and timestamps the sending
process, generating the EgressTimeStamp. By calculating the difference of these two timestamps
the Residence Time for TAS#1 is determined. The Residence Time indicates the time the system
has used on receiving, processing and forwarding the event. Residence time is calculated as
follows:

ResidenceT imeTAS#n = EgressT imeStampTAS#n − IngressT imeStampTAS#n (6.5)

The ResidenceTime has to be taken into consideration so the hops can be compensated when
calculating the original GM time. At this point, it is possible to create the Follow Up message
contents that will be sent to TAS#2. As explained above, the Precise Origin Time Stamp will
not be altered. the Cumulative Rate Ratio has been previously determined. The Link Delay has
been measured by the slave port. Finally, the residence time has been obtained applying the last
expression. The expression 6.6 links all this variables together, and enables the calculation of the
new Correction Field.

CorrectionF ieldTAS#n = ResidenceT imeTAS#n · CRRTAS#n + LinkDelay + (6.6)

+CorrectionF ieldTAS#n−1

Applied in the case for TAS#1:

CorrectionF ieldTAS#1 = 20 · 10
30

+ 10 + 0 = 16.66 (6.7)

Finally, the follow up message is sent to the TAS#2. The second TAS will repeat the same pro-
cedure as explained above. A special case is presented by the TAS#3. Since this TAS is the limit
of the system, an endpoint device, it does not forward the time information. Therefore it does not
create a Follow Up Message. TAS#3 consumes the received follow up information and associates
this data to the generated timestamp when the sync event was received locally. With the contents
of the Follow Up Message, any TAS is able to determine the GM time that corresponds to the mo-
ment of time in which the Sync Event is received locally and timestamped. In order to make this
example more clear, the Follow Up Message related calculations for all the TAS in the network
are shown in tables 6.2, 6.3, 6.4.
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TAS#1 generated Follow Up Message Values
Precise Origin Timestamp A
Cumulative Rate Ratio 10/30
Correction Field 20 * 10/30 + 10 + 0 = 16.66

Table 6.3: TAS#1 generated Follow Up Message

TAS#2 generated Follow Up Message Values
Precise Origin Timestamp A
Cumulative Rate Ratio 10/30 * 20/10 = 20/30
Correction Field 5 * 20/30 + 10 + 16.66 = 29.99

Table 6.4: TAS#2 generated Follow Up Message

Details on the timing performance of the 802.1As can be found in [Garner&09]. For a more
thorough description of the protocol refer to [Garner&11]. Do not read [IEEE-Std802.1As-2011]
before having an overall understanding of [Garner&11]. The standard document is appropriate in
order to find specific technical details on the protocol. On the other hand, the same document fails
to give an overall simple explanation.

6.3. Partitioning decisions and modelling the AVB compliant
device

In order to model an AVB compliant endpoint device, the following aspects have to be taken into
considerations:

6.3.1 Protocol modelling

An AVB compliant device has to provide an implementation of the protocols presented in the
previous section: the traffic shaping protocol, the stream reservation protocol and the time syn-
chronization protocol. Both traffic shaping and stream reservation protocols are heavily based on
operations over data queues. If the case under study is the SoS and network perspective, it makes
more sense to build models by using queue theory. Such a modelling approach could provide a
mathematically proven architecture with the optimized number of queues, frames per second and
nodes in the network. In this sense, it is clear that VDM-RT is not the most promising modelling
technology. Taking in consideration a single node in the network, the implementation of the traf-
fic shaping and stream reservation protocols is reduced to a set of packet filtering operations over
the hardware buffers. These are mostly bitwise comparisons over the buffers, that will determine
when the Ethernet packets will be sent. Since both protocols are amendments to the widespread
802.1Q tagging protocol, they are available and integrated in COTS Ethernet interfaces. From the
partitioning perspective it is clear that there are highly efficient hardware implementations in the
market ready for system integration.
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6.3.2 Real-time characteristics

Considering the real time perspective the time synchronization protocol is more challenging than
traffic shaping and stream reservation protocols. The real time analysis possibilities offered by
Overture will allow a coarse grained study of the system time performance. The most relevant
issues to analyse for a slave endpoint device, considering time synchronization, are:

Introduced error at Sync time stamping: The sync event is time stamped when it is received
by the endpoint AVB compliant device. The time difference between the reception of the
Sync event and the point of time in which the time stamping takes place is the introduced
time error in the device. It is desirable to introduce the least error possible. The error budget
for a set of commercial WiFi speakers is set to +/- 10 microseconds [Stanton08].

Sync processing time: The performance of the device in processing sync events determines the
maximum rate at which it can be receiving them. This limit should not be overridden,
otherwise bandwidth will be wasted1.

Note that not incorporating traffic shaping and stream reservation protocols in the time synchro-
nization models will not have any impact on the obtained results. Time synchronization related
traffic will always be treated as a high priority traffic, with access to the physical channel as soon
as it is requested by its implementation. Therefore, it is fair to model the buses as dedicated point
to point connections between the connected devices.

6.3.3 Partitioning factors to be considered by the models

The VDM-RT models will help on evaluating the precision offered by different architectures. This
factor will be measured by the error introduced in the different designs. The lower the introduced
time error the more precision the architecture is offering. The aim is to provide executable models
that will act as enabling tool to study the time feasibility of several architectures. The different
architectures will be composed by a variety of hardware and software components. It is worth to
keep in mind that, as exposed in chapter 2, a certain partitioning decision will be accompanied
by a set of trade-offs in terms of: used silicon area, development time, flexibility of the design,
scalability and price.
It is the intention that the proposed VDM-RT model will help on finding the best compromise for
a solution depending on the target application.

6.4. Modelling the AVB time synchronization protocol

6.4.1 Sequential model

The initial sequential model of the system gives the possibility of identifying the main entities
involved in system operation. The main outcome of the sequential model is to represent the
structure and the time independent behaviour of the system. This model is incorporating a very
limited notion of time, represented as timesteps. Even thought the notion of time introduced
in this model is not providing the mechanisms for timing analysis, it is sufficient in order to
show the event ordering. Abstracting time details is beneficial in an initial modelling approach,
since it allows the modeller to focus only on designing the system structure and distributing the

1In a poorly designed system, even overflows may occur.
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responsibilities among the components. An additional outcome is that properties that should be
exhibited by the system can be incorporating at this stage. Finally, the application of modelling
gives the possibility of reaching a good understanding of the protocol. In the case of complex
protocols, like the one considered in this section, the right model will be created after several
attempts (guideline 2).
The sequential model of the system has served to detect the following entities in the time synchro-
nization subsystem:

App: represents the time consuming application.

ClockSlave: represents the clock dependant on the time corrections received by the TAS. It pro-
vides the time information to the App entities.

SiteSync: represents the intermediate layer between the received information in the ports and the
ClockSlave entity.

Port: represents an abstract entity that can be acting as a Master or as a Slave port depending on
the device configuration.

Slave: represents a particular kind of port, used to received incoming time corrections.

Clock: represents the local system clock. It is used for timestamping and as local time reference
for the TAS using it.

PhyMessage: represents the buffer receiving the sync event and the follow up message. This class
acts as a proxy between the endpoint and the external devices (application of guideline 10).

Figure 6.6 shows the UML class diagram of the sequential model. The environment class has been
omitted in order to make the diagram more readable. The information interface is represented by
the PhyMessage class, which is associated to the abstract class Port. A concrete instance of
the Port class should be used in order to manage the information exchange. The Clock class is
associated to the Ports so a timestamp can be applied to the incoming messages. The class Slave
is the concrete implementation used in this model. The Ports are managed by the SiteSync en-
tity. The received time corrections are provided to the ClockSlave attached to the SiteSync
entity. This clock will be responsible for forwarding the corrections to the applications requiring
time information.
In order to reach a better understanding of the protocol, a generic deployment that involves bridges
and endpoint devices has been modelled. In this deployment concrete implementations of the
Port class, in the form of Master and Slave ports have been used. Figure 6.7 shows the object
diagram of the created model. Even though the focus of this case study is the development of
AVB compliant endpoints (TAS1 and TAS4 in figure 6.7), this deployment models as well the
use of AVB compliant bridges (TAS2 and TAS3 in figure 6.7). Such a model does not bring
additional information about how an endpoint device should be partitioned. However, it is possible
to contextualize the operation of the endpoint device in a more concrete and generic scenario. Only
after thoroughly understanding how the target system is interacting with the environment, makes
sense to move forward towards the more focused modelling.

6.4.2 Concurrent model

The purpose behind creating a concurrent model of the system is the same as the one exposed
in section 5.2.2. It is worth to mention that the notion of time in this model remains unaltered
with respect to the sequential model. In order to represent the concurrent progression of time the
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Figure 6.6: Sequential model UML class diagram.

timeStamp pattern has been applied. This pattern is implemented in the new class TimeStamp
and used from the rest of the threads.
Figure 6.8 shows the class diagram of the concurrent version of the model. Attributes and meth-
ods have been omitted in order to increase readability. For additional details refer to figure 6.6.
The stereotypes «thread» and «synchronized» are used to show active and concurrently accessed
classes respectively.

6.4.3 Distributed real-time models

The distributed real time model gives he possibility of: A) Exploring different architectures and
B) Analysing the real time deadlines accomplishment. Some changes are required before being
able to carry out both studies. The first change has been the usage of the notion of time provided
by Overture. The second change has been the addition of the Deployment class:

Deployment: defines the system infrastructure by the use of processing blocks (CPU) and com-
munication interfaces (Buses). It contains the static class declarations of the modelled enti-
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Figure 6.7: Context model UML object diagram.

Figure 6.8: Concurrent model UML class diagram.
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ties. This class is as well responsible for deploying the modelled entities in the processing
units.

Figure 6.9 shows a class diagram modelling the main entities of the model and the existing rela-
tions among them.

Figure 6.9: Real-Time model UML class diagram.

6.5. Evaluating different hardware/software architectures in a
simulated deployment

Four different architectures have been evaluated during the exploration phase. In order to study
the relevant timing aspects, log sequences have been created (application of guideline 12). In
order to get the relevant values of time during model execution, the time instruction has been
used (guideline 7).

6.5.1 Architecture 1: highly software based architecture

The first considered architecture is highly software based. Two CPUs have been used commu-
nicated through a hi-speed bus, modelling the available hi speed for hardware access. The ac-
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cess to the channel is running on the CPU representing the hardware partition. This implies that
the PhyMessage channel representing the hardware buffer for incoming time corrections will be
deployed in hardware. A UML deployment diagram representing this architecture is shown in
figure 6.10.

Figure 6.10: Deployment diagram for the highly software based architecture.

Model execution reveals that there is a considerable delay on the time stamping process under
this architecture. This model has been analysed with CPUs of different frequencies. In the first
case, a CPU running at a frequency of 1E7 Hz has been used. In this execution, the sync event
was received at the hardware buffers 14ns after the simulation started. The same Sync event was
timestamped after 4604 nanoseconds had elapsed. This constitutes a total delay of 4590 ns. In
the second scenario a CPU running at a frequency of 10E6 Hz has been selected. The Sync event
was still received at 14 ns, since the conditions of the environment did not change. On the other
hand, the Sync event was time stamped after 46004 ns were elapsed, producing an error of 45990
ns. It can be conclude that such an implementation would be introducing an considerable delay of
orders of magnitude in the synchronization process. Furthermore, this error would be depending
on the speed of the used CPU and/or on its load at the moment of time in which the sync event
was received.
Additionally, the maximum rate at which the endpoint device can receive time corrections is con-
siderable reduced by this delay. If two sync events are received with a separation of 45 microsec-
onds considering a cpu of 1Mhz, they will be timestamped at the same time therefore, the time
information will not be valid2.

6.5.2 Architecture 2: mostly software and offloaded SlavePort

The second architecture is making use of three different CPUs. The first CPU is modelling a hi-
performance hardware partition. This hardware partition is communicated through a hi-speed bus
to a second CPU. This intermediate is communicated to the final one through a low-speed bus.
CPUs one and two are modelling regular general purpose processors. The channel access and the
slave port have been deployed in the hardware partition. The synchronization logic SiteSync and
ClockSlave is running in he intermediate CPU. Final time correction are made available to the
third CPU through the Low-speed software interface. A UML deployment diagram representing
this architecture is shown in figure 6.11.

2Unless this situation is properly identified and the second packet filtered out.

86



Architecture 3: offloaded SiteSync and SlavePort

Figure 6.11: Deployment diagram for the mostly software with offloaded SlavePort architecture.

This architecture turns out to be much more accurate if compared with the first one. Model exe-
cution reveals that the introduced error in the time stamping is minimum. The model has been ex-
ecuted under two different configurations. The first configuration is the one shown in figure 6.11.
In this case the Sync event is received after 28ns. The hardware is timestamping the sync event
at 34ns. The total introduced error is 6ns. This result is very positive if compared with the one
obtained by architecture 1. In order to explore a more cost-effective option, a second variant of
architecture 2 is proposed. In this variant, the second CPU is not going to be used; the time con-
suming application is going to be deployed together with SiteSync and ClockSlave in the same
CPU, running all of them as software components. The results are exactly the same as the ones
obtained in architecture 2 configuration 1. This definitely supports the following thesis: A) The
most critical and time sensitive process is the Sync event time-stamping, and B) The delay is
considerably mitigated if the time-stamping process is carried out in the processing unit that is
buffering the network traffic. The sync interval supported by architecture 2 is orders of magnitude
above the one supported by architecture 1, and could be applied in very hi-speed transmission
mediums such as optical fibres.

6.5.3 Architecture 3: offloaded SiteSync and SlavePort

The third architecture is keeping the access to the channel together with the slave port access in the
hardware partition. The SiteSync logic has been allocated as well in the same hardware partition.
A hi-speed bus is used to communicate the hardware partition with the second CPU. The second
CPU is a general purpose processor running ClockSlave and Application as software components.
A UML deployment diagram representing this architecture is shown in figure 6.12.
The purpose of this model is to explore how the endpoint device structure could be expanded
to give support to more complex functionality, like the one that could be offered by a network
bridge. In this case it has been decided to deploy the site sync entity in hardware. The prime focus
of the model is to evaluate if there is a penalty in the time corrections reception while keeping the
possibility of a more scalable design. The mode has shown that, the sync event is received 48 ns
after the simulation has started, and this sync event is not timestamped until 74 ns have passed.
This leads to a delay of 26 ns. The conclusions that can be drawn in this case are a little bit fuzzy.
While it makes sense to consider hardware partitions as very high speed VDM-RT CPUs, it does
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Figure 6.12: Deployment diagram for offloaded SiteSync and SlavePort architecture.

not make sense to use a single high speed CPU to deploy two potential hardware components
on it. The reason behind is that active components are modelled as active classes, running as
threads. These threads are going to be sharing computation time of the VDM-RT CPU. In the
actual implementation, separate hardware partitions that can run in parallel will be implemented
as purely separated hardware units, that will not be sharing "computation time".

6.5.4 Architecture 4: multiple hardware partitions

The fourth architecture is considering an improved hardware architecture. The goal is to improve
the results obtained from architecture 3. In this case the first hardware partition is running the
SlavePort and the ChannelAccess. This partition is communicated with a hi-speed bus
with the second hardware partition, where SiteSync has been deployed. A second hi-speed bus
has been used to communicate with the ClockSlave and the time consuming application. A
UML deployment diagram representing this architecture is shown in figure 6.13.

This fourth architecture aims to model correctly the scenario proposed in architecture 3, a more
scalable implementation with good time performance. In order to illustrate separate hardware
units, two different hardware partitions have been used (application of guideline 9). Architecture
2 proved that the time stamping should be done at the hardware level, in the same block in which
the buffers are located, so this design decision is going to be respected. Following the intent
of architecture 3, site sync is going to be moved to hardware. Site sync is going to be able to
access the hardware ports through the hi-speed hardware interface explained above, therefore the
communication latency is cut down below 3 ns. Model execution showed that, the sync event
is received at 28 ns and timestamped at 34 ns. This is keeping the 6 ns delay presented by the
architecture 2. Site sync is able to retrieve the time corrections and execute the communication
logic. In the case this architecture for the endpoint device would have to be used as a base to
implement a compliant bridge, able to forwared the time correction making use of master ports,
this architecture would be correct. In the case the focus is to create a compliant endpoint device,
this architecture would require additional development effort and very little positive impact (if
any).
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Figure 6.13: Deployment diagram for the multiple hardware partition architecture.

6.6. Model outcome assessment

The created models have been created much faster than the time it would have taking to produce
partial prototypes of all four architectures before selecting the most appropriate for final imple-
mentation. The models have helped the system engineer to evaluate rapidly different architectures
and, furthermore, to conduct analysis that will help him on deciding which factors will be im-
proved among different architectures (such as scalability or possibility of further improvements).
Besides the help on taking technical decisions, the application of modelling has bridged the math-
ematical description of the time synchronization protocol with a model that can be relatively easily
understood by other professionals involved in system design.
Considering the time it takes to create a model like the one presented in this case study with regard
the advantages it brings to the development process, the relation between invested resources/model
outcome can be qualified, objectively, as very high.

6.7. Summary

This chapter has presented the application of the VDM-RT methodology for Hardware/Software
co-design of embedded systems in a second case study, the development of an AVB endpoint de-
vice. This second case study is more complex than the introductory case study about servo control.
The problem under study is more abstract as well, since the AVB case is at a system level, where
the critical partitioning decisions have to be determined after initial study of the system. The pro-
posed methodology have had a very positive impact on the problem understanding, helping the
modeller on detecting the potential bottlenecks and critical aspects related to a problem unknown
in advance. This has proved that the proposed approach not only performs well under "toy ex-
amples", but in real industrial cases as well. In the case this information would be presented to a
systems engineer responsible for the AVB development project, he would be able to select which
architectural candidate is the best one for the project needs. Furthermore, this selection would be
based on solid information obtained by the application of a sound engineering approach.
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Chapter7
Concluding remarks and future work

This chapter is composed of five sections. A brief review of the achieved results will be given in
section 7.1. A more detailed assessment of the proposed methodology is presented in section 7.2.
Future work and a review of further research lines in the application of the VDM-RT technology
in Hardware/Software Co-design of embedded systems is presented in section 7.3. Reflections on
the personal learning outcomes are presented in section 7.4 Final remarks are given in section 7.5.

7.1. Achieved results

The initial goals of this thesis, as presented in chapter 1 were:

1. To propose a general-purpose methodology based in the VDM-RT modelling language
in order to support the design decisions in Hardware/Software co-design field.

2. To propose improvements and extensions to the VDM-RT language and the modelling
tool Overture, seeking to contribute on the creation of a modelling tool that can be
applied in a more specialized field.

Before being able to propose a new methodology for Hardware/Software co-design, it was im-
portant to study and review the state of the art in this field. Chapters 2 and 3 present a review of
modelling languages and current approaches relevant for the development of Hardware/Software
systems. Special emphasis was made on the System Level Design approach to Hardware/Soft-
ware co-design. The modelling languages were evaluated with regard to the criterion presented
by [Shaout&09], [Gajski&09], [Niemann98] and [Huang&04]. This technology and methodology
review demonstrated that there is a need for a language and a methodology that enables the system
engineer to perform: precise descriptions at a high abstraction level and allow rapid evaluation of
different alternative architectural candidates in order to find the most appropriate hardware/soft-
ware architecture.
The approach followed to accomplish the first goal is composed by two subgoals: the proposal of
the methodology itself and the validation of the proposed methodology through its application in
two case studies. In the three subsections below we assess our work in those two subgoals and the
second goal of the thesis.
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7.1.1 Development of a VDM-RT based methodology for Hardware/Software par-
titioning

Chapter 4 has proposed a new methodology that can support the hardware/software co-design pro-
cess. The proposed methodology provides a reference for making partitioning decisions. These
decisions are based on the accomplishment of real-time deadlines. Even though making partition-
ing decisions based on time constraints might be enough in some cases, there are other situations
in which additional criterion shall be consider. As described in chapter 2, energy efficiency, delay
at the hardware level or material costs are factors that should be taken into account in hardware/-
software co-design. The proposed methodology fails on considering these factors directly. This
can be compensated by using other modelling technologies to extract information in those areas
and consider it together with the architectures selected from the VDM-RT models. One of the
strong points of the proposed methodology is the possibility of evaluating different hardware/soft-
ware partitions with minimum changes on the models. On the other hand, the results provided
by this exploration phase have to be used carefully and a certain tolerance factor should be used
(additional details will be provided in section 7.2). Finally, the proposed methodology fails when
approaching some localized partitioning problems. An example of a problem hard to tackle by
this methodology is the signal processing field. This limitation is introduced by the language
VDM-RT since it lacks of the necessary mathematical support in order to model signal processing
algorithms. As it has been described above, the proposed approach in this case is to apply an
heterogeneous modelling approach.
Additional assessment of this subgoal is presented in section 7.2.

7.1.2 Application in two case studies

The proposed methodology has been applied in two case studies with the purpose of validating it
(presented in chapters 5 and 6). The case studies have shown that the application of the VDM-RT
methodology for Hardware/Software co-design is providing relevant and sound information that
can be used in the partitioning process. Case one, the development of a servo controller showed
that this methodology can work on small cases. Predictions and results matched and it was shown
that the methodology performed well under this scenario. Case two, the development of an AVB
endpoint device shown that partitioning information can be extracted in complex problems as
well. However, we cannot conclude that the partitioning decisions taken in that case were correct
since we have not been able to produce the implementation for the four architectural candidates.
Note that this would have implied producing and testing hundreds of thousands of VHDL code.
The practical application of the methodology has shown that the usage of modelling in complex
projects presents a high Return On Investment (ROI). The creation of models takes a considerable
amount of time, but this initial investment can potentially be recovered later on in the development
process. Additional assessment of this subgoal is presented in section 7.2

It can be concluded that we have accomplished goal one and reached the initial objectives set
by its two subgoals. Once we proposed the methodology and after we applied it in the two case
studies, we detected the need for concrete improvements for the VDM technology.

7.1.3 Proposal of improvements to the VDM technology

Chapter 4 has proposed a number of improvements to the VDM-RT language and the modelling
tool Overture. Some of the proposed changes would be beneficial for making partitioning deci-
sions with the proposed VDM-RT methodology.
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The addition to models of new platforms would allow to conduct a more precise functionality per-
formance evaluation. The concrete precision improvements would depend on the platform under
study and they are complex to predict without studying particular cases. The profiling of a model
can be already done by manually extracting the relevant information from the Overture log files.
In some situations it is complicated to identify and to locate this information. The analysis that
can be conducted with model profile information can lead to make partitioning decisions, hence
the relevance of it. Modellers would have easier and clearer access to the information they need
to make partitioning decisions if an structured and formatted execution report would be gener-
ated. Incorporating annotations for real-time deadline evaluation can have a very positive impact
in the partitioning process. Some systems present complex time requirements that might depend
on multiple factors. Trying to analyse all these factors by using log files every time the model
is executed can be time consuming. Using annotations in order to describe time-critical aspects
helps on formalizing the required time behaviour. Thanks to this formalization it is possible to
automatically evaluate the real-time performance of the considered architectural candidates. An
additional advantage is that this an step towards automatic design space exploration. An improved
bus support would help on incorporating some relevant communication details. The improved bus
support would rise the expressiveness of the models and it would simplify the communications
modelling by eliminating the proxy pattern. Additional assessment on communication modelling
is provided in section 7.2.

Automatic variable monitoring would make it easier to analyse the evolution of a certain vari-
able over time. Like annotations for real-time deadline evaluation, this feature would be a step
forward towards automatic design space exploration. Automatic variable monitoring would make
the modelling and analysis process less complex but it would not improve the quality of the parti-
tioning decisions.

The addition of code generation is complex to implement in an efficient manner. Considering
that this methodology is targeting the development of embedded systems optimization with regard
to speed and code size is a requirement. While mapping VDM++ models to C++ code (or another
Object Oriented language) is something that could be explored and partially implemented in a
Master’s thesis, doing the same with VHDL would be more difficult. The reason resides in the
existing abstraction gap between VDM and VHDL. Even though code generation would allow a
smooth progression from the modelling to the implementation stage, it would have very little pos-
itive impact (if any) on making partitioning decisions from VDM-RT models. This makes code
generation optional in this context.

The proposed improvements are worthwhile considering from the user perspective. Incorporat-
ing models of new platforms and improving the bus support would allow the user to extract more
precise and reliable information, gaining confidence in the methodology proposed. The incor-
poration of annotations for real-time deadline evaluation would give the user the possibility of
carrying out more complex analysis in a faster way, increasing his performance considerably.
Finally, model profiling and automatic variable monitoring would make the methodology more
usable and it would eliminate the need for external scripts and tools.

It can be concluded that we have accomplished goal two, not only by just presenting a features
wishlist but by describing a set of improvements, the rationale for its consideration and how this
methodology can benefit from them. Additional assessment of this subgoal is presented in sec-
tion 7.2
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7.2. Assessment of the VDM-RT methodology for
Hardware/Software co-design

This thesis has made extensive use of abstract models in order to represent the combination of
hardware and software in the development of systems. More precisely, the models have been used
to extract information to support the hardware/software partitioning process. During the process
of creating these abstract models, some details have not been considered, since they have been left
out intentionally by the modeller. Other details have been left out by the modelling technology
itself. Being aware of what has been lost during this formalization is required in order to move
forward in the development process, bridging the gap between modelling and implementation. A
weakness of this methodology is that how to bridge this gap might not be obvious in all cases.
Some of these problematic situations are introduced by the notion of time used in VDM-RT, the
VDM-RT kernel and the modelling of communication.

7.2.1 The notion of time

The VDM-RT language assumes that every CPU deployed in a model is perfectly synchronized
with regard to the rest. Considering a single FPGA system, such an assumption can be accepted.
In the case the problem under study is a distributed real-time system, it might be necessary to con-
sider additional synchronization mechanisms in the implementation stage. Some implementation
technologies provide abstraction layers taking care of the time synchronization so, depending on
the used technology, engineers might not need to produce the time synchronization implementa-
tion. Note that these synchronization problems cannot be captured by the VDM-RT models and
therefore this is a case in which the new methodology does not support the systems engineer. This
is a limitation introduced by the modelling technology since VDM-RT is targeting the "big pic-
ture" of the system rather than time synchronization in a distributed environment. Further details
and mechanisms to compensate this problem are described in [Babaoglu&93].

7.2.2 Time precision

A word of caution has to be given about the precision of the time predictions offered by the VDM-
RT models. As it has been described above, the VDM-RT system models are coarse-grained. The
data these models are providing for analysis is good enough to take co-design decisions by com-
parison. If this comparison is performed between figures provided by the model, no additional
precautions are needed. In the case this comparison is performed between figures provided by
the abstract model and figures provided from the real world, a tolerance of at least one order of
magnitude should be introduced. This might be imprecise in some situations, but these models are
created at a high level and are not targeting very fine-tuned implementation details. As described
in section 3.3, the System C modelling library incorporates a notion of time that can reach the
femtosecond level, orders of magnitude below the nanosecond level reached in VDM-RT. Fur-
thermore, this notion of time is directly connected with the notion of time used in VDHL. Making
use of SystemC can be a good alternative to reach a higher degree of precision in the models. The
price to pay for this precision: less abstract and complex representations if compared to VDM-RT
models.

7.2.3 The RTOS abstraction

The VDM-RT kernel is modelling a Real-Time Operating System layer. This layer provides the
mechanisms to manage different types of threads and synchronization predicates like mutexes and
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history counters. These mechanisms are implemented in many different ways by RTOS in the mar-
ket. VDM-RT uses a different paradigm for synchronization and protection of critical sections.
For example, the functionality offered by history counters in VDM-RT might not be explicitly
available in a certain RTOS, but surely a different mechanism will be provided in order to accom-
plish the same task. This relation holds in the other way. Some of the features provided by RTOS
implementations are not present in VDM-RT by default. For instance, critical sections are present
in many RTOS implementations but not in VDM-RT. Mechanisms like counting semaphores have
to explicitly modelled in VDM-RT if they are going to be used in the models, while they are
available by default in RTOS implementations. The system engineer has to be aware about the
possible implementation options offered by different technologies while mapping a model to a
real implementation. Besides these implementation details, time performance of different RTOS
implementations needs to be taken into account. Under different RTOS it might take a different
amount of time to perform a context switch, to spawn a thread or to acquire a lock. VDM-RT is
introducing its own timing characteristics in those aspects. Again, these differences have to be
carefully evaluated when moving to the final implementation.

7.2.4 Modelling communication

Communication between systems and subsystems is one of the problematic issues in system de-
sign. The suggested methodology is focused on the functionalities, more precisely on the real-time
performance of the system functionalities. In order to evaluate the functionality the communica-
tion can be partially modelled. The proposed approach could be used to determine the time-frame
and approximate boundaries for the communication facilities required by the modelled function-
ality. If the problem under study is focused on the communication performance, this methodology
will most likely be not appropriate to address it. This shortcoming is introduced by the represen-
tation of the communication link by BUSes, which might not be precise enough. Some high-level
aspects need to be incorporated in the BUS representation, like the bus load or possible traffic
losses. Other aspects are very difficult to capture in VDM and therefore it does not make sense
to consider them. Communication depends heavily on physical phenomena, like noise, temper-
ature, distance or wireless propagation. These factors are entirely abstracted away in VDM-RT,
even though they are relevant in communication modelling, it is difficult to analyse them from
the proposed methodology. As seen in [Nielsen10b] VDM-RT as it is at the moment is not ideal
to model dynamic architectures with wireless devices. As a conclusion regarding the proposed
methodology and the communication problem, the modeller must be aware of the root purpose of
the analysis conducted on the model, the consequences and the final impact in the system func-
tionality. By doing so, many communication aspects can be considered with regard to the created
models even though they have not been fully detailed.

7.2.5 Code generation

Code generation has been described as one of the desirable tool features from which this method-
ology could benefit. Considering that the code is generated from models that are not depicting
the whole system in detail, it is not possible to obtain a final implementation automatically. The
problematic details discussed above regarding time, concrete RTOS behaviour and communica-
tion would have to be very carefully studied, making sure that the assumptions taken are respected
at the implementation level. It is important to keep in mind that the final product is going to be
implemented by using technologies different from the paradigms used in the models. The differ-
ences between the implementation and the modelling technologies, have to be considered in order
to overcome the gap between the abstract model and the real world.

95



Chapter 7. Concluding remarks and future work

7.2.6 Application in two case studies

The new suggested methodology has only been applied in two case studies, and compared to final
implementations in only one. The results look promising but, to determine if such a methodology
would work in general, it should be applied in more cases (preferably of different nature) and have
other people to test it. This assessment cannot be carried out in one MSc. thesis, so therefore we
can conclude that the results of the suggested methodology look promising but a wider analysis in
terms of different projects, professionals and longer time is needed to determine the limits of its
capabilities.

The servo controller case was conceptually and technically simple, and it made it possible to
show in practice how the methodology could be applied. Thanks to this simplicity it was possible
to go down to the implementation level and compare the predictions with actual implementation
results. The AVB case was much more challenging than the servo case from a technical point
of view. The protocols used in AVB were complex and reaching a good understanding was not
an easy task. The application of models helped us on going through these problems, since they
forced us to be systematic and to evaluate which details where worth considering in the partition-
ing problem. The models created made it possible to select among several different architectural
candidates without having to perform an actual implementation. Due to time limitations an im-
plementation of the AVB endpoint was not carried out. Like in the servo case, an implementation
would have made it possible to relate predictions with actual results. However, an AVB imple-
mentation can take up to several VHDL thousands of LOC and is not feasible for a Master’s thesis
of 6 man-month. It is difficult to provide an accurate estimate of the time it would take to produce
functional implementations for the four architectural candidates we have considered in this work.
The development time can be shortened if we implement a limited architecture aiming to validate
the models. These limited implementations, even though not fully functional AVB devices, could
provide a preliminary structure for further development. The real-time features studied in the
models could be implemented and deployed in these preliminary hardware/software stubs. If we
follow this strategy, we could create the four implementations and support the model conclusions.
This kind of implementation considered alone is expected to have a workload comparable to this
MSc. thesis project.

Considering the size of the models, the servo case has been modelled with only 500 LOC in
VDM-RT. On the other hand, the final implementations have required 260 LOC in C for the soft-
ware only solution and 1195 LOC in VHDL and 382 LOC in C for the hardware/software solution.
This shows that only 500 lines of VDM have been enough to evaluate architectural implementa-
tions with a total size of 1738 LOC of varying complexity. In the AVB case study the size of the
VDM-RT model is 1083 LOC. This model is presenting how the time synchronization protocol is
handled by the device in four different architectures, some of them using different configurations.
The AVB protocol implementation provided by Xilinx1 is composed by 55000 VHDL LOC. Note
that the architectural pillars of this solution have been tackled from a VDM-RT model of 1083
LOC. Considering the complexity of the protocol and the number of evaluated architectures it
would be fair to conclude that it is an expressive model. It would be difficult to extract the same
kind of information from a SystemC, SysML or Matlab/Simulink model of similar size.
Finally, it is worth to remark that the servo case models were created at a much lower level of
abstraction than the AVB protocol models. The servo case was focused on a very concrete opera-

1Xilinx produces an IP core implementing the AVB protocol. Additional information can be found in
[XilinxAVB11]
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tional detail. This explains why there is such a small difference in size between VDM-RT models
and final implementation.

7.2.7 Comparison with other methodologies

Chapter 3 presented different methodologies for the development of Hardware/Software systems.
It is worth to assess how the proposed methodology performs in comparison to them. The method-
ology proposed by Xilinx is at an operation level and can hardly cope with complex partitioning
decisions. The methodology based on Matlab/Simulik is strong in modelling problems involv-
ing heavy mathematical computations, for example signal processing problems. However, it fails
when considering problems that would benefit from being described at a higher level of abstrac-
tion. The Saturn methodology, a combined SysML-SystemC approach, exploits co-simulation
possibilities bridging the gap between modelling and implementation. However, it might be too
close to the implementation level. The SHE methodology is close to the methodology proposed in
this thesis. The SHE methodology is using the modelling language POOSL instead of VDM-RT.
The expressive power of POOSL is comparable to VDM-RT and it presents many other simi-
larities in terms of constructs. Additional effort has been spent in the development of predictable
control software able to cope with real-time deadlines, a feature that is missing in VDM-RT. There
has been no new information in the POOSL/SHE area since year 2007 and the state of the project
is unknown. Even though the SHE/POOSL methodology is interesting, taking into account its
current development state, it can only be considered as a good source of inspiration for further
developments in VDM-RT.

Compared to the Matlab/Simulink approach, the methodology proposed in this thesis is more
abstract and far from concrete implementation technologies. However, it cannot offer the same
performance on problems involving complex mathematics. The Saturn approach is better in vir-
tual prototyping, but limited to concrete platforms. In comparison, the proposed methodology
is platform independent. The VDM-RT based methodology is strong in high level design space
exploration but further effort is required to relate the design alternatives considered at this level
with the technologies uses in the implementation phase.

7.3. Future Work

This thesis work has given the possibility of detecting interesting areas and concrete action points
that could be explored in further developments. Below suggestions for these are provided.

7.3.1 Implementation of the AVB endpoint device proposed architectures

In chapter 6 four different architectural candidates were modelled. These models provided in-
formation relevant for the partitioning process and helped on selecting the optimal candidate for
implementation. Due to time constraints and complexity of the problem, no early prototype gener-
ation was performed. Possible further work could be the implementation of the four architectures
discussed. Once the implementation would be complete, it would be interesting to validate the
information extracted from the VDM-RT models against the prototypes created. This would re-
inforce the validity of the proposed methodology, by demonstrating its applicability in a complex
case from the design phase down to the implementation level.
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7.3.2 Guidelines for the transformation of VDM-RT to SystemC

SystemC is one of the most used languages in the modelling and design of hardware/software
systems. There are tools available in the market that allow the generation of C/C++ code for
software components and VHDL code for hardware components. SystemC could act as a bridge
between abstract VDM models and the final implementation.
Besides partially solving the of lack of VDHL code generation from the VDM modelling envi-
ronments, SystemC will bring a stepwise evolution towards the final implementation. This would
result in an intermediate modelling stage in SystemC, that will allow to perform modelling at a
lower abstraction level. Such a low level model would possibly enable the incorporation of more
low level details in the case they are needed for more concrete architectural evaluation. On the
other hand this level would be less abstract and would require more modelling time. Aspects that
were not detailed at the VDM level would have to be incorporated at the SystemC level. This
would require additional modelling time and the complexity of the representation of the system
will increase.
A systematic approach would be required in order to move the VDM models to SystemC models.
The proposal of such an approach, and the study of the equivalences between the represented
entities in VDM and the SystemC constructs should be studied in detail in further work.

7.3.3 Exploiting further the possibilities offered by Overture and VDM-Tools

Both Overture and VDM-Tools present features that make creating higher quality models easier.
These possibilities were not explored during the development of the case studies. Some of these
features are combinatorial testing, proof obligations and model coverage. The application of com-
binatorial testing allows to evaluate the created models against all possible combinations of input
values, performing a thorough testing of the model. By ensuring that the model is performing
properly under all kind of inputs from the environment we are reducing modelling errors. The
application of proof obligations make sure that the error sources introduced by the way the model
has been created are fixed. This improves the overall robustness of the model. Finally, model
coverage indicates to which extent the model has been evaluated. A coverage of 100% is obtained
in case all the parts of the model have been executed at least once. It is desirable to have the
highest percentage of coverage possible, implying that most of the model has been covered under
different runs. By verifying and testing the model by the means exposed above, confidence in the
used method for taking the partitioning decisions is increased.

7.3.4 Applying a heterogeneous modelling approach based on the VDM-RT lan-
guage, 20-sim and SysML

As discussed in this thesis, only a combination of several modelling technologies can produce a
complete description of the system. In the same way, a complete analysis of the system can only be
achieved by using multiple modelling technologies. Following this idea, the proposed extension
to this work is the incorporation of additional information in terms of interaction with external
systems and physical world. New modelling languages should be used in order to described these
specialized areas, the languages SysML and 20-sim. A link between these modelling languages
and the VDM methodology would be required in order to fully exploit the possibilities of this
heterogeneous approach.
The projects [COMPASS11] and [DESTECS09] are providing tools linking SysML and 20-sim
with the modelling language VDM. Additionally, these projects incorporate specific facilities to
conduct analysis in the logical and physical world. Such an analysis would be very difficult
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Figure 7.1: Heterogeneous modelling approach.

to be achieved by a VDM-only approach. Integrating the models created under COMPASS and
DESTECS in the partitioning process would relate the implications of certain system architectures
to the environment in which the system would be operating.
Figure 7.1 shows the proposed relation between the COMPASS and DESTECS projects and the
partitioning process.

7.4. Personal Learning Outcomes

As described above, one of the case studies was based on the Audio Video Bridging protocol. Be-
fore modelling an AVB compliant device it was a necessary to understand the protocols behind it
and the hardware and software internals of an AVB device. This was specially complicated and it
took me weeks of reading, meetings, and several e-mails with hardware manufacturers. AVB has
been specified in 2011 therefore the documentation available aside from the standards is reduced
to a few academic papers. One of the mistakes I made while trying to understand the protocols
behind AVB was to start with the 450 pages standard, trying to get every single detail on it. After
two weeks following this track I decided to read the few available papers about AVB instead and
revisit the standard right after that. This turned out to be a good approach. The papers gave me the
overall picture I needed to relate the details presented in the standard. Surprisingly, this kind of
"overall picture" was not part of the standard that was focused on operational details. The papers
allowed me to start creating an overall VDM model of the system. I continued expanding this ini-
tial model with the relevant details extracted from the standard documentation. As a result of this
modelling stage, I personally think that the executable VDM model I have created expresses better
how AVB works than 400 pages of text. The conclusion that I can extract from this experience
is that the next time I will face the problem of understanding a complex system or protocol I will
read the scientific papers before delving into the standard documentation.
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FPGAs are the most relevant platforms in the Hardware/Software Co-design field. My experi-
ence with this technology was very limited when I started this MSc. thesis. Conducting this work
gave me the opportunity to learn more about them, mostly by reading papers, doing small experi-
ments with FPGAs (not included in this thesis work since they are not related to it) and following
a 4-day course organized by the Xilinx FPGA manufacturer. Even though I am not an expert on
FPGAs I can say that I have a better understanding of its internals, possibilities and limitations.
This gives me the basic knowledge to judge if they are a good technological alternative in the case
I have to design an embedded system in the future.

The competences acquired in the courses "Model-Driven Development" and "Hardware/Software
co-design" have been complemented with more in-depth new learning outcomes. In the model-
driven development course we were introduced to modelling and the VDM language, but we did
not analyze in detail the information obtained from models. One of the main pillars of this the-
sis has been to study and extract information from models, therefore, I have improved my skills
and understanding of how modelling can be used in practical cases. In the Hardware/Software
co-design course we were introduced to informal models, graphical notations and methodologies
for Hardware/Software systems development. In this thesis I have reviewed these modelling tech-
nologies and methodologies, compared them and identified their strong and weak points. This has
given me the opportunity to exercise critical thinking and analytical skills in a technical context.

Additionally, the process of creating this thesis has been an starting point in the process of be-
coming better in writing and communicating technical ideas. After finishing this thesis I see that
one of the most complex parts of writing is being selective, analysing the contribution of part of
the text to the global argument presented by the thesis. This implies to decide whether certain
information has to be written as part of the main body, incorporated in appendixes or only cited.

It is the first time during my academic life in which I have had to create an argument of this
size and support it properly. If I compare this MSc. thesis with my previous work I can clearly
see a difference between them. My Bachelor’s thesis was very product-oriented, therefore its re-
port was a descriptive document focused on technical details. During my Master’s degree some
of the courses I have followed have required the creation of projects with an additional level of
judgement, comparison and reflection. I now feel for the first time that I understand what doing
research involves. Finally, this thesis has required a more mature approach, better planning and
organization and to relate my work with current research work.

7.5. Final Remarks

This thesis has successfully approached the initial objective of developing a VDM-RT based
methodology that can help on taking partitioning decisions in the Hardware/Software Co-design
of embedded systems. This initial objective was a challenge, given the abstraction gap between
a VDM representation and a final implementation involving the development of hardware. The
development of the proposed methodology has been justified and compared against the existing
approaches, showing that there is a place for a VDM-RT based approach in the development of
Hardware/Software systems.
The application of the proposed methodology in two case studies has shown that the presented
thesis can provide solid arguments for a particular candidate architecture. The proposed additions
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to the tools and the language can improve the performance of the proposed VDM-RT methodology
considerably for hardware/software co-design.
Some of the additions could be developed under new student projects or MSc. thesis projects. The
application of formal methods and modelling in the Hardware/Software Co-design field is a topic
that still needs further research and development. This thesis has opened a new way in which this
research could continue.
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AppendixA
Terminology

τASIC
Application Specific Integrated Circuit. Generic integrated circuit that has been tailored
for a specific application. A single ASIC might replace several conventional logic inte-
grated circuits, allowing a reduction in both circuit board size and power consumption.
[Amos&02].

τASIP
Application Specific Instruction Set Processor. Processors that present a partially reconfig-
urable Instruction Set Architecture. This allows tuning and optimization of the the processor
for certain applications.

τAVB
Audio Video Bridging refers to a set of standards developed by the IEEE 802.1 AVB Task
Group. It provides the specifications that will allow time-synchronized lo latency streaming
services through IEEE 802 networks.

τBCAM
Bus Cycle Accurate Model. Model illustrates the communication aspects of the system at
the clock cycle level.

τBFM
Bus Functional Model. Model that illustrates the communication aspects of the system
incorporating no or an approximate notion of time.

τCAM
Cycle Accurate Model. Model that illustrates the communication and functional aspects of
the system at the clock cycle level.

τCCAM
Computational Cycle Accurate Model. Model that illustrates the computational aspects of
the system at the clock cycle level.

τCLC
Configurable Logic Cell. Reduced programmable silicon area that can implemented func-
tionality at the hardware level defined by the end user. CLC are currently integrated in some
commercial microcontrollers enabling the developers the implementation of very simple
logical functions on them.
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τCMOS
Complementary Metal-Oxide Semiconductor. A for of construction of logic monolithic in-
tegrated circuits using complementary insulated-gate field-effect transistors in pairs. [Amos&02]

τCOTS
Commercial Off-The-Shelf. Common term to refer to the commercial availability of a cer-
tain product or component.

τCSV
Comma Separated Value. Format in which several values are separated by a combination of
commas and line breaks.

τDUT
Design Under Test. Solution that is being subject of testing activities.

τEDA tool
Electronic Design Automation Tool. Software tool used to support the electronic design
activities, automating repetitive process involved in the design and speeding up the devel-
opment process.

τGolden Model
Model that is used as a reference during the whole development process

τGPIO
General Purpose Input Output. Interface between a processor and external hardware. No
specific usage or application is specified, and it can be generally accessed from custom
defined logic in order to generate control signals.

τIP core
Intellectual Property core. Hardware block implemented by a third party and COTS avail-
able. Thoroughly tested and ready for integration in new systems.

τISA
Instruction Set Architecture. Layer between the processor micro-architecture and the soft-
ware logic. The ISA defines the operations that are available for software execution, as well
as other hardware based facilities like available register, memory addressing or interrupt
handlers.

τFirmcore
IP block implementing functionality via HDL. It has been optimized for a specific target
technology. The implementation optimization may be physical layout aware, allowing a
highly efficient implementation resulting in improved performance, power or area charac-
teristics. [Cofer&06]. An example of a firmcore block could be a NIOS or Microblaze
processors, optimized for Altera and Xilinx platforms respectively.

τFPGA
Field Programmable Gate Array is an integrated circuit that can be re-configured by the
end user. Its hardware can be implemented by using hardware description languages, like
VHDL or Verilog.

τHardcore
IP block implementing functionality at the hardware level. The functionality has been cre-
ated in fixed-logic at the gate and signal route level rather than within the programmable
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FPGA logic fabric. The functionality is fixed at the silicon level during the manufac-
ture fo the device. The functionality cannot be removed or modified by the design team.
[Cofer&06]. A example of a hardcore block could be an Atmel 8-bit microcontroller.

τHardware/Software Co-design
System Level Design methodology that pursues the derivation of architecture from be-
haviour and the parallel and cooperative development of hardware and software.

τMBSE
Model-Based System Engineering. System engineering approach in which models are guid-
ing the development process, supporting engineering trade-offs evaluation and design de-
cissions.

τPartitioning
process/stage of the project in which it is being decided whether a certain functionality
should be implemented as a hardware or as a software block.

τPOOSL
Parallel Object-Oriented Specification Language. Formal language that supports the mod-
elling of concurrent solutions and Object-Oriented techniques. It is used the Software Hard-
ware Engineering methodology.

τPSoC
Programmable System-on-Chip. User configurable hardware platform, that allows the in-
corporation of a number of analog and digital hardware blocks provided by the PSoC man-
ufacturer. Hardware blocks are used by the integrated processor in the PSoC, which can
execute a user defined software logic.

τPWM
Pulse Width Modulation. Also known as Pulse Duration Modulation. Modulation technique
in which the duration of the pulses in a pulse carrier is made to vary in accordance with the
instantaneous value of the modulating signal. [Amos&02]

τRTC
Real Time Clock. Electronic or electro-mechanical device able to measure physical time.

τRTL
Register Transfer Level. Lowest abstraction level used in hardware design. It describes
the system by the use of the hardware modelling language VDHL. It enables the developer
the performance of very detailed modelling and analysis activities. Due to its low level of
abstraction it is one of the most complex representations that can be used in system design.

τRTOS
Real Time Operating System. Operating system that offers the possibility of coordinating
processes and operations according to physical time limitations.

τSAM
System Architectural Model. High level abstraction model of a system. It is normally
created at the beginning of the project development activities, and serve as a base model
from which more refined TLM models are created.
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τSDK
Software Development Kit. Collection of software components that enables the develop-
ment of additional software.

τSL
Specification Language. Formal or graphical language that allow the representation of sys-
tem requirements.

τSLD
System Level Design. Engineering approach used in the creation of complex systems. SLD
pursues starting the system development at the highest abstraction level possible, as a way
to tackle complexity. SLD current approaches are: Component Based Design, Platform
Based Design and Hardware/Software Co-Design.

τSM
Specification Model. Model created using a Specification Language, with the purpose of
presenting unambiguously the requirements that apply on a certain system.

τSoftcore
IP block implementing functionality via HDL with no or minimal optimization for a specific
target technology. [Cofer&06]. An example of a softcore could be an ARM core, that can
be deployed in several FPGA platforms.

τSysML
System Modelling Language. Graphical modelling language developed by the Object Man-
agement Group. It is based on UML and it provides additional constructs for the represen-
tation of common problems in the systems engineering domain. SysML is not restricted to
hardware or software applications, and it can represents a variety of system components.

τTLM
Transaction Level Model. System model that incorporates no or approximate notion of time.
It can detail functional or communication aspects or both. It is an intermediate representa-
tion between the SAM models and the CAM models

τUML
Unified Modelling Language. Graphical modelling language developed by the Object Man-
agement Group. Widely applied in the software industry, provides constructs to represent
object-oriented solutions. Representations can be describing architecture, behaviour and
interaction between different software units.

τV model
or V-life cycle. Model of a general development process, that shows the existing relationship
between analysis, design and implementation and validation and verification phases.

τVDM
Vienna Development Method. Formal method enabling the modelling of systems. It can
be used along all the phases described by the V model. The VDM method is currently
supporting three languages: VDM-SL, VDM++ and VDM-RT. These languages cover the
specification, object oriented design and real-time modelling respectively.

τVHDL
Very-high-speed Hardware Description Language. Low level language used for the creation
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of hardware components. The implementation of these hardware components can be carried
out in different platforms (FPGAs, ASICs, ...).
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AppendixB
Servo case study VDM models

This appendix contains the VDM models for the servo case study. Section B.1 presents the sequen-
tial VDM models. Section B.2 presents the concurrent VDM models. Finally, sections B.12, B.13, B.14
present the produced VDM-RT models.

B.1. Sequential VDM model

B.1.1 Clock

�
1

2 class Clock
3

4 instance variables
5

6 private tickNum : nat := 0;
7

8 operations
9

10 public tick : () ==> ()
11 tick() ==
12 (
13 tickNum := tickNum +1;
14 );
15

16 public getSimTime: () ==> nat
17 getSimTime() ==
18 return tickNum;
19

20

21 end Clock
� �

119



Appendix B. Servo case study VDM models

B.1.2 Controller

�
1

2 class Controller
3

4 instance variables
5

6 private pwmGenerator : PWMgenerator;
7 private outputInterface : gpioInterface;
8

9 operations
10

11 public Controller: gpioInterface * PWMgenerator ==> Controller
12 Controller (gpio,p) ==
13 (
14 outputInterface := gpio;
15 -- Create a position logger
16 pwmGenerator := p;
17 );
18

19 public getOutputInterface: () ==> gpioInterface
20 getOutputInterface() ==
21 return outputInterface;
22

23 -- Operations running in the controller
24 public timeStep: nat ==> ()
25 timeStep(time) ==
26 (
27 skip;
28 );
29

30 end Controller
� �
B.1.3 Environment

�
1

2 class Environment
3

4 instance variables
5

6 clk : Clock;
7 simTimeMax : nat := 1200;
8 currentSimTime : nat := 0;
9

10 outputInterface : gpioInterface;
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11 controller : Controller;
12

13 sampler1 : Sampler;
14 posLog : PositionLogger;
15

16 pwmUnit : PWMgenerator;
17

18 operations
19

20 public run : () ==> ()
21 run() ==
22 (
23 -- ### Simulation setup
24 -- Create a clock
25 clk := new Clock();
26

27 -- Define a microcontroller
28

29 posLog := new PositionLogger();
30

31 -- Attach the gpio generating the PWM signal to the environment
32 outputInterface := new gpioInterface(2);
33 -- Create a PWMgenerator and attach it to the output
34 pwmUnit := new PWMgenerator(outputInterface,1,posLog);
35

36 controller := new Controller(outputInterface,pwmUnit);
37 -- Set the initial pulse duration to 10 ms
38 pwmUnit.pulseDuration(10);
39

40 -- Create a virtual scope and attach it to the generated
41 -- PWM output.
42 -- Using channel 1 from the GPIO block.
43 sampler1 := new Sampler(outputInterface,1);
44

45 -- ### Run simulation
46 while (clk.getSimTime() <= simTimeMax) do
47 (
48 currentSimTime := clk.getSimTime();
49 IO‘print("\nSimulation time step: ");
50 IO‘print(clk.getSimTime());
51

52 controller.timeStep(currentSimTime);
53 pwmUnit.timeStep();
54

55

56 sampler1.sample();
57 clk.tick();
58 );
59
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60 -- ### Simulation tear down
61 sampler1.dumpToFile();
62 pwmUnit.recoverLogs();
63 sampler1.dumpClock();
64

65 IO‘print("## Model Over ##");
66 );
67

68 end Environment
� �
B.1.4 PWMgenerator

�
1

2 class PWMgenerator
3

4 values
5

6 -- Number of clock ticks per cycle
7 private ticksPerPulse :nat = 200;
8

9 -- 10 ticks = 1 ms
10 private msFactor : nat = 10;
11

12 -- Signal frequency in Hz
13 private frequency : nat = 50;
14

15 instance variables
16

17 -- Ussed GPIO block and channel number
18 private output : gpioInterface;
19 private channel : nat := 0;
20

21 -- Internal counter used to define the
22 -- transition from high to low inside
23 -- each cycle.
24

25 private tickCounter : nat := 0;
26 inv tickCounter >= 0 and tickCounter <= ticksPerPulse;
27 -- tickCounter --> is set ot 0 at the beginning of A
28 -- --> incremented each clock tick
29 -- --> when tickCounter reaches its limit
30 -- the line is asserted for the rest of the
31 -- cycle.
32 -- The end of A and beggining of B deppends on the desired
33 -- PWM signal
34 --
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35 -- A B A B
36 -- <--><-------><--><------->
37 -- __ __
38 -- | | | |
39 -- | |_________| |_________
40

41 private tickLimit : nat := 0;
42 inv tickLimit > 0 and tickLimit < ticksPerPulse;
43

44 -- Higher duty cycle values might damage the servo
45 inv getDutyCycle() < 10;
46

47 public posLog : PositionLogger;
48

49 operations
50

51 -- Constructor
52 -- Associates a GPIO block and a channel.
53 public PWMgenerator : gpioInterface *
54 nat *
55 PositionLogger ==>
56 PWMgenerator
57 PWMgenerator(out,ch,posL) ==
58 (
59 output := out;
60 channel := ch;
61 tickLimit := ticksPerPulse/2;
62 posLog := posL;
63 )
64 post output.getWidth() >= channel and
65 not channel = 0 and
66 getDutyCycle() = 0.5;
67

68 public calculatePosition: () ==> real
69 calculatePosition() ==
70 return (180 * ((tickLimit/msFactor) -1));
71

72

73 -- Takes in account the duty cycle and generates the signal
74 private generateCycle: () ==> ()
75 generateCycle() ==
76 cases tickCounter:
77 -- Start of the new cycle
78 (0) -> setOn(),
79 -- Time limit for the high level has been reached
80 (tickLimit) -> setOff(),
81 -- Keep the line as it is
82 others -> skip
83 end;
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84

85

86 public timeStep: () ==> ()
87 timeStep() ==
88 (
89 -- Generate the part of the continuous signal
90 -- that corresponds to this time step.
91 generateCycle();
92 IO‘print("\n## Calculated position in degrees: ");
93 IO‘print(calculatePosition());
94 posLog.pushValue(calculatePosition());
95

96 -- Update the pulse counter in the case the resolution
97 -- limit is reached
98 if tickCounter >= ticksPerPulse then
99 tickCounter := 0

100 else
101 tickCounter := tickCounter +1;
102 );
103

104 -- Sets pulse duration in milliseconds
105 public pulseDuration : nat ==> ()
106 pulseDuration(d) ==
107 tickLimit := d;
108

109 -- Assert high the associated GPIO channel
110 private setOn: () ==> ()
111 setOn() ==
112 output.setHigh(channel);
113

114 -- Assert low the associated GPIO channel
115 private setOff: () ==> ()
116 setOff() ==
117 output.setLow(channel);
118

119 public gettickLimit: () ==> nat
120 gettickLimit() ==
121 return tickLimit;
122

123 public setLimit : nat ==> ()
124 setLimit(l) ==
125 tickLimit := l;
126

127 public recoverLogs: () ==> ()
128 recoverLogs() ==
129 (
130 posLog.dumpToFile();
131 );
132
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133 functions
134

135 -- Calculates the current duty cycle of the signal
136 -- defined by timeHigh/timeCycle
137 public getDutyCycle : () -> real
138 getDutyCycle() ==
139 gettickLimit()/ticksPerPulse
140 pre ticksPerPulse > 0;
141

142 end PWMgenerator
� �
B.1.5 PositionLogger

�
1

2 class PositionLogger
3

4 types
5

6 private OutputTP = int * int;
7

8 instance variables
9

10 private numValues : nat := 0;
11 private sampledValues : seq of real := [];
12

13 private writeResult : bool := false;
14 private io : IO := new IO();
15

16 operations
17

18 public pushValue: real ==> ()
19 pushValue(angle) ==
20 (
21 sampledValues:= sampledValues ^ [angle];
22 );
23

24 public dumpToFile:() ==> ()
25 dumpToFile () ==
26 (
27 IO‘print(sampledValues);
28

29 for all r in set {1,..., len(sampledValues)}
30 do
31 (
32 writeResult := io.fwriteval[real]("position.csv",
33 sampledValues(r),
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34 <append>);
35 writeResult := io.fecho("position.csv", ",1", <append>);
36 writeResult := io.fecho("position.csv","\n", <append>);
37 );
38

39 );
40

41 end PositionLogger
� �
B.1.6 Sampler

�
1

2 class Sampler
3

4 types
5

6 OutputTP = int * int;
7

8 instance variables
9

10 gpioUnit : gpioInterface;
11 sampledValues : seq of bool := [];
12 bitToSample : nat;
13 numValues : nat := 0;
14 inv numValues = len sampledValues;
15

16 toFile : seq of nat := [];
17

18 writeResult : bool := false;
19 io : IO := new IO();
20

21

22 operations
23

24 public sample : () ==> ()
25 sample () ==
26 atomic
27 (
28 sampledValues := sampledValues ^
29 [gpioUnit.getState(bitToSample)];
30 numValues := numValues +1;
31 );
32

33 public Sampler : gpioInterface * nat ==> Sampler
34 Sampler(gpioBlock,output) ==
35 (
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36 gpioUnit := gpioBlock;
37 bitToSample := output;
38 );
39

40 public dumpToFile : () ==> ()
41 dumpToFile () ==
42 (
43 IO‘print(sampledValues);
44

45 for all r in set {1,...,numValues}
46 do
47 (
48 IO‘print(r);
49 writeResult := io.fwriteval[int]("signal.csv", r, <append>);
50 if sampledValues(r) then
51 (
52 --IO‘print(",1");
53 writeResult := io.fecho("signal.csv", ",1", <append>)
54 )
55 else
56 (
57 --IO‘print(",0");
58 writeResult := io.fecho("signal.csv",",0", <append>)
59 );
60

61 writeResult := io.fecho("signal.csv","\n", <append>);
62 --IO‘print("\n");
63 );
64 );
65

66 public dumpClock : () ==> ()
67 dumpClock () ==
68 (
69

70 for all r in set {1,...,numValues}
71 do
72 (
73 writeResult := io.fwriteval[int]("clock.csv", r, <append>);
74 writeResult := io.fecho("clock.csv", ",0", <append>);
75 writeResult := io.fecho("clock.csv","\n", <append>);
76

77 writeResult := io.fwriteval[int]("clock.csv", r, <append>);
78 writeResult := io.fecho("clock.csv", ",1", <append>);
79 writeResult := io.fecho("clock.csv","\n", <append>);
80

81 writeResult := io.fwriteval[real]("clock.csv",
82 r+0.5,
83 <append>);
84 writeResult := io.fecho("clock.csv", ",1", <append>);
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85 writeResult := io.fecho("clock.csv","\n", <append>);
86

87 writeResult := io.fwriteval[real]("clock.csv",
88 r+0.5,
89 <append>);
90 writeResult := io.fecho("clock.csv", ",0", <append>);
91 writeResult := io.fecho("clock.csv","\n", <append>);
92 )
93 );
94

95 public assignOutput : gpioInterface ==> ()
96 assignOutput (gpioU) ==
97 (
98 gpioUnit := gpioU;
99 );

100

101 end Sampler
� �
B.1.7 Timer

�
1 class Timer
2

3 instance variables
4

5 freq : nat;
6 flag : bool := true;
7

8 operations
9

10 public Timer: (nat) ==> Timer
11 Timer(fq) ==
12 (
13 freq := fq;
14 );
15

16 private wait: () ==> ()
17 wait() ==
18 (
19

20 );
21

22 private toggleFlag: () ==> ()
23 toggleFlag() ==
24 flag := not flag;
25

26 public getFlag: () ==> bool
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27 getFlag() ==
28 return flag;
29

30 public activeBehaviour:() ==> ()
31 activeBehaviour() ==
32 (
33

34 );
35

36 thread
37

38 while true do
39 (
40 wait();
41 toggleFlag();
42 IO‘print("\nFlag state: ");
43 IO‘print(flag);
44 );
45

46 sync
47 mutex(toggleFlag,getFlag);
48

49 end Timer
� �
B.1.8 gpioInterface

�
1

2 class gpioInterface
3

4 instance variables
5

6 width : nat := 0;
7 state : seq of bool := [];
8 inv len state = width;
9

10 operations
11

12 public gpioInterface: nat ==> gpioInterface
13 gpioInterface(w) ==
14 (
15 width := w;
16

17 for all r in set {1,...,width}
18 do state := state ^ [false];
19

20 IO‘print(state);
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21

22 )
23 post width = len state and
24 forall i in set {1,...,len state} & state(i) = false;
25

26

27 public setHigh: nat ==> ()
28 setHigh(i) ==
29 state(i) := true
30 pre i <= len state;
31

32 public setLow: nat ==> ()
33 setLow(i) ==
34 state(i) := false
35 pre i <= len state;
36

37 public toggleBit: nat ==> ()
38 toggleBit(i) ==
39 if state(i)
40 then state(i) := not state(i)
41 else state(i):= true
42 pre i<=len state;
43

44 public getState: nat ==> bool
45 getState(i) ==
46 return state(i)
47 pre i <= len state;
48

49 public showState: () ==> ()
50 showState() ==
51 for all r in set {1,...,width}
52 do showSingle(r);
53

54

55 public getWidth: () ==> nat
56 getWidth() ==
57 return width;
58

59 public showSingle: nat ==> ()
60 showSingle(i) ==
61 (
62 IO‘print("\n bit ");
63 IO‘print(i);
64 IO‘print(": ");
65 IO‘print(getState(i));
66 );
67

68 sync
69 mutex(setLow,setHigh);
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70 mutex(setHigh,getState);
71 mutex(setLow,getState);
72

73 end gpioInterface
� �

B.2. Concurrent VDM model

B.3. Clock

�
1

2 class Clock
3

4 instance variables
5

6 private tickNum : nat := 0;
7

8 operations
9

10 public tick : () ==> ()
11 tick() ==
12 (
13 tickNum := tickNum +1;
14 );
15

16 public getSimTime: () ==> nat
17 getSimTime() ==
18 return tickNum;
19

20 thread
21 while true do
22 (
23 tick();
24 Environment‘timerRef.WaitRelative(1);
25 );
26

27 end Clock
� �

B.4. Controller

�
1
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2 class Controller
3

4 instance variables
5

6 private pwmGenerator : PWMgenerator;
7 private outputInterface : gpioInterface;
8

9 operations
10

11 public Controller: gpioInterface * PWMgenerator ==> Controller
12 Controller (gpio,p) ==
13 (
14 outputInterface := gpio;
15 -- Create a position logger
16 pwmGenerator := p;
17 );
18

19 public getOutputInterface: () ==> gpioInterface
20 getOutputInterface() ==
21 return outputInterface;
22

23 -- Operations running in the controller
24 public timeStep: () ==> ()
25 timeStep() ==
26 (
27 skip;
28 );
29

30 thread
31

32 while true do
33 ( timeStep();
34 Environment‘timerRef.WaitRelative(1);
35 );
36

37 end Controller
� �

B.5. Environment

�
1

2 class Environment
3

4 instance variables
5
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6 clk : Clock;
7 simTimeMax : nat := 2400;
8 currentSimTime : nat := 0;
9

10 outputInterface : gpioInterface;
11 controller : Controller;
12

13 public sampler1 : Sampler;
14 posLog : PositionLogger;
15

16 pwmUnit : PWMgenerator;
17

18 public static timerRef : TimeStamp := new TimeStamp(4);
19

20 operations
21

22 public run : () ==> ()
23 run() ==
24 (
25 -- ### Simulation setup
26 -- Create a clock
27 clk := new Clock();
28

29 -- Define a microcontroller
30

31 posLog := new PositionLogger();
32

33 -- Attach the gpio generating the PWM signal to the environment
34 outputInterface := new gpioInterface(2);
35 -- Create a PWMgenerator and attach it to the output
36 pwmUnit := new PWMgenerator(outputInterface,1,posLog);
37

38 controller := new Controller(outputInterface,pwmUnit);
39 -- Set the initial pulse duration to 10 ms
40 pwmUnit.pulseDuration(10);
41

42 -- Create a virtual scope and attach it to the generated
43 -- PWM output.
44 -- Using channel 1 from the GPIO block.
45 sampler1 := new Sampler(outputInterface,1);
46

47 start(clk);
48 start(pwmUnit);
49 start(controller);
50 start(sampler1);
51

52 -- ### Run simulation
53 while (timerRef.GetTime() <= simTimeMax) do
54 (
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55 timerRef.WaitRelative(1);
56 wait();
57 );
58

59 -- ### Simulation tear down
60 sampler1.dumpToFile();
61 pwmUnit.recoverLogs();
62 sampler1.dumpClock();
63

64 IO‘print("## Model Over ##");
65 );
66

67

68 public wait: () ==> ()
69 wait() ==
70 skip;
71

72 end Environment
� �

B.6. PWMgenerator

�
1

2 class PWMgenerator
3

4 values
5

6 -- Number of clock ticks per cycle
7 private ticksPerPulse :nat = 200;
8

9 -- 10 ticks = 1 ms
10 private msFactor : nat = 10;
11

12 -- Signal frequency in Hz
13 private frequency : nat = 50;
14

15 instance variables
16

17 -- Ussed GPIO block and channel number
18 private output : gpioInterface;
19 private channel : nat := 0;
20

21 -- Internal counter used to define the
22 -- transition from high to low inside
23 -- each cycle.
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24

25 private tickCounter : nat := 0;
26 inv tickCounter >= 0 and tickCounter <= ticksPerPulse;
27 -- tickCounter --> is set ot 0 at the beginning of A
28 -- --> incremented each clock tick
29 -- --> when tickCounter reaches its limit
30 -- the line is asserted for the rest of the
31 -- cycle.
32 -- The end of A and beggining of B deppends on the desired
33 -- PWM signal
34 --
35 -- A B A B
36 -- <--><-------><--><------->
37 -- __ __
38 -- | | | |
39 -- | |_________| |_________
40

41 private tickLimit : nat := 0;
42 inv tickLimit > 0 and tickLimit < ticksPerPulse;
43

44 -- Higher duty cycle values might damage the servo
45 inv getDutyCycle() < 10;
46

47 public posLog : PositionLogger;
48

49 operations
50

51 -- Constructor
52 -- Associates a GPIO block and a channel.
53 public PWMgenerator : gpioInterface *
54 nat *
55 PositionLogger ==>
56 PWMgenerator
57 PWMgenerator(out,ch,posL) ==
58 (
59 output := out;
60 channel := ch;
61 tickLimit := ticksPerPulse/2;
62 posLog := posL;
63 )
64 post output.getWidth() >= channel and
65 not channel = 0 and
66 getDutyCycle() = 0.5;
67

68 public calculatePosition: () ==> real
69 calculatePosition() ==
70 return (180 * ((tickLimit/msFactor) -1));
71

72
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73 -- Takes in account the duty cycle and generates the signal
74 private generateCycle: () ==> ()
75 generateCycle() ==
76 cases tickCounter:
77 (0) -> setOn(),
78 (tickLimit) -> setOff(),
79 others -> skip
80 end;
81

82

83 public timeStep: () ==> ()
84 timeStep() ==
85 (
86 -- Generate the part of the continuous signal
87 -- that corresponds to this time step.
88 generateCycle();
89 IO‘print("\n## Calculated position in degrees: ");
90 IO‘print(calculatePosition());
91 posLog.pushValue(calculatePosition());
92

93 -- Update the pulse counter in the case the resolution
94 -- limit is reached
95 if tickCounter >= ticksPerPulse then
96 tickCounter := 0
97 else
98 tickCounter := tickCounter +1;
99

100 Environment‘timerRef.WaitRelative(1);
101 );
102

103 -- Sets pulse duration in milliseconds
104 public pulseDuration : nat ==> ()
105 pulseDuration(d) ==
106 tickLimit := d;
107

108 -- Assert high the associated GPIO channel
109 private setOn: () ==> ()
110 setOn() ==
111 output.setHigh(channel);
112

113 -- Assert low the associated GPIO channel
114 private setOff: () ==> ()
115 setOff() ==
116 output.setLow(channel);
117

118 public gettickLimit: () ==> nat
119 gettickLimit() ==
120 return tickLimit;
121
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122 public setLimit : nat ==> ()
123 setLimit(l) ==
124 tickLimit := l;
125

126 public recoverLogs: () ==> ()
127 recoverLogs() ==
128 (
129 posLog.dumpToFile();
130 );
131

132 functions
133

134 -- Calculates the current duty cycle of the signal
135 -- defined by timeHigh/timeCycle
136 public getDutyCycle : () -> real
137 getDutyCycle() ==
138 gettickLimit()/ticksPerPulse
139 pre ticksPerPulse > 0;
140

141 thread
142

143 while true do
144 (
145 timeStep();
146 Environment‘timerRef.WaitRelative(1);
147 );
148

149

150 end PWMgenerator
� �

B.7. PositionLogger

�
1

2 class PositionLogger
3

4 types
5

6 private OutputTP = int * int;
7

8 instance variables
9

10 private numValues : nat := 0;
11 private sampledValues : seq of real := [];
12
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13 private writeResult : bool := false;
14 private io : IO := new IO();
15

16 operations
17

18 public pushValue: real ==> ()
19 pushValue(angle) ==
20 (
21 sampledValues:= sampledValues ^ [angle];
22 );
23

24 public dumpToFile:() ==> ()
25 dumpToFile () ==
26 (
27 IO‘print(sampledValues);
28

29 for all r in set {1,..., len(sampledValues)}
30 do
31 (
32 writeResult := io.fwriteval[real]("position.csv",
33 sampledValues(r),
34 <append>);
35 writeResult := io.fecho("position.csv", ",1", <append>);
36 writeResult := io.fecho("position.csv","\n", <append>);
37 );
38

39 );
40

41 end PositionLogger
� �

B.8. Sampler

�
1

2 class Sampler
3

4 types
5

6 OutputTP = int * int;
7

8 instance variables
9

10 gpioUnit : gpioInterface;
11 sampledValues : seq of bool := [];
12 bitToSample : nat;

138



Sampler

13 numValues : nat := 0;
14 -- inv numValues = len sampledValues;
15

16 toFile : seq of nat := [];
17

18 writeResult : bool := false;
19 io : IO := new IO();
20

21

22 operations
23

24 public sample : () ==> ()
25 sample () ==
26 (
27 atomic
28 (
29 sampledValues := sampledValues ^
30 [gpioUnit.getState(bitToSample)];
31 numValues := numValues +1;
32 );
33 );
34

35 public Sampler : gpioInterface * nat ==> Sampler
36 Sampler(gpioBlock,output) ==
37 (
38 gpioUnit := gpioBlock;
39 bitToSample := output;
40 );
41

42 public dumpToFile : () ==> ()
43 dumpToFile () ==
44 (
45 IO‘print(sampledValues);
46

47 for all r in set {1,...,numValues}
48 do
49 (
50 IO‘print(r);
51 writeResult := io.fwriteval[int]("signal.csv", r, <append>);
52 if sampledValues(r) then
53 (
54 --IO‘print(",1");
55 writeResult := io.fecho("signal.csv", ",1", <append>)
56 )
57 else
58 (
59 --IO‘print(",0");
60 writeResult := io.fecho("signal.csv",",0", <append>)
61 );
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62

63 writeResult := io.fecho("signal.csv","\n", <append>);
64 --IO‘print("\n");
65 );
66 );
67

68 public dumpClock : () ==> ()
69 dumpClock () ==
70 (
71

72 for all r in set {1,...,numValues}
73 do
74 (
75 writeResult := io.fwriteval[int]("clock.csv", r, <append>);
76 writeResult := io.fecho("clock.csv", ",0", <append>);
77 writeResult := io.fecho("clock.csv","\n", <append>);
78

79 writeResult := io.fwriteval[int]("clock.csv", r, <append>);
80 writeResult := io.fecho("clock.csv", ",1", <append>);
81 writeResult := io.fecho("clock.csv","\n", <append>);
82

83 writeResult := io.fwriteval[real]("clock.csv",
84 r+0.5,
85 <append>);
86 writeResult := io.fecho("clock.csv", ",1", <append>);
87 writeResult := io.fecho("clock.csv","\n", <append>);
88

89 writeResult := io.fwriteval[real]("clock.csv",
90 r+0.5,
91 <append>);
92 writeResult := io.fecho("clock.csv", ",0", <append>);
93 writeResult := io.fecho("clock.csv","\n", <append>);
94 )
95 );
96

97 public assignOutput : gpioInterface ==> ()
98 assignOutput (gpioU) ==
99 (

100 gpioUnit := gpioU;
101 );
102

103 thread
104 while true do
105 (
106 sample();
107 Environment‘timerRef.WaitRelative(1);
108 );
109

110 end Sampler
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� �

B.9. TimeStamp

�
1 class TimeStamp
2

3 values
4

5 public stepLength : nat = 1;
6

7 instance variables
8

9 currentTime : nat := 0;
10 wakeUpMap : map nat to [nat] := {|->};
11 barrierCount : nat1;
12

13 operations
14

15 public TimeStamp : nat1 ==> TimeStamp
16 TimeStamp(count) ==
17 barrierCount := count;
18

19 public WaitRelative : nat ==> ()
20 WaitRelative(val) ==
21 WaitAbsolute(currentTime + val);
22

23 public WaitAbsolute : nat ==> ()
24 WaitAbsolute(val) == (
25 AddToWakeUpMap(threadid, val);
26 -- Last to enter the barrier notifies the rest.
27 BarrierReached();
28 -- Wait till time is up
29 Awake();
30 );
31

32 BarrierReached : () ==> ()
33 BarrierReached() ==
34 (
35 while (card dom wakeUpMap = barrierCount) do
36 (
37 currentTime := currentTime + stepLength;
38 let threadSet : set of nat = {th | th in set dom wakeUpMap
39 & wakeUpMap(th) <> nil and
40 wakeUpMap(th) <= currentTime }
41 in
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42 for all t in set threadSet
43 do
44 wakeUpMap := {t} <-: wakeUpMap;
45 );
46 )
47 post forall x in set rng wakeUpMap & x = nil or x >= currentTime;
48

49 AddToWakeUpMap : nat * [nat] ==> ()
50 AddToWakeUpMap(tId, val) ==
51 wakeUpMap := wakeUpMap ++ { tId |-> val };
52

53 public NotifyThread : nat ==> ()
54 NotifyThread(tId) ==
55 wakeUpMap := {tId} <-: wakeUpMap;
56

57 public GetTime : () ==> nat
58 GetTime() ==
59 return currentTime;
60

61 Awake: () ==> ()
62 Awake() == skip;
63

64 public ThreadDone : () ==> ()
65 ThreadDone() ==
66 AddToWakeUpMap(threadid, nil);
67

68 sync
69 per Awake => threadid not in set dom wakeUpMap;
70

71 mutex(AddToWakeUpMap);
72 mutex(NotifyThread);
73 mutex(BarrierReached);
74

75 mutex(AddToWakeUpMap, NotifyThread);
76 mutex(AddToWakeUpMap, BarrierReached);
77 mutex(NotifyThread, BarrierReached);
78

79 mutex(AddToWakeUpMap, NotifyThread, BarrierReached);
80

81 end TimeStamp
� �

B.10. Timer

�
1 class Timer
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2

3 instance variables
4

5 freq : nat;
6 flag : bool := true;
7

8 operations
9

10 public Timer: (nat) ==> Timer
11 Timer(fq) ==
12 (
13 freq := fq;
14 );
15

16 private wait: () ==> ()
17 wait() ==
18 (
19

20 );
21

22 private toggleFlag: () ==> ()
23 toggleFlag() ==
24 flag := not flag;
25

26 public getFlag: () ==> bool
27 getFlag() ==
28 return flag;
29

30 public activeBehaviour:() ==> ()
31 activeBehaviour() ==
32 (
33

34 );
35

36 thread
37

38 while true do
39 (
40 wait();
41 toggleFlag();
42 IO‘print("\nFlag state: ");
43 IO‘print(flag);
44 );
45

46 sync
47 mutex(toggleFlag,getFlag);
48

49 end Timer
� �
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B.11. gpioInterface

�
1

2 class gpioInterface
3

4 instance variables
5

6 width : nat := 0;
7 state : seq of bool := [];
8 inv len state = width;
9

10 operations
11

12 public gpioInterface: nat ==> gpioInterface
13 gpioInterface(w) ==
14 (
15 width := w;
16

17 for all r in set {1,...,width}
18 do state := state ^ [false];
19

20 IO‘print(state);
21

22 )
23 post width = len state and
24 forall i in set {1,...,len state} & state(i) = false;
25

26

27 public setHigh: nat ==> ()
28 setHigh(i) ==
29 state(i) := true
30 pre i <= len state;
31

32 public setLow: nat ==> ()
33 setLow(i) ==
34 state(i) := false
35 pre i <= len state;
36

37 public toggleBit: nat ==> ()
38 toggleBit(i) ==
39 if state(i)
40 then state(i) := not state(i)
41 else state(i):= true
42 pre i<=len state;
43

44 public getState: nat ==> bool
45 getState(i) ==
46 return state(i)
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47 pre i <= len state;
48

49 public showState: () ==> ()
50 showState() ==
51 for all r in set {1,...,width}
52 do showSingle(r);
53

54

55 public getWidth: () ==> nat
56 getWidth() ==
57 return width;
58

59 public showSingle: nat ==> ()
60 showSingle(i) ==
61 (
62 IO‘print("\n bit ");
63 IO‘print(i);
64 IO‘print(": ");
65 IO‘print(getState(i));
66 );
67

68 sync
69 mutex(setLow,setHigh);
70 mutex(setHigh,getState);
71 mutex(setLow,getState);
72

73 end gpioInterface
� �

B.12. Real-time VDM model: Software based solution

B.12.1 CPUloader

�
1 class Controller
2

3 -- Definition of the CPU loader running in a controller
4

5 values
6 -- Execution limit for the CPU loader
7 executionLimit : nat = 90;
8

9 instance variables
10

11 -- Switch time mark. Initialize to a higher value
12 -- in the case a discrete control is used from the
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13 -- loader.
14 switchTimeMark :nat := 0;
15

16 progressCounter : nat := 0;
17 pwmref: PWMunit;
18 cSent :bool := false;
19

20 operations
21

22 -- Specify the switch time mark in the case several
23 -- control comands are issued to the controller
24 public setSwitchTimeMark : nat ==> ()
25 setSwitchTimeMark(tm) ==
26 switchTimeMark := tm;
27

28 -- Time consumer operation loading the CPU. The
29 -- function is not performing any computation, just
30 -- taking CPU time.
31 public timeConsumer : () ==> ()
32 timeConsumer () ==
33 (
34 -- Simulated operations performed during
35 -- the first 9 iterations.
36 cases progressCounter:
37 (1) -> duration(1E6) timeEater(),
38 (2) -> duration(5E6) timeEater(),
39 (3) -> duration(10E6) timeEater(),
40 (4) -> duration(15E6) timeEater(),
41 (5) -> duration(20E6) timeEater(),
42 (6) -> duration(25E6) timeEater(),
43 (7) -> duration(30E6) timeEater(),
44 (8) -> duration(40E6) timeEater(),
45 (9) -> duration(50E6) timeEater(),
46 others -> ()
47 end;
48

49 -- Increment the progress counter
50 progressCounter := progressCounter + 1;
51

52 -- Send a control signal to the hardware block
53 -- in the case a switchTimeMark has been specified
54 if time > switchTimeMark and not cSent then
55 (
56 controlSignal();
57 IO‘print("[#] PWM generator notified at time: ");
58 IO‘print(time); IO‘print(" [#]\n");
59 cSent := true;
60 );
61 );
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62

63 -- Issues a change in the continuous time hardware
64 -- signal generation.
65 public controlSignal : () ==> ()
66 controlSignal () ==
67 (
68 pwmref.setPeriod(2);
69 );
70

71 -- Establish the reference to the PWM unit
72 public setPWM : PWMunit ==> ()
73 setPWM(p) ==
74 pwmref := p;
75

76 -- Do nothing
77 public timeEater : () ==> ()
78 timeEater() ==
79 skip;
80

81 thread
82 -- Procedural thread running unit completion
83 while progressCounter < executionLimit do timeConsumer();
84

85 sync
86 -- Ensures that only one timeConsumer instance is running
87 -- at a certain point of time.
88 mutex(timeConsumer);
89

90 end Controller
� �
B.12.2 Deployment

�
1 system Deployment
2

3 instance variables
4

5 -- Definition of a controller unit, acting as CPU
6 controller : CPU := new CPU(<FCFS>, 1E9);
7

8 -- Definition of a hardware GPIO block
9 gpioBlock : CPU := new CPU(<FCFS>, 100E6);

10

11 -- Associate the controller to the GPIO block
12 controlRegister : BUS := new BUS(<CSMACD>,
13 72E13,
14 {controller,gpioBlock});

147



Appendix B. Servo case study VDM models

15

16 -- Static definition of the deployable objects
17 public static loader : Controller := new Controller();
18 public static pwm : PWMunit := new PWMunit();
19 public static gpio : gpioInterface := new gpioInterface(2);
20

21 operations
22

23 -- Setup and actual deployment
24 public Deployment : () ==> Deployment
25 Deployment () ==
26 (
27 -- Set a reference to the pwm generator from the loader
28 loader.setPWM(pwm);
29 -- Set a reference to the GPIO block from the PWMgenerator
30 pwm.setGPIO(gpio);
31

32 -- Deploy the active objects in different CPUs
33 controller.deploy(loader);
34 controller.deploy(pwm);
35 gpioBlock.deploy(gpio);
36

37 );
38

39 end Deployment
� �
B.12.3 Environment

�
1 class Environment
2

3 values
4

5 -- Time limit mark in the case two control signals
6 -- are going to be generated.
7 private timeLimitMark : nat = 0;
8

9 instance variables
10

11 -- Create a sampler
12 public static sampler1 : Sampler := new Sampler();
13

14 operations
15

16 -- Run operation, simulation entry point
17 public run : () ==> ()
18 run() ==
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19 (
20 -- Assocaite the limit time mark for the loader
21 Deployment‘loader.setSwitchTimeMark(timeLimitMark);
22

23 -- Associate the sampler to the PWM generator
24 Deployment‘pwm.outLog := sampler1;
25

26 -- Start the threads
27 start(Deployment‘pwm);
28 start(Deployment‘loader);
29

30 wait(); -- Block until threads are done
31

32 -- Dump the sampled signals to a file
33 sampler1.dumpSignal();
34

35 -- Simulation tear down
36 printAndBye();
37

38 );
39

40 -- Simulation tear down
41 public printAndBye: () ==> ()
42 printAndBye() ==
43 (
44 IO‘print("[#] Generated signal: ");
45 IO‘print(Deployment‘pwm.outLog.log);
46 IO‘print(" [#]");
47 IO‘print("\n[1] Model over");
48 IO‘print("\n[2] Logs generated");
49 );
50

51 -- Wait until it is down
52 public wait : () ==> ()
53 wait() ==
54 skip;
55

56 sync
57 -- Sync predicate for the wait operation
58 per wait => Deployment‘pwm.getFlag();
59

60 end Environment
� �
B.12.4 PWMgenerator

�
1 class PWMunit
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2

3 instance variables
4

5 -- References to the sampler and the
6 -- controller
7 public outLog : Sampler;
8 public controller : Controller;
9

10 -- Allows the generation of two different
11 -- predefined signals
12 private periodSelector : nat := 1;
13

14 -- Sets a reference to the GPIO interface
15 public outputInt : gpioInterface;
16

17 -- Done flag updated when operation completion
18 -- has been reached
19 public done : bool := false;
20

21 -- Counter keeping track of the
22 -- simulation progress
23 public runCount : nat := 0;
24

25 -- Number of control periods that have to
26 -- be generated
27 public exLimit : nat := 30;
28

29 operations
30

31 -- Associate a GPIO block to the PWM unit
32 -- controller
33 public setGPIO : gpioInterface ==> ()
34 setGPIO(g) ==
35 outputInt := g;
36

37 -- Associate a controller to the PWMgenerator
38 public PWMunit : Controller ==> PWMunit
39 PWMunit(c) ==
40 controller := c;
41

42 -- Generate a single contorol cycle. Two different
43 -- control puses can be selected depending on the
44 -- target position.
45 private generateSignal : () ==> ()
46 generateSignal() ==
47 (
48 while runCount < exLimit do
49 (
50 if (getPeriod() = 2) then
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51 (-- Set output to high
52 duration (0) outputInt.toggleBit(1);
53 duration (2E6) ();-- Wait 2 milliseconds
54 -- Set output to low
55 duration (0) outputInt.toggleBit(1);
56 duration (18E6) (); -- Wait 18 milliseconds
57 duration (0) runCount := runCount +1;
58 )
59 -- In the second control case 1 millisecond
60 -- is spent in the control pulse. The rest
61 -- of the operation is analogous to the
62 -- previous case.
63 else if getPeriod() = 1 then
64 (
65 duration (0) outputInt.toggleBit(1);
66 duration (1E6) ();
67 duration (0) outputInt.toggleBit(1);
68 duration (19E6) ();
69 duration (0) runCount := runCount +1;
70 )
71 );
72 duration (0) done := true -- Mark the thread as completed
73 );
74

75 -- Get completion flag
76 public getFlag : () ==> bool
77 getFlag() ==
78 return done;
79

80 -- Get the selected period by the discrete processing
81 -- unit
82 private getPeriod : () ==> nat
83 getPeriod() ==
84 return periodSelector;
85

86 -- Sets the control period signal
87 public setPeriod: nat ==> ()
88 setPeriod(p) ==
89 periodSelector := p;
90

91 thread
92 -- Procedural thread, running until completion
93 generateSignal();
94

95 sync
96 -- The signal generation should not be executed
97 -- while the completion flag is requested
98 mutex(generateSignal,getFlag);
99
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100 -- There should not be two instances of generateSignal
101 -- running in parallel
102 mutex(generateSignal);
103

104 -- Target period must not be set while the period is
105 -- retrieved
106 mutex(setPeriod,getPeriod);
107

108 end PWMunit
� �
B.12.5 Sampler

�
1 class Sampler
2

3 instance variables
4

5 -- Sequence of read values
6 public log : seq of nat := [];
7

8 -- Auxiliary variable in order to store the result of
9 -- the write to file operation.

10 writeResult : bool := false;
11

12 -- Instace of the IO class in order to write
13 -- to the file
14 io :IO := new IO();
15

16 -- Skip the first three spurious values
17 public r : nat := 3;
18

19 operations
20

21 -- Toggle the read value in the sampling input.
22 async public toggle : () ==> ()
23 toggle() ==
24 (
25 duration(0) log := log ^ [time];
26 );
27

28 public dumpSignal : () ==> ()
29 dumpSignal () ==
30 (
31 -- Create signal.csv in the case it does not exist
32 -- Clean up previous contents in the case the file exists
33 writeResult := io.fecho("signal.csv", "", <start>);
34
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35 -- Write the logged time values with the proper format
36 while r < (len Deployment‘pwm.outLog.log - 1)
37 do
38 (
39 writeResult :=
40 io.fwriteval[int]("signal.csv",
41 Deployment‘pwm.outLog.log(r),
42 <append>);
43 writeResult := io.fecho("signal.csv", ",0", <append>);
44 writeResult := io.fecho("signal.csv","\n", <append>);
45

46 writeResult :=
47 io.fwriteval[int]("signal.csv",
48 Deployment‘pwm.outLog.log(r),
49 <append>);
50 writeResult := io.fecho("signal.csv", ",1", <append>);
51 writeResult := io.fecho("signal.csv","\n", <append>);
52

53 writeResult :=
54 io.fwriteval[int]("signal.csv",
55 Deployment‘pwm.outLog.log(r+1),
56 <append>);
57 writeResult := io.fecho("signal.csv", ",1", <append>);
58 writeResult := io.fecho("signal.csv","\n", <append>);
59

60 writeResult :=
61 io.fwriteval[int]("signal.csv",
62 Deployment‘pwm.outLog.log(r+1),
63 <append>);
64 writeResult := io.fecho("signal.csv", ",0", <append>);
65 writeResult := io.fecho("signal.csv","\n", <append>);
66

67 r := r+2;
68 )
69 );
70

71 sync
72 -- Two toggle operations cannot be run at the same time
73 mutex(toggle);
74

75 end Sampler
� �
B.12.6 gpioInterface

�
1 class gpioInterface
2
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3 instance variables
4

5 -- Bus width
6 width : nat := 0;
7 -- State of each bit (true = high state, false = low state)
8 state : seq of bool := [];
9

10 -- For each bit there is a state entry in the sequence
11 inv len state = width;
12

13 operations
14

15 -- Class constructor. All states initialized to false by
16 -- default
17 public gpioInterface: nat ==> gpioInterface
18 gpioInterface(w) ==
19 (
20 width := w;
21

22 for all r in set {1,...,width}
23 do state := state ^ [false];
24

25 IO‘print(state);
26 )
27 post width = len state and
28 forall i in set {1,...,len state} & state(i) = false;
29

30 -- Set a concrete bit to high level
31 public setHigh: nat ==> ()
32 setHigh(i) ==
33 state(i) := true
34 pre i <= len state; -- Bit position should be in bit sequence
35

36 -- Set a concrete bit to low level
37 public setLow: nat ==> ()
38 setLow(i) ==
39 state(i) := false
40 pre i <= len state; -- Bit position should be in bit sequence
41

42 -- Toggles the state of a certain bit.
43 -- If the bit position is at high level goes to false
44 -- If the bit position is at low level goes to true
45 async public toggleBit: nat ==> ()
46 toggleBit(i) ==
47 (
48 if state(i)
49 then state(i) := not state(i)
50 else state(i):= true;
51 Environment‘sampler1.toggle();
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52 )
53 pre i<=len state; -- Bit position should be in bit sequence
54

55 -- Get the state of a certain bit
56 public getState: nat ==> bool
57 getState(i) ==
58 return state(i)
59 pre i <= len state;
60

61 -- Shows the state of all the bits in the register
62 public showState: () ==> ()
63 showState() ==
64 for all r in set {1,...,width}
65 do showSingle(r);
66

67 -- Get the width of the gpio register
68 public getWidth: () ==> nat
69 getWidth() ==
70 return width;
71

72 -- Prints out the state of a certain bit
73 public showSingle: nat ==> ()
74 showSingle(i) ==
75 (
76 IO‘print("\n bit ");
77 IO‘print(i);
78 IO‘print(": ");
79 IO‘print(getState(i));
80 )
81 pre i<= len state; -- Bit position should be in bit sequence
82

83 sync
84 -- Only one operation can modify the state of a bit
85 -- at a certain point of time.
86 mutex(setLow,setHigh);
87

88 -- Bit state cannot be retrieved if it is being set high
89 -- and vice versa.
90 mutex(setHigh,getState);
91

92 -- Bit state cannot be retrieved if it is being set low
93 -- and vice versa.
94 mutex(setLow,getState);
95

96 end gpioInterface
� �
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B.13. Real-time VDM model: RTOS based solution

B.13.1 CPUloader

�
1 class Controller
2

3 -- Definition of the CPU loader running in a controller
4

5 values
6 -- Execution limit for the CPU loader
7 executionLimit : nat = 90;
8

9 instance variables
10

11 -- Switch time mark. Initialize to a higher value
12 -- in the case a discrete control is used from the
13 -- loader.
14 switchTimeMark :nat := 0;
15

16 progressCounter : nat := 0;
17 pwmref: PWMunit;
18 cSent :bool := false;
19

20 operations
21

22 -- Specify the switch time mark in the case several
23 -- control comands are issued to the controller
24 public setSwitchTimeMark : nat ==> ()
25 setSwitchTimeMark(tm) ==
26 switchTimeMark := tm;
27

28 -- Time consumer operation loading the CPU. The
29 -- function is not performing any computation, just
30 -- taking CPU time.
31 public timeConsumer : () ==> ()
32 timeConsumer () ==
33 (
34 -- Simulated operations performed during
35 -- the first 9 iterations.
36 cases progressCounter:
37 (1) -> duration(1E6) timeEater(),
38 (2) -> duration(2E6) timeEater(),
39 (3) -> duration(3E6) timeEater(),
40 (4) -> duration(4E6) timeEater(),
41 (5) -> duration(5E6) timeEater(),
42 (6) -> duration(6E6) timeEater(),
43 (7) -> duration(7E6) timeEater(),
44 (8) -> duration(8E6) timeEater(),
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45 (9) -> duration(9E6) timeEater(),
46 others -> ()
47 end;
48

49 -- Increment the progress counter
50 progressCounter := progressCounter + 1;
51 );
52

53 -- Issues a change in the continuous time hardware
54 -- signal generation.
55 public controlSignal : () ==> ()
56 controlSignal () ==
57 (
58 pwmref.setPeriod(2);
59 );
60

61 -- Establish the reference to the PWM unit
62 public setPWM : PWMunit ==> ()
63 setPWM(p) ==
64 pwmref := p;
65

66 -- Do nothing
67 public timeEater : () ==> ()
68 timeEater() ==
69 skip;
70

71 thread
72 -- Periodic thread executed every 55 milliseconds
73 periodic (55E6,0,0,0) (timeConsumer);
74

75 sync
76 mutex(timeConsumer);
77

78 end Controller
� �
B.13.2 Deployment

�
1 system Deployment
2

3 instance variables
4

5 -- Definition of a controller unit, acting as CPU
6 controller : CPU := new CPU(<FP>, 1E9);
7

8 -- Definition of a hardware GPIO block
9 gpioBlock : CPU := new CPU(<FCFS>, 100E6);
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10

11 -- Associate the controller to the GPIO block
12 controlRegister : BUS := new BUS(<CSMACD>,
13 72E13,
14 {controller,gpioBlock});
15

16 -- Static definition of the deployable objects
17 public static loader : Controller := new Controller();
18 public static pwm : PWMunit := new PWMunit();
19 public static gpio : gpioInterface := new gpioInterface(2);
20

21

22

23 operations
24

25 -- Setup and actual deployment
26 public Deployment : () ==> Deployment
27 Deployment () ==
28 (
29 -- Set a reference to the pwm generator from the loader
30 loader.setPWM(pwm);
31 -- Set a reference to the GPIO block from the PWMgenerator
32 pwm.setGPIO(gpio);
33

34

35

36 -- Deploy the active objects in different CPUs
37 controller.deploy(loader);
38 controller.deploy(pwm);
39

40

41 --controller.setPriority(loader.timeConsumer,5);
42

43 gpioBlock.deploy(gpio);
44 controller.setPriority(PWMunit‘generateSignal,10);
45 controller.setPriority(Controller‘timeConsumer,1);
46

47 );
48

49 end Deployment
� �
B.13.3 Environment

�
1 class Environment
2

3 values
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4

5 -- Time limit mark in the case two control signals
6 -- are going to be generated.
7 private timeLimitMark : nat = 0;
8

9 instance variables
10

11 -- Create a sampler
12 public static sampler1 : Sampler := new Sampler();
13

14 operations
15

16 -- Run operation, simulation entry point
17 public run : () ==> ()
18 run() ==
19 (
20

21 -- Assocaite the limit time mark for the loader
22 Deployment‘loader.setSwitchTimeMark(timeLimitMark);
23

24 -- Associate the sampler to the PWM generator
25 Deployment‘pwm.outLog := sampler1;
26

27 -- Start the threads
28 start(Deployment‘loader);
29 start(Deployment‘pwm);
30

31

32 -- wait(); -- Block until threads are done
33 if not Deployment‘pwm.getFlag() then wait();
34

35 -- Dump the sampled signals to a file
36 sampler1.dumpSignal();
37

38 -- Simulation tear down
39 printAndBye();
40

41 );
42

43 -- Simulation tear down
44 public printAndBye: () ==> ()
45 printAndBye() ==
46 (
47 IO‘print("[#] Generated signal: ");
48 IO‘print(Deployment‘pwm.outLog.log);
49 IO‘print(" [#]");
50 IO‘print("\n[1] Model over");
51 IO‘print("\n[2] Logs generated");
52 );
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53

54 -- Wait until it is down
55 public wait : () ==> ()
56 wait() ==
57 skip;
58

59 sync
60 -- Sync predicate for the wait operation
61 per wait => Deployment‘pwm.getFlag();
62

63 end Environment
� �
B.13.4 PWMgenerator

�
1 class PWMunit
2

3 instance variables
4

5 -- References to the sampler and the
6 -- controller
7 public outLog : Sampler;
8 public controller : Controller;
9

10 -- Allows the generation of two different
11 -- predefined signals
12 private periodSelector : nat := 1;
13

14 -- Sets a reference to the GPIO interface
15 public outputInt : gpioInterface;
16

17 -- Done flag updated when operation completion
18 -- has been reached
19 public done : bool := false;
20

21 -- Counter keeping track of the
22 -- simulation progress
23 public runCount : nat := 0;
24

25 -- Number of control periods that have to
26 -- be generated
27 static public exLimit : nat := 30;
28

29 operations
30

31 -- Associate a GPIO block to the PWM unit
32 -- controller
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33 public setGPIO : gpioInterface ==> ()
34 setGPIO(g) ==
35 outputInt := g;
36

37 -- Associate a controller to the PWMgenerator
38 public PWMunit : Controller ==> PWMunit
39 PWMunit(c) ==
40 controller := c;
41

42 public generateSignal : () ==> ()
43 generateSignal () ==
44 (
45 if runCount < exLimit then
46 (
47 duration(2E6) outputInt.toggleBit(1);
48 duration(0) outputInt.toggleBit(1);
49 duration(18E6) ();
50 runCount := runCount + 1;
51 )
52 else
53 (
54 duration (0) done := true;
55 );
56 );
57

58 -- Get completion flag
59 public getFlag : () ==> bool
60 getFlag() ==
61 return done;
62

63 -- Get the selected period by the discrete processing
64 -- unit
65 private getPeriod : () ==> nat
66 getPeriod() ==
67 return periodSelector;
68

69 -- Sets the control period signal
70 public setPeriod: nat ==> ()
71 setPeriod(p) ==
72 periodSelector := p;
73

74 thread
75 -- Periodic invocation to the generate signal generation
76 -- Operation invoked once every 20 milliseconds
77 periodic (20E6,0,0,0) (generateSignal)
78

79

80 sync
81
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82 mutex(generateSignal,getFlag);
83 mutex(generateSignal);
84 mutex(setPeriod,getPeriod);
85

86 end PWMunit
� �
B.13.5 Sampler

�
1 class Sampler
2

3 instance variables
4

5 -- Sequence of read values
6 public log : seq of nat := [];
7

8 -- Auxiliary variable in order to store the result of
9 -- the write to file operation.

10 writeResult : bool := false;
11

12 -- Instace of the IO class in order to write
13 -- to the file
14 io :IO := new IO();
15

16 -- Skip the first three spurious values
17 public r : nat := 3;
18

19 operations
20

21 -- Toggle the read value in the sampling input.
22 async public toggle : () ==> ()
23 toggle() ==
24 (
25 duration(0) log := log ^ [time];
26 );
27

28 public dumpSignal : () ==> ()
29 dumpSignal () ==
30 (
31 -- Create signal.csv in the case it does not exist
32 -- Clean up previous contents in the case the file exists
33 writeResult := io.fecho("signal.csv", "", <start>);
34

35 -- Write the logged time values with the proper format
36 while r < (len Deployment‘pwm.outLog.log - 1)
37 do
38 (
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39 writeResult :=
40 io.fwriteval[int]("signal.csv",
41 Deployment‘pwm.outLog.log(r),
42 <append>);
43 writeResult := io.fecho("signal.csv", ",0", <append>);
44 writeResult := io.fecho("signal.csv","\n", <append>);
45

46 writeResult :=
47 io.fwriteval[int]("signal.csv",
48 Deployment‘pwm.outLog.log(r),
49 <append>);
50 writeResult := io.fecho("signal.csv", ",1", <append>);
51 writeResult := io.fecho("signal.csv","\n", <append>);
52

53 writeResult :=
54 io.fwriteval[int]("signal.csv",
55 Deployment‘pwm.outLog.log(r+1),
56 <append>);
57 writeResult := io.fecho("signal.csv", ",1", <append>);
58 writeResult := io.fecho("signal.csv","\n", <append>);
59

60 writeResult :=
61 io.fwriteval[int]("signal.csv",
62 Deployment‘pwm.outLog.log(r+1),
63 <append>);
64 writeResult := io.fecho("signal.csv", ",0", <append>);
65 writeResult := io.fecho("signal.csv","\n", <append>);
66

67 r := r+2;
68 )
69 );
70

71 sync
72 -- Two toggle operations cannot be run at the same time
73 mutex(toggle);
74

75 end Sampler
� �
B.13.6 gpioInterface

�
1 class gpioInterface
2

3 instance variables
4

5 -- Bus width
6 width : nat := 0;
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7 -- State of each bit (true = high state, false = low state)
8 state : seq of bool := [];
9

10 -- For each bit there is a state entry in the sequence
11 inv len state = width;
12

13 operations
14

15 -- Class constructor. All states initialized to false by
16 -- default
17 public gpioInterface: nat ==> gpioInterface
18 gpioInterface(w) ==
19 (
20 width := w;
21

22 for all r in set {1,...,width}
23 do state := state ^ [false];
24 IO‘print(state);
25 )
26 post width = len state and
27 forall i in set {1,...,len state} & state(i) = false;
28

29 -- Set a concrete bit to high level
30 public setHigh: nat ==> ()
31 setHigh(i) ==
32 state(i) := true
33 pre i <= len state; -- Bit position should be in bit sequence
34

35 -- Set a concrete bit to low level
36 public setLow: nat ==> ()
37 setLow(i) ==
38 state(i) := false
39 pre i <= len state; -- Bit position should be in bit sequence
40

41 -- Toggles the state of a certain bit.
42 -- If the bit position is at high level goes to false
43 -- If the bit position is at low level goes to true
44 async public toggleBit: nat ==> ()
45 toggleBit(i) ==
46 (
47 if state(i)
48 then state(i) := not state(i)
49 else state(i):= true;
50 Environment‘sampler1.toggle();
51 )
52 pre i<=len state; -- Bit position should be in bit sequence
53

54 -- Get the state of a certain bit
55 public getState: nat ==> bool
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56 getState(i) ==
57 return state(i)
58 pre i <= len state;
59

60 -- Shows the state of all the bits in the register
61 public showState: () ==> ()
62 showState() ==
63 for all r in set {1,...,width}
64 do showSingle(r);
65

66 -- Get the width of the gpio register
67 public getWidth: () ==> nat
68 getWidth() ==
69 return width;
70

71 -- Prints out the state of a certain bit
72 public showSingle: nat ==> ()
73 showSingle(i) ==
74 (
75 IO‘print("\n bit ");
76 IO‘print(i);
77 IO‘print(": ");
78 IO‘print(getState(i));
79 )
80 pre i<= len state; -- Bit position should be in bit sequence
81

82 sync
83 -- Only one operation can modify the state of a bit
84 -- at a certain point of time.
85 mutex(setLow,setHigh);
86

87 -- Bit state cannot be retrieved if it is being set high
88 -- and vice versa.
89 mutex(setHigh,getState);
90

91 -- Bit state cannot be retrieved if it is being set low
92 -- and vice versa.
93 mutex(setLow,getState);
94

95

96 end gpioInterface
� �
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B.14. Real-time VDM model: Hardware based solution

B.15. CPUloader

�
1

2 class Controller
3

4 -- Definition of the CPU loader running in a controller
5

6 values
7 -- Execution limit for the CPU loader
8 executionLimit : nat = 90;
9

10 instance variables
11

12 -- Switch time mark. Initialize to a higher value
13 -- in the case a discrete control is used from the
14 -- loader.
15 switchTimeMark :nat := 0;
16

17 progressCounter : nat := 0;
18 pwmref: PWMunit;
19 cSent :bool := false;
20

21 operations
22

23 -- Specify the switch time mark in the case several
24 -- control comands are issued to the controller
25 public setSwitchTimeMark : nat ==> ()
26 setSwitchTimeMark(tm) ==
27 switchTimeMark := tm;
28

29 -- Time consumer operation loading the CPU. The
30 -- function is not performing any computation, just
31 -- taking CPU time.
32 public timeConsumer : () ==> ()
33 timeConsumer () ==
34 (
35 -- Simulated operations performed during
36 -- the first 9 iterations.
37 cases progressCounter:
38 (1) -> duration(1E6) timeEater(),
39 (2) -> duration(5E6) timeEater(),
40 (3) -> duration(10E6) timeEater(),
41 (4) -> duration(15E6) timeEater(),
42 (5) -> duration(20E6) timeEater(),
43 (6) -> duration(25E6) timeEater(),
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44 (7) -> duration(30E6) timeEater(),
45 (8) -> duration(40E6) timeEater(),
46 (9) -> duration(50E6) timeEater(),
47 others -> ()
48 end;
49

50 -- Increment the progress counter
51 progressCounter := progressCounter + 1;
52

53 -- Send a control signal to the hardware block
54 -- in the case a switchTimeMark has been specified
55 if time > switchTimeMark and not cSent then
56 (
57 controlSignal();
58 IO‘print("[#] PWM generator notified at time: ");
59 IO‘print(time); IO‘print(" [#]\n");
60 cSent := true;
61 );
62 );
63

64 -- Issues a change in the continuous time hardware
65 -- signal generation.
66 public controlSignal : () ==> ()
67 controlSignal () ==
68 (
69 pwmref.setPeriod(2);
70 );
71

72 -- Establish the reference to the PWM unit
73 public setPWM : PWMunit ==> ()
74 setPWM(p) ==
75 pwmref := p;
76

77 -- Do nothing
78 public timeEater : () ==> ()
79 timeEater() ==
80 skip;
81

82 thread
83 -- Procedural thread running unit completion
84 while progressCounter < executionLimit do timeConsumer();
85

86 sync
87 -- Ensures that only one timeConsumer instance is running
88 -- at a certain point of time.
89 mutex(timeConsumer);
90

91 end Controller
� �
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B.16. Deployment

�
1 system Deployment
2

3 instance variables
4

5 -- Definition of a hardware block for the generation of the PWM
6 -- signal
7 PWMgenerator : CPU := new CPU(<FCFS>, 1E9);
8

9 -- Definition of a controller unit, acting as CPU
10 controller : CPU := new CPU(<FCFS>, 1E5);
11

12 -- Definition of a hardware GPIO block
13 gpioBlock : CPU := new CPU(<FCFS>, 100E6);
14

15 -- Associate the PWMgenerator to the controller
16 -- via control register
17 controlRegister : BUS :=
18 new BUS(<CSMACD>,
19 72E13,
20 PWMgenerator,controller});
21

22 -- Associate the GPIOblock to the PWMgenerator
23 -- via control register
24 controlRegister2 : BUS :=
25 new BUS(<CSMACD>,
26 72E13,
27 {PWMgenerator, gpioBlock});
28

29 -- Static definition of the deployable objects
30 public static loader : Controller := new Controller();
31 public static pwm : PWMunit := new PWMunit();
32 public static gpio : gpioInterface := new gpioInterface(2);
33

34 operations
35

36 -- Setup and actual deployment
37 public Deployment : () ==> Deployment
38 Deployment () ==
39 (
40 -- Set a reference to the pwm generator from the loader
41 loader.setPWM(pwm);
42 -- Set a reference to the GPIO block from the PWMgenerator
43 pwm.setGPIO(gpio);
44

45 -- Deploy the active objects in different CPUs
46 PWMgenerator.deploy(pwm);
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47 controller.deploy(loader);
48 gpioBlock.deploy(gpio);
49 );
50

51 end Deployment
� �

B.17. Environment

�
1 class Environment
2

3 values
4

5 -- Time limit mark in the case two control signals
6 -- are going to be generated.
7 private timeLimitMark : nat = 0;
8

9 instance variables
10

11 -- Create a sampler
12 public static sampler1 : Sampler := new Sampler();
13

14 operations
15

16 -- Run operation, simulation entry point
17 public run : () ==> ()
18 run() ==
19 (
20 -- Assocaite the limit time mark for the loader
21 Deployment‘loader.setSwitchTimeMark(timeLimitMark);
22

23 -- Associate the sampler to the PWM generator
24 Deployment‘pwm.outLog := sampler1;
25

26 -- Start the threads
27 start(Deployment‘pwm);
28 start(Deployment‘loader);
29

30 wait(); -- Block until threads are done
31

32 -- Dump the sampled signals to a file
33 sampler1.dumpSignal();
34

35 -- Simulation tear down
36 printAndBye();
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37

38 );
39

40 -- Simulation tear down
41 public printAndBye: () ==> ()
42 printAndBye() ==
43 (
44 IO‘print("[#] Generated signal: ");
45 IO‘print(Deployment‘pwm.outLog.log);
46 IO‘print(" [#]");
47 IO‘print("\n[1] Model over");
48 IO‘print("\n[2] Logs generated");
49 );
50

51 -- Wait until it is down
52 public wait : () ==> ()
53 wait() ==
54 skip;
55

56 sync
57 -- Sync predicate for the wait operation
58 per wait => Deployment‘pwm.getFlag();
59

60 end Environment
� �

B.18. PWMgenerator

�
1 class PWMunit
2

3 instance variables
4

5 -- References to the sampler and the
6 -- controller
7 public outLog : Sampler;
8 public controller : Controller;
9

10 -- Allows the generation of two different
11 -- predefined signals
12 private periodSelector : nat := 1;
13

14 -- Sets a reference to the GPIO interface
15 public outputInt : gpioInterface;
16

17 -- Done flag updated when operation completion
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18 -- has been reached
19 public done : bool := false;
20

21 -- Counter keeping track of the
22 -- simulation progress
23 public runCount : nat := 0;
24

25 -- Number of control periods that have to
26 -- be generated
27 public exLimit : nat := 30;
28

29 operations
30

31 -- Associate a GPIO block to the PWM unit
32 -- controller
33 public setGPIO : gpioInterface ==> ()
34 setGPIO(g) ==
35 outputInt := g;
36

37 -- Associate a controller to the PWMgenerator
38 public PWMunit : Controller ==> PWMunit
39 PWMunit(c) ==
40 controller := c;
41

42 -- Generate a single contorol cycle. Two different
43 -- control puses can be selected depending on the
44 -- target position.
45 private generateSignal : () ==> ()
46 generateSignal() ==
47 (
48 while runCount < exLimit do
49 (
50 if (getPeriod() = 2) then
51 ( -- Set output to high
52 duration (0) outputInt.toggleBit(1);
53 duration (2E6) (); -- Wait 2 milliseconds
54 -- Set output to low
55 duration (0) outputInt.toggleBit(1);
56 duration (18E6) (); -- Wait 18 milliseconds
57 duration (0) runCount := runCount +1;
58 )
59 -- In the second control case 1 millisecond
60 -- is spent in the control pulse. The rest
61 -- of the operation is analogous to the
62 -- previous case.
63 else if getPeriod() = 1 then
64 (
65 duration (0) outputInt.toggleBit(1);
66 duration (1E6) ();
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67 duration (0) outputInt.toggleBit(1);
68 duration (19E6) ();
69 duration (0) runCount := runCount +1;
70 )
71 );
72 duration (0) done := true -- Mark the thread as completed
73 );
74

75 -- Get completion flag
76 public getFlag : () ==> bool
77 getFlag() ==
78 return done;
79

80 -- Get the selected period by the discrete processing
81 -- unit
82 private getPeriod : () ==> nat
83 getPeriod() ==
84 return periodSelector;
85

86 -- Sets the control period signal
87 public setPeriod: nat ==> ()
88 setPeriod(p) ==
89 periodSelector := p;
90

91 thread
92 -- Procedural thread, running until completion
93 generateSignal();
94

95 sync
96 -- The signal generation should not be executed
97 -- while the completion flag is requested
98 mutex(generateSignal,getFlag);
99

100 -- There should not be two instances of generateSignal
101 -- running in parallel
102 mutex(generateSignal);
103

104 -- Target period must not be set while the period is
105 -- retrieved
106 mutex(setPeriod,getPeriod);
107

108 end PWMunit
� �

B.19. Sampler
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�
1 class Sampler
2

3 instance variables
4

5 -- Sequence of read values
6 public log : seq of nat := [];
7

8 -- Auxiliary variable in order to store the result of
9 -- the write to file operation.

10 writeResult : bool := false;
11

12 -- Instace of the IO class in order to write
13 -- to the file
14 io :IO := new IO();
15

16 -- Skip the first three spurious values
17 public r : nat := 3;
18

19 operations
20

21 -- Toggle the read value in the sampling input.
22 async public toggle : () ==> ()
23 toggle() ==
24 (
25 duration(0) log := log ^ [time];
26 );
27

28 public dumpSignal : () ==> ()
29 dumpSignal () ==
30 (
31 -- Create signal.csv in the case it does not exist
32 -- Clean up previous contents in the case the file exists
33 writeResult := io.fecho("signal.csv", "", <start>);
34

35 -- Write the logged time values with the proper format
36 while r < (len Deployment‘pwm.outLog.log - 1)
37 do
38 (
39 writeResult :=
40 io.fwriteval[int]("signal.csv",
41 Deployment‘pwm.outLog.log(r),
42 <append>);
43 writeResult := io.fecho("signal.csv", ",0", <append>);
44 writeResult := io.fecho("signal.csv","\n", <append>);
45

46 writeResult :=
47 io.fwriteval[int]("signal.csv",
48 Deployment‘pwm.outLog.log(r),
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49 <append>);
50 writeResult := io.fecho("signal.csv", ",1", <append>);
51 writeResult := io.fecho("signal.csv","\n", <append>);
52

53 writeResult :=
54 io.fwriteval[int]("signal.csv",
55 Deployment‘pwm.outLog.log(r+1),
56 append>);
57 writeResult := io.fecho("signal.csv", ",1", <append>);
58 writeResult := io.fecho("signal.csv","\n", <append>);
59

60 writeResult :=
61 io.fwriteval[int]("signal.csv",
62 Deployment‘pwm.outLog.log(r+1),
63 <append>);
64 writeResult := io.fecho("signal.csv", ",0", <append>);
65 writeResult := io.fecho("signal.csv","\n", <append>);
66

67 r := r+2;
68 )
69 );
70

71 sync
72 -- Two toggle operations cannot be run at the same time
73 mutex(toggle);
74

75 end Sampler
� �

B.20. gpioInterface

�
1 class gpioInterface
2

3 instance variables
4

5 -- Bus width
6 width : nat := 0;
7 -- State of each bit (true = high state, false = low state)
8 state : seq of bool := [];
9

10 -- For each bit there is a state entry in the sequence
11 inv len state = width;
12

13 operations
14
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15 -- Class constructor. All states initialized to false by
16 -- default
17 public gpioInterface: nat ==> gpioInterface
18 gpioInterface(w) ==
19 (
20 width := w;
21

22 for all r in set {1,...,width}
23 do state := state ^ [false];
24

25 IO‘print(state);
26

27 )
28 post width = len state and
29 forall i in set {1,...,len state} & state(i) = false;
30

31 -- Set a concrete bit to high level
32 public setHigh: nat ==> ()
33 setHigh(i) ==
34 state(i) := true
35 pre i <= len state; -- Bit position should be in bit sequence
36

37 -- Set a concrete bit to low level
38 public setLow: nat ==> ()
39 setLow(i) ==
40 state(i) := false
41 pre i <= len state; -- Bit position should be in bit sequence
42

43 -- Toggles the state of a certain bit.
44 -- If the bit position is at high level goes to false
45 -- If the bit position is at low level goes to true
46 async public toggleBit: nat ==> ()
47 toggleBit(i) ==
48 (
49 if state(i)
50 then state(i) := not state(i)
51 else state(i):= true;
52 Environment‘sampler1.toggle();
53 )
54 pre i<=len state; -- Bit position should be in bit sequence
55

56 -- Get the state of a certain bit
57 public getState: nat ==> bool
58 getState(i) ==
59 return state(i)
60 pre i <= len state;
61

62 -- Shows the state of all the bits in the register
63 public showState: () ==> ()
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64 showState() ==
65 for all r in set {1,...,width}
66 do showSingle(r);
67

68 -- Get the width of the gpio register
69 public getWidth: () ==> nat
70 getWidth() ==
71 return width;
72

73 -- Prints out the state of a certain bit
74 public showSingle: nat ==> ()
75 showSingle(i) ==
76 (
77 IO‘print("\n bit ");
78 IO‘print(i);
79 IO‘print(": ");
80 IO‘print(getState(i));
81 )
82 pre i<= len state; -- Bit position should be in bit sequence
83

84 sync
85 -- Only one operation can modify the state of a bit
86 -- at a certain point of time.
87 mutex(setLow,setHigh);
88

89 -- Bit state cannot be retrieved if it is being set high
90 -- and vice versa.
91 mutex(setHigh,getState);
92

93 -- Bit state cannot be retrieved if it is being set low
94 -- and vice versa.
95 mutex(setLow,getState);
96

97 end gpioInterface
� �
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AVB case study VDM models

This appendix contains the VDM models for the AVB case study. Section C.1 presents the initial
overall sequential VDM models. Section C.2 presents the sequential VDM models. Section C.3
presents the concurrent VDM models. Finally, section C.4 presents the real-time VDM models.

C.1. Overall sequential model

C.1.1 App

�
1 class App
2

3 instance variables
4

5 private preciseOriginTS : real;
6 private correctionField : real;
7

8 private localTimeStamp : real;
9

10

11 operations
12

13 public receiveTimeInformation : seq of real ==> ()
14 receiveTimeInformation (time) ==
15 (
16 preciseOriginTS := time(1);
17 correctionField := time(2);
18 localTimeStamp := time(3);
19 );
20

21 public showReceivedTime : () ==> ()
22 showReceivedTime() ==
23 (

177



Appendix C. AVB case study VDM models

24 IO‘print("\nAt time: ");
25 IO‘print(localTimeStamp);
26 IO‘print("\nThe Grand Master time was: ");
27 IO‘print(preciseOriginTS);
28 IO‘print("\nIt has been corrected with: ");
29 IO‘print(correctionField);
30 IO‘print("\nFinal time for previos timestamp is: ");
31 IO‘print(preciseOriginTS+correctionField);
32 );
33

34 end App
� �
C.1.2 Clock

�
1 class Clock
2

3 instance variables
4

5 time : nat := 0;
6

7 operations
8

9 public tick: () ==> ()
10 tick() ==
11 (
12 time := time +1;
13 );
14

15 public getTime: () ==> nat
16 getTime() ==
17 return time;
18

19 end Clock
� �
C.1.3 ClockSlave

�
1 class ClockSlave
2

3 instance variables
4

5 private siteSync : Device;
6

7 private preciseOriginTS : real;
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8 private correctionField : real;
9 private localTimeStamp : real;

10

11 private timeConsumers : seq of App := [];
12

13 operations
14

15 public registerApp : App ==> nat
16 registerApp(ap) ==
17 (
18 timeConsumers := timeConsumers ^ [ap];
19 return len timeConsumers;
20 );
21

22 public setTimeInfo: seq of real ==> ()
23 setTimeInfo(time) ==
24 (
25 preciseOriginTS := time(1);
26 correctionField := time(2);
27 localTimeStamp := time(3);
28 notifyTime();
29 IO‘print("\nSet time information");
30 IO‘print(preciseOriginTS);
31 IO‘print("\n");
32 IO‘print(correctionField);
33 IO‘print("\n");
34 IO‘print(localTimeStamp);
35 );
36

37 public notifyTime : () ==> ()
38 notifyTime() ==
39 let t : seq of real =
40 [preciseOriginTS,correctionField,localTimeStamp] in
41 for all i in set {1,...,len timeConsumers} do
42 timeConsumers(i).receiveTimeInformation(t);
43

44 private setSiteSync : Device ==> ()
45 setSiteSync(dv) ==
46 siteSync := dv;
47

48 public getTime:() ==> ()
49 getTime() ==
50 ();
51

52 public ClockSlave: () ==> ClockSlave
53 ClockSlave() ==
54 (
55 let i : nat = registerApp(new App()) in ();
56 );
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57

58 public triggerPrint: () ==> ()
59 triggerPrint() ==
60 for all i in set {1,...,len timeConsumers} do
61 timeConsumers(i).showReceivedTime();
62

63 end ClockSlave
� �
C.1.4 Device

�
1 class Device
2

3 instance variables
4

5 -- Device ID number
6 private deviceID : nat := 0;
7

8 public isBridge : bool := true;
9

10 -- Frequency of the current device.
11 private freq : nat := 0;
12

13 -- Master ports associated to the device
14 public masterPort : Master := new Master();
15

16 -- Master ports attached to the device
17 public masterPorts : seq of Master := [];
18 inv isBridge <=> len masterPorts >= 1;
19

20 -- Slave port associated to the device
21 public slavePort : Slave := new Slave();
22

23 -- Device with no external slaves connected
24 -- (finalDevice = true)
25 public finalDevice : bool := false;
26 --inv finalDevice => len masterPorts = 0;
27

28 -- Current device is Grand Master -> iGM = true
29 -- if device isGM it should not have masters attached.
30 public isGM : bool := false;
31 inv isGM => not finalDevice;
32 inv finalDevice => not isGM;
33

34 -- Frequency of the master device
35 private masterFreq : nat := 0;
36
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37 private receivedSyncEvent : bool := false;
38 private syncRecTS : nat := 0;
39

40 -- Neighbour rate ratio measured by the slave port
41 private neighbourRateRatio : real := 1;
42

43 -- Precise origin timestamp, defined by GM and
44 -- never changed.
45 private preciseOriginTS : real := 0;
46

47 -- received correction field, to be recomputed
48 -- before use.
49 private receivedCorrectionField : real := 0;
50

51 -- CumulativeRateRatio received from the previous
52 -- node.
53 private cummulativeRateRatio : real := 1;
54 -- Delay from master to slave port
55 private linkDelay : real := 10;
56 -- Time that has been spent in the current node
57 private residenceTime : real := 0;
58

59 -- Correction field calculated at the current node,
60 -- to be used in the current node.
61 private newCorrectionField : real := 0;
62 -- CummulativeRateRatio calculated at the current node,
63 -- to be used in the current node.
64 private newCummulativeRateRatio : real := 0;
65

66 -- Clock attached to the device
67 private clk : Clock;
68

69 private timeInfoAvailable : bool;
70

71 public cSlave : ClockSlave := new ClockSlave();
72

73 operations
74

75 public notifyClock : () ==> ()
76 notifyClock() ==
77 cSlave.setTimeInfo([preciseOriginTS,
78 receivedCorrectionField,
79 syncRecTS]);
80

81 public calculateResidenceTime : () ==> ()
82 calculateResidenceTime() ==
83 if not finalDevice and not isGM then
84 residenceTime := masterPorts(1).getEgressTime()
85 - slavePort.getIngressTime()
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86 pre masterPorts(1).getEgressTime() > slavePort.getIngressTime()
87 post residenceTime > 0;
88

89 public makeTimeAvailable : () ==> ()
90 makeTimeAvailable() ==
91 timeInfoAvailable := true;
92

93 public getTimeInfo : () ==> seq of real
94 getTimeInfo() ==
95 return [preciseOriginTS,
96 receivedCorrectionField,
97 cummulativeRateRatio];
98

99 public timeInfoRead : () ==> ()
100 timeInfoRead() ==
101 timeInfoAvailable := false;
102

103 -- Registers a new master port in the siteSync entity
104 public registerMasterPort : Master ==> ()
105 registerMasterPort(m) ==
106 masterPorts := masterPorts ^ [m];
107

108 -- Sets a single master port for the current device
109 public setMasterPort: Master ==> ()
110 setMasterPort(m) ==
111 masterPort := m;
112

113 -- Sets the slave port that corresponds to the current device
114 public setSlavePort: Slave ==> ()
115 setSlavePort(s) ==
116 slavePort := s;
117

118 -- Sets device ID
119 public setDeviceID: nat ==> ()
120 setDeviceID(id) ==
121 deviceID := id
122 pre deviceID = 0
123 post deviceID <> 0;
124

125 -- Gets device ID
126 public getDeviceID: () ==> nat
127 getDeviceID() ==
128 return deviceID
129 pre deviceID <> 0;
130

131 -- Sets the residence time. Time that will take the system
132 -- to process an incoming sync event.
133 public setResidenceTime : nat ==> ()
134 setResidenceTime(t) ==
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135 residenceTime := t
136 post residenceTime <> 0;
137

138 -- Generates the POTS
139 public generatePOTS : nat ==> ()
140 generatePOTS(ts) ==
141 preciseOriginTS := ts
142 pre isGM
143 post preciseOriginTS <> 0;
144

145 -- Forwards the POTS
146 public sendPOTS : () ==> ()
147 sendPOTS() ==
148 if not finalDevice then
149 masterPort.sendPOTS(preciseOriginTS);
150

151 -- Receives the POTS
152 public receivePOTS: () ==> ()
153 receivePOTS() ==
154 preciseOriginTS := slavePort.receivePOTS();
155

156 -- Sets the frequency of the master device.
157 public setMasterFreq : nat ==> ()
158 setMasterFreq (f) ==
159 masterFreq := f
160 pre f <> 0;
161

162 -- Device constructor
163 public Device : nat ==> Device
164 Device (f) ==
165 (
166 freq := f;
167 registerMasterPort(masterPort);
168 );
169

170 -- Announces the device frequency
171 public announceFreq : () ==> ()
172 announceFreq() ==
173 if (not finalDevice) then
174 for all i in set {1,...,len masterPorts} do
175 masterPorts(i).announceFreq(freq);
176

177 -- Get the frequency of the master device attached to
178 -- the slave port.
179 public getFreq : () ==> ()
180 getFreq() ==
181 if (not isGM) then setMasterFreq(slavePort.getFreq());
182

183 -- Sends the follow up message to all the slave unit

183



Appendix C. AVB case study VDM models

184 -- attached to it.
185 -- Transmission process is performed in one operation.
186 public sendFollowUpMessage: () ==> ()
187 sendFollowUpMessage() ==
188 if not finalDevice then
189 for all i in set {1,...,len masterPorts} do
190 masterPorts(i).sendFollowUpMessage(newCorrectionField,
191 preciseOriginTS,
192 newCummulativeRateRatio);
193

194 -- Sends the cummulative rate ratio to the slave
195 -- unit attached to it.
196 public sendCRR: () ==> ()
197 sendCRR() ==
198 if (not finalDevice) then
199 masterPort.sendCorrectionField(newCummulativeRateRatio);
200

201 -- Receives the follow up message sent by the master.
202 -- Reception is performed in one operation.
203 public receiveFollowUpMessage: () ==> ()
204 receiveFollowUpMessage() ==
205 let s : seq of real = slavePort.receiveFollowUpMessage() in
206 (
207 receivedCorrectionField := s(1);
208 preciseOriginTS := s(2);
209 cummulativeRateRatio := s(3);
210 );
211

212 -- Receives the cummulative rate ratio at the slave
213 -- port. Cummulative rate ratio is sent by the master
214 -- device attached to the slave port.
215 public receiveCRR: () ==> ()
216 receiveCRR() ==
217 cummulativeRateRatio:= slavePort.receiveCRR();
218

219 -- Sets the current device as the grand master
220 -- for the network.
221 public setGM: () ==> ()
222 setGM() ==
223 isGM := true;
224

225 -- Calculates the neighbour rate ratio. This calculation
226 -- is performed at every slave device.
227 public calculateNeighbourRR : () ==> ()
228 calculateNeighbourRR () ==
229 if (not isGM) then
230 neighbourRateRatio := freq / masterFreq
231 else
232 neighbourRateRatio := 1
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233 pre not isGM => (freq <> 0 and masterFreq <> 0)
234 post neighbourRateRatio <> 0;
235

236 -- Calculates the new cummulative rate ratio to be sent
237 -- to the attached slave unit.
238 public calculateCRateRatio : () ==> ()
239 calculateCRateRatio () ==
240 newCummulativeRateRatio := cummulativeRateRatio *
241 neighbourRateRatio
242 pre neighbourRateRatio <> 0 and cummulativeRateRatio <> 0;
243

244 -- Calculates the new correction field to be sent to the
245 -- attached slave unit.
246 public calculateNewCorrectionField : () ==> ()
247 calculateNewCorrectionField () ==
248 if isGM then ()
249 else (
250 newCorrectionField := linkDelay + residenceTime *
251 newCummulativeRateRatio + receivedCorrectionField;);
252

253 -- Sends a correction field to the slave unit.
254 public sendNewCorrectionField : () ==> ()
255 sendNewCorrectionField () ==
256 if (not finalDevice) then
257 masterPort.sendCorrectionField(newCorrectionField);
258

259 -- Receives a correction field sent by master unit.
260 public receiveCorrectionField : () ==> ()
261 receiveCorrectionField() ==
262 receivedCorrectionField := slavePort.receiveCorrectionField();
263

264 -- Sets the current device as a final device.
265 -- A final device will not have slave devices and
266 -- will not be acting as a master device.
267 public setFinalDevice: () ==> ()
268 setFinalDevice() ==
269 finalDevice := true
270 pre not isGM
271 post finalDevice;
272

273 -- Receives a synchronization sync event and
274 -- time stamps it.
275 public receiveSyncEvent: () ==> ()
276 receiveSyncEvent () ==
277 (
278 receivedSyncEvent := slavePort.receiveSyncEvent();
279 updateTimeRef();
280 );
281

185



Appendix C. AVB case study VDM models

282 -- Updates the time reference when the time stamp operation
283 -- is invoked.
284 public updateTimeRef: () ==> ()
285 updateTimeRef() ==
286 (
287 IO‘print("\n Sync event --> timestamp generated");
288 -- syncRecTS := clk.getTime();
289 );
290

291 -- Sends a synchronization event to a slave unit.
292 public sendSyncEvent: () ==> ()
293 sendSyncEvent () ==
294 if (not finalDevice) then
295 masterPort.sendSyncEvent();
296

297

298 -- Shows the device state
299 public showDevice : () ==> ()
300 showDevice () ==
301 (
302 IO‘print("\nInfo for device: ");
303 IO‘print(deviceID);
304 IO‘print("\nIs GM:");
305 IO‘print(isGM);
306 IO‘print("\nIs final device: ");
307 IO‘print(finalDevice);
308 IO‘print("\nIs sync event received: ");
309 IO‘print(receivedSyncEvent);
310 IO‘print("\nSync event received at: ");
311 IO‘print(syncRecTS);
312 IO‘print("\nFrequency: ");
313 IO‘print(freq);
314 IO‘print("\nMaster frequency: ");
315 IO‘print(masterFreq);
316 IO‘print("\nLinkDelay: ");
317 IO‘print(linkDelay);
318 IO‘print("\nResidence Time: ");
319 IO‘print(residenceTime);
320 IO‘print("\nNeighbour Rate Ratio: ");
321 IO‘print(neighbourRateRatio);
322 IO‘print("\nRecCummulative Rate Ratio: ");
323 IO‘print(cummulativeRateRatio);
324 IO‘print("\nNew Cumulative Rate Ratio: ");
325 IO‘print(newCummulativeRateRatio);
326 IO‘print("\nReceived CorrectionField: ");
327 IO‘print(receivedCorrectionField);
328 IO‘print("\nNew calculated CorrectionField: ");
329 IO‘print(newCorrectionField);
330 IO‘print("\nPrecise Origin TimeStamp: ");
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331 IO‘print(preciseOriginTS);
332

333 --cSlave.triggerPrint();
334 );
335

336 end Device
� �
C.1.5 Main

�
1 class Main
2

3 instance variables
4

5 clock : Clock := new Clock();
6

7 maxSimTime : nat := 0;
8

9 -- Devices use the simulation
10 device1 : Device := new Device(30);
11 device2 : Device := new Device(10);
12 device3 : Device := new Device(20);
13 device4 : Device := new Device(10);
14

15 device12 : Device := new Device(20);
16

17 -- Channels used to cummunicate the devices
18 ch1_2 : PhyMessage := new PhyMessage();
19 ch2_3 : PhyMessage := new PhyMessage();
20 ch3_4 : PhyMessage := new PhyMessage();
21

22 ch1_12 : PhyMessage := new PhyMessage();
23

24 testMP : Master := new Master(ch1_12);
25

26 -- Sequence of devices involved in the scenario
27 deployment : seq of Device := [device1,device2,device3,device4];
28

29 -- Sequence of channels between the devices
30 channels : seq of PhyMessage := [ch1_2,ch2_3,ch3_4];
31

32 operations
33

34 public run : () ==> ()
35 run () ==
36 (
37
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38 -- Sets up the network for the simulation
39 setupNetwork();
40

41 -- Device 1 operations
42

43 device1.generatePOTS(10);
44 device1.sendSyncEvent();
45

46 device1.calculateCRateRatio();
47 device1.calculateNewCorrectionField();
48 device1.sendFollowUpMessage();
49

50 device12.receiveSyncEvent();
51

52 device12.receiveFollowUpMessage();
53 device12.calculateCRateRatio();
54 device12.calculateNewCorrectionField();
55

56

57 -- Device 2 operations
58

59 device2.receiveSyncEvent();
60 device2.sendSyncEvent();
61

62 device2.receiveFollowUpMessage();
63

64 device2.calculateResidenceTime();
65 device2.calculateCRateRatio();
66 device2.calculateNewCorrectionField();
67

68 device2.sendFollowUpMessage();
69

70 -- Device 3 operations
71

72 device3.receiveSyncEvent();
73 device3.sendSyncEvent();
74

75 device3.receiveFollowUpMessage();
76

77 device3.notifyClock();
78 device3.cSlave.triggerPrint();
79

80 device3.calculateResidenceTime();
81 device3.calculateCRateRatio();
82 device3.calculateNewCorrectionField();
83

84 device3.sendFollowUpMessage();
85

86 -- Device 4 operations
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87

88 device4.receiveSyncEvent();
89 device4.sendSyncEvent();
90

91 device4.receiveFollowUpMessage();
92 device4.calculateCRateRatio();
93 device4.calculateNewCorrectionField();
94

95 device4.sendFollowUpMessage();
96

97 -- End of model
98

99 showDevices();
100 device12.showDevice();
101

102 );
103

104 public setupNetwork: () ==> ()
105 setupNetwork() ==
106 (
107 for all i in set {1,...,len deployment}
108 do
109 deployment(i).setDeviceID(i);
110

111 deployment(1).setGM();
112 deployment(len deployment).setFinalDevice();
113 device12.setFinalDevice();
114

115 for all i in set {1,...,len deployment - 1}
116 do
117 (
118 deployment(i).masterPort.changePhyChannel(channels(i));
119 deployment(i+1).slavePort.changePhyChannel(
120 deployment(i).masterPorts(1).getPhyChannel()
121 );
122 );
123

124 device1.registerMasterPort(testMP);
125 device12.slavePort.changePhyChannel(
126 device1.masterPorts(2).getPhyChannel()
127 );
128 device12.setResidenceTime(10);
129

130 -- Execute frequency announcement and
131 -- neigbour rate ratio calculations
132 -- for the daisy chained devices.
133 announceFreqs();
134 calculateNeighbourRR();
135

189



Appendix C. AVB case study VDM models

136 -- Execute frequency announcement and
137 -- neigbour rate ratio calcualations
138 -- for the branched devices
139

140 device12.announceFreq();
141 device12.getFreq();
142 device12.calculateNeighbourRR();
143

144 );
145

146 -- Set of actions for the daisy chained devices.
147 public announceFreqs : () ==> ()
148 announceFreqs() ==
149 for all i in set {1,...,len deployment}
150 do
151 (
152 deployment(i).announceFreq();
153 deployment(i).getFreq();
154 );
155

156

157 public calculateNeighbourRR : () ==> ()
158 calculateNeighbourRR() ==
159 for all i in set {1,...,len deployment}
160 do deployment(i).calculateNeighbourRR();
161

162 public showDevices : () ==> ()
163 showDevices () ==
164 for all i in set {1,...,len deployment}
165 do deployment(i).showDevice();
166

167

168 end Main
� �
C.1.6 Master

�
1 class Master is subclass of Port
2

3 instance variables
4

5 egressTime : real := 12;
6

7 operations
8

9 public timeStamp : () ==> ()
10 timeStamp() ==
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11 egressTime := 10;
12

13 public getEgressTime : () ==> real
14 getEgressTime () ==
15 return egressTime;
16

17 -- Class constructor.
18 -- Receives the physical layer associated to the device
19 public Master : PhyMessage ==> Master
20 Master(phy) ==
21 channel := phy;
22

23 -- Changes the physical channel associated to the device
24 public changePhyChannel : PhyMessage ==> ()
25 changePhyChannel(ch) ==
26 channel := ch;
27

28 -- Sends a precise origin time-stamp
29 public sendPOTS : real ==> ()
30 sendPOTS(pots) ==
31 channel.setPOTS(pots);
32

33 -- Sends a synchronization event
34 public sendSyncEvent : () ==> ()
35 sendSyncEvent() ==
36 channel.signalSyncEvent();
37

38 -- Sends the cummulative rate ratio
39 public sendCRR : real ==> ()
40 sendCRR(crr) ==
41 channel.setCRR(crr);
42

43 -- Sends the correction field
44 public sendCorrectionField : real ==> ()
45 sendCorrectionField(crf) ==
46 channel.setCorrectionField(crf);
47

48 -- Sends the followup up message in one call
49 -- Follow up messsage is composed by Precise Origing Time Stamp,
50 -- cummulative rate ratio and correction
51 -- field in one invocation
52 public sendFollowUpMessage: real * real * real ==> ()
53 sendFollowUpMessage(crf,pots, crr) ==
54 channel.setFollowUp(crf,pots,crr);
55

56 -- Announce the frequency of the master device controlling
57 -- the port
58 public announceFreq: nat ==> ()
59 announceFreq(f) ==
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60 channel.setMasterFreq(f);
61

62 end Master
� �
C.1.7 PhyMessage

�
1 class PhyMessage
2

3 instance variables
4

5 -- sync event flag. Holds true value if a sync event
6 -- is put on the bus.
7 private syncEvent : bool := false;
8

9 -- Contents of the follow up message
10 private preciseOriginTS : real := 0.0;
11 private cummulativeRateRatio : real := 0.0;
12 private correctionField : real := 0.0;
13

14 -- Frequency sent by a master
15 private masterFreq : real := 0;
16

17 operations
18

19 -- Gets the contents of the follow up message.
20 public getFollowUp: () ==> seq of real
21 getFollowUp() ==
22 return [correctionField,
23 preciseOriginTS,
24 cummulativeRateRatio];
25

26 -- Sets the contents of the follow up message.
27 public setFollowUp: real * real * real ==> ()
28 setFollowUp(correction, pots, crr) ==
29 (
30 setCRR(crr);
31 setCorrectionField(correction);
32 setPOTS(pots);
33 );
34

35 -- Signals a Synchronization event
36 public signalSyncEvent: () ==> ()
37 signalSyncEvent() ==
38 (
39 IO‘print("\nMaster port --> Sync event sent");
40 syncEvent := true;
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41 );
42

43 -- Check if there is a Synchronization event
44 public getSyncEvent: () ==> bool
45 getSyncEvent() ==
46 (
47 IO‘print("\nSlave port --> Sync event received");
48 return syncEvent;
49 );
50

51 -- ###################################################
52 -- Getters and setters for the different fields in the
53 -- Physical Message.
54

55 public setMasterFreq : real ==> ()
56 setMasterFreq(f) ==
57 masterFreq := f;
58

59 public getMasterFreq: () ==> real
60 getMasterFreq() ==
61 return masterFreq;
62

63 public setCRR: real ==> ()
64 setCRR(crr) ==
65 cummulativeRateRatio := crr;
66

67 public setCorrectionField: real ==> ()
68 setCorrectionField(crf) ==
69 correctionField := crf;
70

71 public setPOTS: real ==> ()
72 setPOTS(pots) ==
73 preciseOriginTS := pots;
74

75 public getCField: () ==> real
76 getCField() ==
77 return correctionField;
78

79 public getPOTS: () ==> real
80 getPOTS() ==
81 return preciseOriginTS;
82

83 public getCRR: () ==> real
84 getCRR() ==
85 return cummulativeRateRatio;
86

87 sync
88

89 mutex(getFollowUp,setFollowUp);
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90 mutex(signalSyncEvent,getSyncEvent);
91

92 end PhyMessage
� �
C.1.8 Port

�
1 class Port
2

3 instance variables
4

5 -- Physical channel associated to the port
6 protected channel : PhyMessage;
7

8 -- Associated ID to the port
9 protected portID : nat;

10

11 protected clk : Clock;
12

13 operations
14

15 public timeStamp : () ==> ()
16 timeStamp() ==
17 is not yet specified;
18

19 -- Change the associated channel to the slave
20 public changePhyChannel : PhyMessage ==> ()
21 changePhyChannel(ch) ==
22 channel := ch;
23

24 public getPhyChannel : () ==> PhyMessage
25 getPhyChannel() ==
26 return channel;
27

28 -- Changes the associated ID to the port
29 public changePortID: nat ==> ()
30 changePortID(id) ==
31 portID := id;
32

33 end Port
� �
C.1.9 Slave

�
1 class Slave is subclass of Port
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2

3 instance variables
4

5 ingressTime : real := 2;
6

7 operations
8

9 public timeStamp : () ==> ()
10 timeStamp() ==
11 ingressTime := 2;
12

13 public getIngressTime : () ==> real
14 getIngressTime () ==
15 return ingressTime;
16

17 -- Class constructor
18 public Slave: PhyMessage ==> Slave
19 Slave(phy) ==
20 channel := phy;
21

22 -- Receives the cummulative rate ratio
23 public receiveCRR: () ==> real
24 receiveCRR() ==
25 channel.getCRR();
26

27 -- Receives the correction field
28 public receiveCorrectionField: () ==> real
29 receiveCorrectionField() ==
30 channel.getCField();
31

32 -- Receives the precise origin time stamp
33 public receivePOTS : () ==> real
34 receivePOTS() ==
35 channel.getPOTS();
36

37 -- Receives the follow up message
38 -- Receives Precise Origing Time Stamp, cummulative rate ratio
39 -- and correction field in one invocation
40 public receiveFollowUpMessage: () ==> seq of real
41 receiveFollowUpMessage() ==
42 channel.getFollowUp();
43

44 -- Checks if there is a synchronization event
45 -- available
46 public receiveSyncEvent: () ==> bool
47 receiveSyncEvent() ==
48 channel.getSyncEvent();
49

50 -- Gets the frequency associated to the master
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51 public getFreq: () ==> real
52 getFreq() ==
53 return channel.getMasterFreq();
54

55 end Slave
� �

C.2. Sequential model

C.2.1 App

�
1 class App
2

3 instance variables
4

5 private preciseOriginTS : real;
6 private correctionField : real;
7

8 private localTimeStamp : real;
9

10 private timeInfoReady : bool := false;
11

12

13 operations
14

15 public receiveTimeInformation : seq of real ==> ()
16 receiveTimeInformation (time) ==
17 (
18 preciseOriginTS := time(1);
19 correctionField := time(2);
20 localTimeStamp := time(3);
21

22 timeInfoReady := true;
23 );
24

25 public showReceivedTime : () ==> ()
26 showReceivedTime() ==
27 (
28 if timeInfoReady then
29 (
30 IO‘print("\nAt time: ");
31 IO‘print(localTimeStamp);
32 IO‘print("\nThe Grand Master time was: ");
33 IO‘print(preciseOriginTS);
34 IO‘print("\nIt has been corrected with: ");
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35 IO‘print(correctionField);
36 IO‘print("\nFinal time for previos timestamp is: ");
37 IO‘print(preciseOriginTS+correctionField);
38 )
39 else
40 IO‘print("\n Message from application:
41 Time information not Ready");
42 );
43

44 end App
� �
C.2.2 Clock

�
1 class Clock
2

3 instance variables
4

5 time : nat := 0;
6

7 operations
8

9 public tick: () ==> ()
10 tick() ==
11 (
12 time := time +1;
13 );
14

15 public getTime: () ==> nat
16 getTime() ==
17 return time;
18

19 end Clock
� �
C.2.3 ClockSlave

�
1 class ClockSlave
2

3 instance variables
4

5 private siteSync : Device;
6

7 private preciseOriginTS : real;
8 private correctionField : real;
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9 private localTimeStamp : real;
10

11 private timeConsumers : seq of App := [];
12

13 private newTimeInfoReady : bool := false;
14

15 operations
16

17 public registerApp : App ==> ()
18 registerApp(ap) ==
19 timeConsumers := timeConsumers ^ [ap];
20

21 public setTimeInfo: seq of real ==> ()
22 setTimeInfo(time) ==
23 (
24 if len time > 2 then
25 (
26 preciseOriginTS := time(1);
27 correctionField := time(2);
28 localTimeStamp := time(3);
29 newTimeInfoReady := true;
30 )
31 );
32

33 public timeStep: () ==> ()
34 timeStep() ==
35 if newTimeInfoReady then
36 (
37 notifyTime();
38 newTimeInfoReady := false
39 )
40 else
41 skip;
42

43 public notifyTime : () ==> ()
44 notifyTime() ==
45 let t : seq of real =
46 [preciseOriginTS,correctionField,localTimeStamp] in
47 for all i in set {1,...,len timeConsumers} do
48 timeConsumers(i).receiveTimeInformation(t);
49

50 public setSiteSync : Device ==> ()
51 setSiteSync(dv) ==
52 siteSync := dv;
53

54 public getTime:() ==> ()
55 getTime() ==
56 ();
57
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58 public ClockSlave: App ==> ClockSlave
59 ClockSlave(ap) ==
60 (
61 registerApp(ap);
62 );
63

64 public triggerPrint: () ==> ()
65 triggerPrint() ==
66 for all i in set {1,...,len timeConsumers} do
67 timeConsumers(i).showReceivedTime();
68

69 end ClockSlave
� �
C.2.4 Device

�
1 class Device
2

3 instance variables
4

5 -- Device ID number
6 private deviceID : nat := 0;
7

8 -- Set device as a bridge
9 public isBridge : bool := true;

10

11 -- Frequency of the current device.
12 private freq : nat := 0;
13

14 -- Slave port associated to the device
15 public slavePort : Slave;
16

17 -- Device with no external slaves connected
18 -- (finalDevice = true)
19 public finalDevice : bool := false;
20 --inv finalDevice => len masterPorts = 0;
21

22 -- Current device is Grand Master -> iGM = true
23 -- if device isGM it should not have masters attached.
24 public isGM : bool := false;
25 inv isGM => not finalDevice;
26 inv finalDevice => not isGM;
27

28 -- Frequency of the master device
29 private masterFreq : nat := 0;
30

31 private receivedSyncEvent : bool := false;
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32 private syncRecTS : nat := 0;
33

34 -- Neighbour rate ratio measured by the slave port
35 private neighbourRateRatio : real := 1;
36

37 -- Precise origin timestamp, defined by GM and
38 -- never changed.
39 private preciseOriginTS : real := 0;
40

41 -- received correction field, to be recomputed
42 -- before use.
43 private receivedCorrectionField : real := 0;
44

45 -- CumulativeRateRatio received from the previous
46 -- node.
47 private cummulativeRateRatio : real := 1;
48 -- Delay from master to slave port
49 private linkDelay : real := 10;
50 -- Time that has been spent in the current node
51 private residenceTime : real := 0;
52

53 -- Correction field calculated at the current node,
54 -- to be used in the current node.
55 private newCorrectionField : real := 0;
56 -- CummulativeRateRatio calculated at the current node,
57 -- to be used in the current node.
58 private newCummulativeRateRatio : real := 0;
59

60 -- Clock attached to the device
61 private clk : Clock;
62

63 private timeInfoAvailable : bool;
64

65 public cSlave : ClockSlave := new ClockSlave();
66

67 private followUpMessageReceived : bool := false;
68

69 operations
70

71 public setClockSlave: ClockSlave ==> ()
72 setClockSlave(c) ==
73 cSlave := c;
74

75 -- Actions carried out at the device per time-step
76 public timeStep: () ==> ()
77 timeStep() ==
78 (
79 if receivedSyncEvent = false then
80 ( receiveSyncEvent(); IO‘print("#syncEvent#");)
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81 else if receivedSyncEvent and not followUpMessageReceived then
82 ( receiveFollowUpMessage(); IO‘print("Follow up received");)
83 else if receivedSyncEvent and followUpMessageReceived then
84 ( notifyClock(); IO‘print("CLocks notified"););
85 );
86

87

88 public notifyClock : () ==> ()
89 notifyClock() ==
90 cSlave.setTimeInfo(
91 [preciseOriginTS,receivedCorrectionField,syncRecTS]);
92

93 public makeTimeAvailable : () ==> ()
94 makeTimeAvailable() ==
95 timeInfoAvailable := true;
96

97 public getTimeInfo : () ==> seq of real
98 getTimeInfo() ==
99 return [

100 preciseOriginTS,
101 receivedCorrectionField,
102 cummulativeRateRatio];
103

104 public timeInfoRead : () ==> ()
105 timeInfoRead() ==
106 timeInfoAvailable := false;
107

108 -- Sets the slave port that corresponds to the current device
109 public setSlavePort: Slave ==> ()
110 setSlavePort(s) ==
111 slavePort := s;
112

113 -- Sets device ID
114 public setDeviceID: nat ==> ()
115 setDeviceID(id) ==
116 deviceID := id
117 pre deviceID = 0
118 post deviceID <> 0;
119

120 -- Gets device ID
121 public getDeviceID: () ==> nat
122 getDeviceID() ==
123 return deviceID
124 pre deviceID <> 0;
125

126 -- Receives the POTS
127 public receivePOTS: () ==> ()
128 receivePOTS() ==
129 preciseOriginTS := slavePort.receivePOTS();

201



Appendix C. AVB case study VDM models

130

131 public setLocalFreq : nat ==> ()
132 setLocalFreq(f) ==
133 freq := f;
134

135 -- Sets the frequency of the master device.
136 public setMasterFreq : nat ==> ()
137 setMasterFreq (f) ==
138 masterFreq := f
139 pre f <> 0;
140

141 -- Get the frequency of the master device attached to
142 -- the slave port.
143 public getFreq : () ==> ()
144 getFreq() ==
145 if (not isGM) then setMasterFreq(slavePort.getFreq());
146

147

148 -- Receives the follow up message sent by the master.
149 -- Reception is performed in one operation.
150 public receiveFollowUpMessage: () ==> ()
151 receiveFollowUpMessage() ==
152 ( let s : seq of real = slavePort.receiveFollowUpMessage() in
153 (
154 receivedCorrectionField := s(1);
155 preciseOriginTS := s(2);
156 cummulativeRateRatio := s(3);
157 );
158 followUpMessageReceived := true;
159 );
160

161 -- Receives the cummulative rate ratio at the slave
162 -- port. Cummulative rate ratio is sent by the master
163 -- device attached to the slave port.
164 public receiveCRR: () ==> ()
165 receiveCRR() ==
166 cummulativeRateRatio:= slavePort.receiveCRR();
167

168 -- Calculates the neighbour rate ratio. This calculation
169 -- is performed at every slave device.
170 public calculateNeighbourRR : () ==> ()
171 calculateNeighbourRR () ==
172 if (not isGM) then
173 neighbourRateRatio := freq / masterFreq
174 else
175 neighbourRateRatio := 1
176 pre not isGM => (freq <> 0 and masterFreq <> 0)
177 post neighbourRateRatio <> 0;
178
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179 -- Calculates the new cummulative rate ratio to be sent
180 -- to the attached slave unit.
181 public calculateCRateRatio : () ==> ()
182 calculateCRateRatio () ==
183 newCummulativeRateRatio :=
184 cummulativeRateRatio * neighbourRateRatio
185 pre neighbourRateRatio <> 0 and cummulativeRateRatio <> 0;
186

187 -- Calculates the new correction field to be sent to the
188 -- attached slave unit.
189 public calculateNewCorrectionField : () ==> ()
190 calculateNewCorrectionField () ==
191 if isGM then ()
192 else (
193 newCorrectionField := linkDelay + residenceTime *
194 newCummulativeRateRatio + receivedCorrectionField;);
195

196 -- Receives a correction field sent by master unit.
197 public receiveCorrectionField : () ==> ()
198 receiveCorrectionField() ==
199 receivedCorrectionField := slavePort.receiveCorrectionField();
200

201 -- Sets the current device as a final device.
202 -- A final device will not have slave devices and
203 -- will not be acting as a master device.
204 public setFinalDevice: () ==> ()
205 setFinalDevice() ==
206 finalDevice := true
207 pre not isGM
208 post finalDevice;
209

210 -- Receives a synchronization sync event and
211 -- time stamps it.
212 public receiveSyncEvent: () ==> ()
213 receiveSyncEvent () ==
214 (
215 receivedSyncEvent := slavePort.receiveSyncEvent();
216 receivedSyncEvent := true;
217 updateTimeRef();
218 );
219

220 -- Updates the time reference when the time stamp operation
221 -- is invoked.
222 public updateTimeRef: () ==> ()
223 updateTimeRef() ==
224 (
225 --IO‘print("\n Sync event --> timestamp generated");
226 syncRecTS := slavePort.getIngressTime();
227 );
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228

229 -- Shows the device state
230 public showDevice : () ==> ()
231 showDevice () ==
232 (
233 IO‘print("\nInfo for device: ");
234 IO‘print(deviceID);
235 IO‘print("\nIs GM:");
236 IO‘print(isGM);
237 IO‘print("\nIs final device: ");
238 IO‘print(finalDevice);
239 IO‘print("\nIs sync event received: ");
240 IO‘print(receivedSyncEvent);
241 IO‘print("\nSync event received at: ");
242 IO‘print(syncRecTS);
243 IO‘print("\nFrequency: ");
244 IO‘print(freq);
245 IO‘print("\nMaster frequency: ");
246 IO‘print(masterFreq);
247 IO‘print("\nLinkDelay: ");
248 IO‘print(linkDelay);
249

250 IO‘print("\nNeighbour Rate Ratio: ");
251 IO‘print(neighbourRateRatio);
252 IO‘print("\nRecCummulative Rate Ratio: ");
253 IO‘print(cummulativeRateRatio);
254

255 IO‘print("\nReceived CorrectionField: ");
256 IO‘print(receivedCorrectionField);
257 IO‘print("\nPrecise Origin TimeStamp: ");
258 IO‘print(preciseOriginTS);
259 );
260

261 end Device
� �
C.2.5 Main

�
1 class Main
2

3 types
4

5 public timeStimulus = seq of real;
6

7 instance variables
8

9 -- Modelled entities in the system
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10 siteSync : Device;
11 app : App;
12 clkSlave : ClockSlave;
13 slave : Slave;
14 channel : PhyMessage;
15

16 -- Auxiliar simulation entities
17 simClk : Clock := new Clock();
18

19 simSteps : nat := 3;
20

21 timeStimuli : seq of timeStimulus := [];
22

23 operations
24

25 public loadStimuli: () ==> ()
26 loadStimuli() ==
27 (
28 --loadStimulus([20,30,50]);
29 let i : seq of timeStimulus = [[40,20,10],[30,80,90]] in
30 for all e in set {1,...,len i} do
31 loadStimulus(i(e));
32 );
33

34 public loadStimulus: timeStimulus ==> ()
35 loadStimulus(s) ==
36 timeStimuli := timeStimuli ^ [s];
37

38 -- Model simulation entry point
39 public run: () ==> ()
40 run() ==
41 (
42 IO‘print("\nEndpoint device receiving time corrections");
43

44 loadStimuli();
45 IO‘print(timeStimuli);
46 setup();
47

48 -- Simulation starts
49

50 feedPhyMessage();
51

52 for all i in set {1,...,simSteps} do
53 (
54 simClk.tick();
55 slave.timeStep();
56 siteSync.timeStep();
57 clkSlave.timeStep();
58 );
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59

60 -- Shows the simulation results
61 siteSync.showDevice();
62 app.showReceivedTime();
63

64 IO‘print("\nModel over\n");
65 IO‘print("####### Unused time stimuli: ");
66 IO‘print(timeStimuli);
67

68 );
69

70 public feedPhyMessage: () ==> ()
71 feedPhyMessage() ==
72 (
73 channel.signalSyncEvent();
74 channel.setFollowUp(hd timeStimuli);
75 timeStimuli := tl timeStimuli;
76 );
77

78 -- Setup the simulation:
79 -- Creates the involved entities
80 -- Establish the relations between them
81 public setup: () ==> ()
82 setup() ==
83 (
84 -- Creation of the entities present in a Time Aware System
85 -- endpoint device
86 siteSync := new Device();
87 slave := new Slave();
88 clkSlave := new ClockSlave();
89 app := new App();
90 channel := new PhyMessage();
91

92 slave.clk := simClk;
93

94 -- Establish the relationships between the entities
95

96 -- 1. Register the Application in the clock slave entity
97 clkSlave.registerApp(app);
98 clkSlave.setSiteSync(siteSync);
99

100 -- 2. Associate the clock slave to the siteSync entity
101 siteSync.setClockSlave(clkSlave);
102

103 -- 3. Configure the physical layer and associate it to the
104 -- slave port
105 slave.changePhyChannel(channel);
106

107 -- 4. Associate the slave port to the siteSync entity
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108 siteSync.setSlavePort(slave);
109

110 channel.setMasterFreq(10);
111 siteSync.setLocalFreq(20);
112 siteSync.getFreq();
113 siteSync.calculateNeighbourRR();
114

115 siteSync.setFinalDevice();
116 );
117

118 end Main
� �
C.2.6 PhyMessage

�
1 class PhyMessage
2

3 instance variables
4

5 -- sync event flag. Holds true value if a sync event
6 -- is put on the bus.
7 private syncEvent : bool := false;
8

9 -- Contents of the follow up message
10 private preciseOriginTS : real := 0.0;
11 private cummulativeRateRatio : real := 0.0;
12 private correctionField : real := 0.0;
13

14 -- Frequency sent by a master
15 private masterFreq : real := 0;
16

17 operations
18

19 -- Gets the contents of the follow up message.
20 public getFollowUp: () ==> seq of real
21 getFollowUp() ==
22 return [correctionField,
23 preciseOriginTS,
24 cummulativeRateRatio];
25

26 -- Sets the contents of the follow up message.
27 public setFollowUp: seq of real ==> ()
28 setFollowUp(s) ==
29 (
30 setCRR(s(1));
31 setCorrectionField(s(2));
32 setPOTS(s(3));
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33 );
34

35 -- Signals a Synchronization event
36 public signalSyncEvent: () ==> ()
37 signalSyncEvent() ==
38 (
39 --IO‘print("\nMaster port --> Sync event sent");
40 syncEvent := true;
41 );
42

43 -- Check if there is a Synchronization event
44 public getSyncEvent: () ==> bool
45 getSyncEvent() ==
46 (
47 --IO‘print("\nSlave port --> Sync event received");
48 return syncEvent;
49 );
50

51 -- ###################################################
52 -- Getters and setters for the different fields in the
53 -- Physical Message.
54

55 public setMasterFreq : real ==> ()
56 setMasterFreq(f) ==
57 masterFreq := f;
58

59 public getMasterFreq: () ==> real
60 getMasterFreq() ==
61 return masterFreq;
62

63 public setCRR: real ==> ()
64 setCRR(crr) ==
65 cummulativeRateRatio := crr;
66

67 public setCorrectionField: real ==> ()
68 setCorrectionField(crf) ==
69 correctionField := crf;
70

71 public setPOTS: real ==> ()
72 setPOTS(pots) ==
73 preciseOriginTS := pots;
74

75 public getCField: () ==> real
76 getCField() ==
77 return correctionField;
78

79 public getPOTS: () ==> real
80 getPOTS() ==
81 return preciseOriginTS;
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82

83 public getCRR: () ==> real
84 getCRR() ==
85 return cummulativeRateRatio;
86

87 sync
88

89 mutex(getFollowUp,setFollowUp);
90 mutex(signalSyncEvent,getSyncEvent);
91

92 end PhyMessage
� �
C.2.7 Port

�
1 class Port
2

3 instance variables
4

5 -- Physical channel associated to the port
6 protected channel : PhyMessage;
7

8 -- Associated ID to the port
9 protected portID : nat;

10

11 protected clk : Clock;
12

13 operations
14

15 public timeStamp : () ==> ()
16 timeStamp() ==
17 is not yet specified;
18

19 public timeStep : () ==> ()
20 timeStep() ==
21 is not yet specified;
22

23 -- Change the associated channel to the slave
24 public changePhyChannel : PhyMessage ==> ()
25 changePhyChannel(ch) ==
26 channel := ch;
27

28 public getPhyChannel : () ==> PhyMessage
29 getPhyChannel() ==
30 return channel;
31

32 -- Changes the associated ID to the port
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33 public changePortID: nat ==> ()
34 changePortID(id) ==
35 portID := id;
36

37 end Port
� �
C.2.8 Slave

�
1 class Slave is subclass of Port
2

3 instance variables
4

5 ingressTime : real := 0;
6

7 -- sync event flag. Holds true value if a sync event
8 -- is put on the bus.
9 private syncEvent : bool := false;

10

11 -- Contents of the follow up message
12 private preciseOriginTS : real := 0.0;
13 private cummulativeRateRatio : real := 0.0;
14 private correctionField : real := 0.0;
15

16 private followUpReady : bool := false;
17

18 public clk : Clock;
19

20

21 operations
22

23 public checkSync : () ==> ()
24 checkSync() ==
25 (
26 syncEvent := channel.getSyncEvent();
27 if syncEvent = true then
28 timeStamp(); -- Time stamp
29 );
30

31 public checkFollowUp: () ==> ()
32 checkFollowUp() ==
33 (
34 let i : seq of real = channel.getFollowUp() in
35 (
36 if len i = 0 then
37 followUpReady := false
38 else
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39 (
40 correctionField := i(1);
41 preciseOriginTS := i(2);
42 cummulativeRateRatio := i(3);
43 )
44 );
45 );
46

47 public timeStamp : () ==> ()
48 timeStamp() ==
49 ingressTime := clk.getTime();
50

51 public getIngressTime : () ==> real
52 getIngressTime () ==
53 return ingressTime;
54

55 -- Class constructor
56 public Slave: PhyMessage ==> Slave
57 Slave(phy) ==
58 channel := phy;
59

60 -- Receives the cummulative rate ratio
61 public receiveCRR: () ==> real
62 receiveCRR() ==
63 channel.getCRR();
64

65 -- Receives the correction field
66 public receiveCorrectionField: () ==> real
67 receiveCorrectionField() ==
68 channel.getCField();
69

70 -- Receives the precise origin time stamp
71 public receivePOTS : () ==> real
72 receivePOTS() ==
73 channel.getPOTS();
74

75 -- Receives the follow up message
76 -- Receives Precise Origing Time Stamp, cummulative rate ratio
77 -- and correction field in one invocation
78 public receiveFollowUpMessage: () ==> seq of real
79 receiveFollowUpMessage() ==
80 return [correctionField,preciseOriginTS,cummulativeRateRatio];
81

82 -- Checks if there is a synchronization event
83 -- available
84 public receiveSyncEvent: () ==> bool
85 receiveSyncEvent() ==
86 return syncEvent;
87
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88 -- Gets the frequency associated to the master
89 public getFreq: () ==> real
90 getFreq() ==
91 return channel.getMasterFreq();
92

93 public timeStep: () ==> ()
94 timeStep() ==
95 (
96 if not syncEvent then
97 checkSync()
98 else
99 if not followUpReady then

100 checkFollowUp();
101 );
102

103 end Slave
� �

C.3. Concurrent model

C.3.1 App

�
1 class App
2

3 instance variables
4

5 private preciseOriginTS : real;
6 private correctionField : real;
7

8 private localTimeStamp : real;
9

10 private timeInfoReady : bool := false;
11

12 private timeInfoProvided : bool := false;
13

14

15 operations
16

17 public receiveTimeInformation : seq of real ==> ()
18 receiveTimeInformation (time) ==
19 (
20 preciseOriginTS := time(1);
21 correctionField := time(2);
22 localTimeStamp := time(3);
23
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24 timeInfoReady := true;
25

26 markInfoProvided();
27

28 );
29

30 public showReceivedTime : () ==> ()
31 showReceivedTime() ==
32 (
33 if timeInfoReady then
34 (
35 IO‘print("\n#########################################");
36 IO‘print("\nAt time: ");
37 IO‘print(localTimeStamp);
38 IO‘print("\nThe Grand Master time was: ");
39 IO‘print(preciseOriginTS);
40 IO‘print("\nIt has been corrected with: ");
41 IO‘print(correctionField);
42 IO‘print("\nFinal time for previos timestamp is: ");
43 IO‘print(preciseOriginTS+correctionField);
44 IO‘print("\n#########################################");
45

46 markInfoProvided();
47 )
48 else
49 IO‘print("\n Message from application:
50 Time information not Ready");
51 );
52

53 private markInfoProvided : () ==> ()
54 markInfoProvided() ==
55 timeInfoProvided := true;
56

57 public infoProvided : () ==> bool
58 infoProvided() ==
59 return timeInfoProvided;
60

61

62

63 sync
64 mutex(markInfoProvided,infoProvided);
65 mutex(receiveTimeInformation);
66 mutex(showReceivedTime, infoProvided);
67 mutex(showReceivedTime,receiveTimeInformation);
68

69 end App
� �
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C.3.2 Clock

�
1 class Clock
2

3 instance variables
4

5 time : nat := 0;
6

7 operations
8

9 public tick: () ==> ()
10 tick() ==
11 (
12 time := time +1;
13 );
14

15 public getTime: () ==> nat
16 getTime() ==
17 return time;
18

19 thread
20 while true do
21 (
22 tick();
23 Environment‘timerRef.WaitRelative(1);
24 );
25

26 sync
27 mutex(tick,getTime);
28 mutex(tick);
29

30 end Clock
� �
C.3.3 ClockSlave

�
1 class ClockSlave
2

3 instance variables
4

5 private siteSync : Device;
6

7 private preciseOriginTS : real;
8 private correctionField : real;
9 private localTimeStamp : real;

10
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11 private timeConsumers : seq of App := [];
12

13 private newTimeInfoReady : bool := false;
14

15 operations
16

17 public registerApp : App ==> ()
18 registerApp(ap) ==
19 timeConsumers := timeConsumers ^ [ap];
20

21 public setTimeInfo: seq of real ==> ()
22 setTimeInfo(time) ==
23 (
24 if len time > 2 then
25 (
26 preciseOriginTS := time(1);
27 correctionField := time(2);
28 localTimeStamp := time(3);
29 newTimeInfoReady := true;
30 )
31 );
32

33 public timeStep: () ==> ()
34 timeStep() ==
35 if newTimeInfoReady then
36 (
37 notifyTime();
38 newTimeInfoReady := false;
39 )
40 else
41 skip;
42

43 public notifyTime : () ==> ()
44 notifyTime() ==
45 let t : seq of real =
46 [preciseOriginTS,correctionField,localTimeStamp] in
47 for all i in set {1,...,len timeConsumers} do
48 timeConsumers(i).receiveTimeInformation(t);
49

50 public setSiteSync : Device ==> ()
51 setSiteSync(dv) ==
52 siteSync := dv;
53

54 public getTime:() ==> ()
55 getTime() ==
56 ();
57

58 public ClockSlave: App ==> ClockSlave
59 ClockSlave(ap) ==
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60 (
61 registerApp(ap);
62 );
63

64 public triggerPrint: () ==> ()
65 triggerPrint() ==
66 for all i in set {1,...,len timeConsumers} do
67 timeConsumers(i).showReceivedTime();
68

69 thread
70 while true do
71 (
72 timeStep();
73 Environment‘timerRef.WaitRelative(1);
74 );
75

76 sync
77 mutex(timeStep,setTimeInfo);
78 mutex(notifyTime,setTimeInfo);
79

80 end ClockSlave
� �
C.3.4 Device

�
1 class Device
2

3 instance variables
4

5 -- Device ID number
6 private deviceID : nat := 0;
7

8 -- Set device as a bridge
9 public isBridge : bool := true;

10

11 -- Frequency of the current device.
12 private freq : nat := 0;
13

14 -- Slave port associated to the device
15 public slavePort : Slave;
16

17 -- Device with no external slaves connected
18 -- (finalDevice = true)
19 public finalDevice : bool := false;
20 --inv finalDevice => len masterPorts = 0;
21

22 -- Current device is Grand Master -> iGM = true
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23 -- if device isGM it should not have masters attached.
24 public isGM : bool := false;
25 inv isGM => not finalDevice;
26 inv finalDevice => not isGM;
27

28 -- Frequency of the master device
29 private masterFreq : nat := 0;
30

31 private receivedSyncEvent : bool := false;
32 private syncRecTS : nat := 0;
33

34 -- Neighbour rate ratio measured by the slave port
35 private neighbourRateRatio : real := 1;
36

37 -- Precise origin timestamp, defined by GM and
38 -- never changed.
39 private preciseOriginTS : real := 0;
40

41 -- received correction field, to be recomputed
42 -- before use.
43 private receivedCorrectionField : real := 0;
44

45 -- CumulativeRateRatio received from the previous
46 -- node.
47 private cummulativeRateRatio : real := 1;
48 -- Delay from master to slave port
49 private linkDelay : real := 10;
50 -- Time that has been spent in the current node
51 private residenceTime : real := 0;
52

53 -- Correction field calculated at the current node,
54 -- to be used in the current node.
55 private newCorrectionField : real := 0;
56 -- CummulativeRateRatio calculated at the current node,
57 -- to be used in the current node.
58 private newCummulativeRateRatio : real := 0;
59

60 -- Clock attached to the device
61 private clk : Clock;
62

63 private timeInfoAvailable : bool;
64

65 public cSlave : ClockSlave := new ClockSlave();
66

67 private followUpMessageReceived : bool := false;
68

69 operations
70

71 public setClockSlave: ClockSlave ==> ()
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72 setClockSlave(c) ==
73 cSlave := c;
74

75 -- Actions carried out at the device per time-step
76 public timeStep: () ==> ()
77 timeStep() ==
78 (
79 if receivedSyncEvent = false then
80 ( receiveSyncEvent(); IO‘print("#syncEvent#");)
81 else if receivedSyncEvent and not followUpMessageReceived then
82 ( receiveFollowUpMessage(); IO‘print("Follow up received");)
83 else if receivedSyncEvent and followUpMessageReceived then
84 ( notifyClock(); IO‘print("CLocks notified"););
85 );
86

87

88 public notifyClock : () ==> ()
89 notifyClock() ==
90 cSlave.setTimeInfo(
91 [preciseOriginTS,receivedCorrectionField,syncRecTS]
92 );
93

94 public makeTimeAvailable : () ==> ()
95 makeTimeAvailable() ==
96 timeInfoAvailable := true;
97

98 public getTimeInfo : () ==> seq of real
99 getTimeInfo() ==

100 return [preciseOriginTS,
101 receivedCorrectionField,
102 cummulativeRateRatio];
103

104 public timeInfoRead : () ==> ()
105 timeInfoRead() ==
106 timeInfoAvailable := false;
107

108 -- Sets the slave port that corresponds to the current device
109 public setSlavePort: Slave ==> ()
110 setSlavePort(s) ==
111 slavePort := s;
112

113 -- Sets device ID
114 public setDeviceID: nat ==> ()
115 setDeviceID(id) ==
116 deviceID := id
117 pre deviceID = 0
118 post deviceID <> 0;
119

120 -- Gets device ID
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121 public getDeviceID: () ==> nat
122 getDeviceID() ==
123 return deviceID
124 pre deviceID <> 0;
125

126 -- Receives the POTS
127 public receivePOTS: () ==> ()
128 receivePOTS() ==
129 preciseOriginTS := slavePort.receivePOTS();
130

131 public setLocalFreq : nat ==> ()
132 setLocalFreq(f) ==
133 freq := f;
134

135 -- Sets the frequency of the master device.
136 public setMasterFreq : nat ==> ()
137 setMasterFreq (f) ==
138 masterFreq := f
139 pre f <> 0;
140

141 -- Get the frequency of the master device attached to
142 -- the slave port.
143 public getFreq : () ==> ()
144 getFreq() ==
145 if (not isGM) then setMasterFreq(slavePort.getFreq());
146

147

148 -- Receives the follow up message sent by the master.
149 -- Reception is performed in one operation.
150 public receiveFollowUpMessage: () ==> ()
151 receiveFollowUpMessage() ==
152 ( let s : seq of real = slavePort.receiveFollowUpMessage() in
153 (
154 receivedCorrectionField := s(1);
155 preciseOriginTS := s(2);
156 cummulativeRateRatio := s(3);
157 );
158 followUpMessageReceived := true;
159 );
160

161 -- Receives the cummulative rate ratio at the slave
162 -- port. Cummulative rate ratio is sent by the master
163 -- device attached to the slave port.
164 public receiveCRR: () ==> ()
165 receiveCRR() ==
166 cummulativeRateRatio:= slavePort.receiveCRR();
167

168 -- Calculates the neighbour rate ratio. This calculation
169 -- is performed at every slave device.
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170 public calculateNeighbourRR : () ==> ()
171 calculateNeighbourRR () ==
172 if (not isGM) then
173 neighbourRateRatio := freq / masterFreq
174 else
175 neighbourRateRatio := 1
176 pre not isGM => (freq <> 0 and masterFreq <> 0)
177 post neighbourRateRatio <> 0;
178

179 -- Calculates the new cummulative rate ratio to be sent
180 -- to the attached slave unit.
181 public calculateCRateRatio : () ==> ()
182 calculateCRateRatio () ==
183 newCummulativeRateRatio :=
184 cummulativeRateRatio * neighbourRateRatio
185 pre neighbourRateRatio <> 0 and cummulativeRateRatio <> 0;
186

187 -- Calculates the new correction field to be sent to the
188 -- attached slave unit.
189 public calculateNewCorrectionField : () ==> ()
190 calculateNewCorrectionField () ==
191 if isGM then ()
192 else (
193 newCorrectionField := linkDelay + residenceTime *
194 newCummulativeRateRatio + receivedCorrectionField;);
195

196 -- Receives a correction field sent by master unit.
197 public receiveCorrectionField : () ==> ()
198 receiveCorrectionField() ==
199 receivedCorrectionField := slavePort.receiveCorrectionField();
200

201 -- Sets the current device as a final device.
202 -- A final device will not have slave devices and
203 -- will not be acting as a master device.
204 public setFinalDevice: () ==> ()
205 setFinalDevice() ==
206 finalDevice := true
207 pre not isGM
208 post finalDevice;
209

210 -- Receives a synchronization sync event and
211 -- time stamps it.
212 public receiveSyncEvent: () ==> ()
213 receiveSyncEvent () ==
214 (
215 receivedSyncEvent := slavePort.receiveSyncEvent();
216 receivedSyncEvent := true;
217 updateTimeRef();
218 );
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219

220 -- Updates the time reference when the time stamp operation
221 -- is invoked.
222 public updateTimeRef: () ==> ()
223 updateTimeRef() ==
224 (
225 --IO‘print("\n Sync event --> timestamp generated");
226 syncRecTS := slavePort.getIngressTime();
227 );
228

229 -- Shows the device state
230 public showDevice : () ==> ()
231 showDevice () ==
232 (
233 IO‘print("\nInfo for device: ");
234 IO‘print(deviceID);
235 IO‘print("\nIs GM:");
236 IO‘print(isGM);
237 IO‘print("\nIs final device: ");
238 IO‘print(finalDevice);
239 IO‘print("\nIs sync event received: ");
240 IO‘print(receivedSyncEvent);
241 IO‘print("\nSync event received at: ");
242 IO‘print(syncRecTS);
243 IO‘print("\nFrequency: ");
244 IO‘print(freq);
245 IO‘print("\nMaster frequency: ");
246 IO‘print(masterFreq);
247 IO‘print("\nLinkDelay: ");
248 IO‘print(linkDelay);
249

250 IO‘print("\nNeighbour Rate Ratio: ");
251 IO‘print(neighbourRateRatio);
252 IO‘print("\nRecCummulative Rate Ratio: ");
253 IO‘print(cummulativeRateRatio);
254

255 IO‘print("\nReceived CorrectionField: ");
256 IO‘print(receivedCorrectionField);
257 IO‘print("\nPrecise Origin TimeStamp: ");
258 IO‘print(preciseOriginTS);
259

260 );
261

262 thread
263 while true do
264 (
265 timeStep();
266 Environment‘timerRef.WaitRelative(1);
267 );

221



Appendix C. AVB case study VDM models

268

269 end Device
� �
C.3.5 Environment

�
1 class Environment
2

3 types
4

5 public timeStimulus = seq of real;
6

7 instance variables
8

9 -- Modelled entities in the system
10 siteSync : Device;
11 app : App;
12 clkSlave : ClockSlave;
13 slave : Slave;
14 channel : PhyMessage;
15

16 -- Auxiliar simulation entities
17 simClk : Clock := new Clock();
18

19 simSteps : nat := 3;
20

21 timeStimuli : seq of timeStimulus := [];
22

23 public static timerRef : TimeStamp := new TimeStamp(5);
24

25 operations
26

27 public loadStimuli: () ==> ()
28 loadStimuli() ==
29 (
30 --loadStimulus([20,30,50]);
31 let i : seq of timeStimulus = [[40,20,10],[30,80,90]] in
32 for all e in set {1,...,len i} do
33 loadStimulus(i(e));
34 );
35

36 public loadStimulus: timeStimulus ==> ()
37 loadStimulus(s) ==
38 timeStimuli := timeStimuli ^ [s];
39

40 -- Model simulation entry point
41 public run: () ==> ()
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42 run() ==
43 (
44 IO‘print("\nEndpoint device receiving time corrections");
45

46 loadStimuli();
47 IO‘print(timeStimuli);
48 setup();
49

50 -- Simulation starts
51

52 start(simClk);
53 start(slave);
54 start(siteSync);
55 start(clkSlave);
56

57 feedPhyMessage();
58

59 /*
60 for all i in set {1,...,simSteps} do
61 (
62 simClk.tick();
63 slave.timeStep();
64 siteSync.timeStep();
65 clkSlave.timeStep();
66 );*/
67

68 while app.infoProvided() = false do
69 (
70 wait();
71 timerRef.WaitRelative(1);
72 );
73

74 -- Shows the simulation results
75 siteSync.showDevice();
76 app.showReceivedTime();
77

78 IO‘print("\nModel over\n");
79 IO‘print("####### Unused time stimuli: ");
80 IO‘print(timeStimuli);
81

82 );
83

84 public feedPhyMessage: () ==> ()
85 feedPhyMessage() ==
86 (
87 channel.signalSyncEvent();
88 channel.setFollowUp(hd timeStimuli);
89 timeStimuli := tl timeStimuli;
90 );
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91

92 -- Setup the simulation:
93 -- Creates the involved entities
94 -- Establish the relations between them
95 public setup: () ==> ()
96 setup() ==
97 (
98 -- Creation of the entities present in a Time Aware System
99 -- endpoint device

100 siteSync := new Device();
101 slave := new Slave();
102 clkSlave := new ClockSlave();
103 app := new App();
104 channel := new PhyMessage();
105

106 slave.clk := simClk;
107

108 -- Establish the relationships between the entities
109

110 -- 1. Register the Application in the clock slave entity
111 clkSlave.registerApp(app);
112 clkSlave.setSiteSync(siteSync);
113

114 -- 2. Associate the clock slave to the siteSync entity
115 siteSync.setClockSlave(clkSlave);
116

117 -- 3. Configure the physical layer and associate it to the
118 -- slave port
119 slave.changePhyChannel(channel);
120

121 -- 4. Associate the slave port to the siteSync entity
122 siteSync.setSlavePort(slave);
123

124 channel.setMasterFreq(10);
125 siteSync.setLocalFreq(20);
126 siteSync.getFreq();
127 siteSync.calculateNeighbourRR();
128

129 siteSync.setFinalDevice();
130 );
131

132 wait: () ==> ()
133 wait() ==
134 skip;
135

136 end Environment
� �
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C.3.6 PhyMessage

�
1 class PhyMessage
2

3 instance variables
4

5 -- sync event flag. Holds true value if a sync event
6 -- is put on the bus.
7 private syncEvent : bool := false;
8

9 -- Contents of the follow up message
10 private preciseOriginTS : real := 0.0;
11 private cummulativeRateRatio : real := 0.0;
12 private correctionField : real := 0.0;
13

14 -- Frequency sent by a master
15 private masterFreq : real := 0;
16

17 operations
18

19 -- Gets the contents of the follow up message.
20 public getFollowUp: () ==> seq of real
21 getFollowUp() ==
22 return [correctionField,
23 preciseOriginTS,
24 cummulativeRateRatio];
25

26 -- Sets the contents of the follow up message.
27 public setFollowUp: seq of real ==> ()
28 setFollowUp(s) ==
29 (
30 setCRR(s(1));
31 setCorrectionField(s(2));
32 setPOTS(s(3));
33 );
34

35 -- Signals a Synchronization event
36 public signalSyncEvent: () ==> ()
37 signalSyncEvent() ==
38 (
39 --IO‘print("\nMaster port --> Sync event sent");
40 syncEvent := true;
41 );
42

43 -- Check if there is a Synchronization event
44 public getSyncEvent: () ==> bool
45 getSyncEvent() ==
46 (
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47 --IO‘print("\nSlave port --> Sync event received");
48 return syncEvent;
49 );
50

51 -- ###################################################
52 -- Getters and setters for the different fields in the
53 -- Physical Message.
54

55 public setMasterFreq : real ==> ()
56 setMasterFreq(f) ==
57 masterFreq := f;
58

59 public getMasterFreq: () ==> real
60 getMasterFreq() ==
61 return masterFreq;
62

63 public setCRR: real ==> ()
64 setCRR(crr) ==
65 cummulativeRateRatio := crr;
66

67 public setCorrectionField: real ==> ()
68 setCorrectionField(crf) ==
69 correctionField := crf;
70

71 public setPOTS: real ==> ()
72 setPOTS(pots) ==
73 preciseOriginTS := pots;
74

75 public getCField: () ==> real
76 getCField() ==
77 return correctionField;
78

79 public getPOTS: () ==> real
80 getPOTS() ==
81 return preciseOriginTS;
82

83 public getCRR: () ==> real
84 getCRR() ==
85 return cummulativeRateRatio;
86

87 sync
88

89 mutex(getFollowUp,setFollowUp);
90 mutex(signalSyncEvent,getSyncEvent);
91

92 end PhyMessage
� �
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C.3.7 Port

�
1 class Port
2

3 instance variables
4

5 -- Physical channel associated to the port
6 protected channel : PhyMessage;
7

8 -- Associated ID to the port
9 protected portID : nat;

10

11 protected clk : Clock;
12

13 operations
14

15 public timeStamp : () ==> ()
16 timeStamp() ==
17 is not yet specified;
18

19 public timeStep : () ==> ()
20 timeStep() ==
21 is not yet specified;
22

23 -- Change the associated channel to the slave
24 public changePhyChannel : PhyMessage ==> ()
25 changePhyChannel(ch) ==
26 channel := ch;
27

28 public getPhyChannel : () ==> PhyMessage
29 getPhyChannel() ==
30 return channel;
31

32 -- Changes the associated ID to the port
33 public changePortID: nat ==> ()
34 changePortID(id) ==
35 portID := id;
36

37 end Port
� �
C.3.8 Slave

�
1 class Slave is subclass of Port
2

3 instance variables
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4

5 ingressTime : real := 0;
6

7 -- sync event flag. Holds true value if a sync event
8 -- is put on the bus.
9 private syncEvent : bool := false;

10

11 -- Contents of the follow up message
12 private preciseOriginTS : real := 0.0;
13 private cummulativeRateRatio : real := 0.0;
14 private correctionField : real := 0.0;
15

16 private followUpReady : bool := false;
17

18 public clk : Clock;
19

20

21 operations
22

23 public checkSync : () ==> ()
24 checkSync() ==
25 (
26 syncEvent := channel.getSyncEvent();
27 if syncEvent = true then
28 timeStamp(); -- Time stamp
29 );
30

31 public checkFollowUp: () ==> ()
32 checkFollowUp() ==
33 (
34 let i : seq of real = channel.getFollowUp() in
35 (
36 if len i = 0 then
37 followUpReady := false
38 else
39 (
40 correctionField := i(1);
41 preciseOriginTS := i(2);
42 cummulativeRateRatio := i(3);
43 )
44 );
45 );
46

47 public timeStamp : () ==> ()
48 timeStamp() ==
49 ingressTime := clk.getTime();
50

51 public getIngressTime : () ==> real
52 getIngressTime () ==
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53 return ingressTime;
54

55 -- Class constructor
56 public Slave: PhyMessage ==> Slave
57 Slave(phy) ==
58 channel := phy;
59

60 -- Receives the cummulative rate ratio
61 public receiveCRR: () ==> real
62 receiveCRR() ==
63 channel.getCRR();
64

65 -- Receives the correction field
66 public receiveCorrectionField: () ==> real
67 receiveCorrectionField() ==
68 channel.getCField();
69

70 -- Receives the precise origin time stamp
71 public receivePOTS : () ==> real
72 receivePOTS() ==
73 channel.getPOTS();
74

75 -- Receives the follow up message
76 -- Receives Precise Origing Time Stamp, cummulative rate ratio
77 -- and correction field in one invocation
78 public receiveFollowUpMessage: () ==> seq of real
79 receiveFollowUpMessage() ==
80 return [correctionField,preciseOriginTS,cummulativeRateRatio];
81

82 -- Checks if there is a synchronization event
83 -- available
84 public receiveSyncEvent: () ==> bool
85 receiveSyncEvent() ==
86 return syncEvent;
87

88 -- Gets the frequency associated to the master
89 public getFreq: () ==> real
90 getFreq() ==
91 return channel.getMasterFreq();
92

93 public timeStep: () ==> ()
94 timeStep() ==
95 (
96 if not syncEvent then
97 checkSync()
98 else
99 if not followUpReady then

100 checkFollowUp();
101 );
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102

103 thread
104 while true do
105 (
106 timeStep();
107 Environment‘timerRef.WaitRelative(1);
108 );
109

110 end Slave
� �
C.3.9 TimeStamp

�
1 class TimeStamp
2

3 values
4

5 public stepLength : nat = 1;
6

7 instance variables
8

9 currentTime : nat := 0;
10 wakeUpMap : map nat to [nat] := {|->};
11 barrierCount : nat1;
12

13 operations
14

15 public TimeStamp : nat1 ==> TimeStamp
16 TimeStamp(count) ==
17 barrierCount := count;
18

19 public WaitRelative : nat ==> ()
20 WaitRelative(val) ==
21 WaitAbsolute(currentTime + val);
22

23 public WaitAbsolute : nat ==> ()
24 WaitAbsolute(val) == (
25 AddToWakeUpMap(threadid, val);
26 -- Last to enter the barrier notifies the rest.
27 BarrierReached();
28 -- Wait till time is up
29 Awake();
30 );
31

32 BarrierReached : () ==> ()
33 BarrierReached() ==
34 (
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35 while (card dom wakeUpMap = barrierCount) do
36 (
37 currentTime := currentTime + stepLength;
38 let threadSet : set of nat = {th | th in set dom wakeUpMap
39 & wakeUpMap(th) <> nil and
40 wakeUpMap(th) <= currentTime }
41 in
42 for all t in set threadSet
43 do
44 wakeUpMap := {t} <-: wakeUpMap;
45 );
46 )
47 post forall x in set rng wakeUpMap & x = nil or
48 x >= currentTime;
49

50 AddToWakeUpMap : nat * [nat] ==> ()
51 AddToWakeUpMap(tId, val) ==
52 wakeUpMap := wakeUpMap ++ { tId |-> val };
53

54 public NotifyThread : nat ==> ()
55 NotifyThread(tId) ==
56 wakeUpMap := {tId} <-: wakeUpMap;
57

58 public GetTime : () ==> nat
59 GetTime() ==
60 return currentTime;
61

62 Awake: () ==> ()
63 Awake() == skip;
64

65 public ThreadDone : () ==> ()
66 ThreadDone() ==
67 AddToWakeUpMap(threadid, nil);
68

69 sync
70 per Awake => threadid not in set dom wakeUpMap;
71

72 mutex(AddToWakeUpMap);
73 mutex(NotifyThread);
74 mutex(BarrierReached);
75

76 mutex(AddToWakeUpMap, NotifyThread);
77 mutex(AddToWakeUpMap, BarrierReached);
78 mutex(NotifyThread, BarrierReached);
79

80 mutex(AddToWakeUpMap, NotifyThread, BarrierReached);
81

82 end TimeStamp
� �
231



Appendix C. AVB case study VDM models

C.4. Real-time model

C.4.1 App

�
1 class App
2

3 instance variables
4

5 private preciseOriginTS : real;
6 private correctionField : real;
7

8 private localTimeStamp : real;
9

10 private timeInfoReady : bool := false;
11

12 private timeInfoProvided : bool := false;
13

14

15 operations
16

17 public receiveTimeInformation : seq of real ==> ()
18 receiveTimeInformation (timeSeq) ==
19 (
20 preciseOriginTS := timeSeq(1);
21 correctionField := timeSeq(2);
22 localTimeStamp := timeSeq(3);
23

24 timeInfoReady := true;
25

26 markInfoProvided();
27

28 );
29

30 public showReceivedTime : () ==> ()
31 showReceivedTime() ==
32 (
33 if timeInfoReady then
34 (
35 IO‘print("\nAt time: ");
36 IO‘print(localTimeStamp);
37 IO‘print("\nThe Grand Master time was: ");
38 IO‘print(preciseOriginTS);
39 IO‘print("\nIt has been corrected with: ");
40 IO‘print(correctionField);
41 IO‘print("\nFinal time for previos timestamp is: ");
42 IO‘print(preciseOriginTS+correctionField);
43

44 markInfoProvided();
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45 )
46 else
47 IO‘print("\n Message from application:
48 Time information not Ready");
49 );
50

51 private markInfoProvided : () ==> ()
52 markInfoProvided() ==
53 timeInfoProvided := true;
54

55 public infoProvided : () ==> bool
56 infoProvided() ==
57 return timeInfoProvided;
58

59

60

61 sync
62 mutex(markInfoProvided,infoProvided);
63 mutex(receiveTimeInformation);
64 mutex(showReceivedTime, infoProvided);
65 mutex(showReceivedTime,receiveTimeInformation);
66

67 end App
� �
C.4.2 Clock

�
1 class Clock
2

3 instance variables
4

5 currentTime : nat := 0;
6

7 operations
8

9 public tick: () ==> ()
10 tick() ==
11 (
12 duration (0) currentTime := currentTime +1;
13 );
14

15 public getTime: () ==> nat
16 getTime() ==
17 return time;
18

19 thread
20 -- while true do
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21 -- (
22 -- tick();
23 -- );
24

25 -- periodic (2000E6,0,0,0) (tick)
26 -- periodic (9E9,0,0,0) (tick) (Working)
27 periodic(1E1,0,0,0) (tick)
28

29 -- periodic (1E3,0,0,0) (tick)
30

31 sync
32 mutex(tick,getTime);
33 mutex(tick);
34

35 end Clock
� �
C.4.3 ClockSlave

�
1 class ClockSlave
2

3 instance variables
4

5 private siteSync : Device;
6

7 private preciseOriginTS : real;
8 private correctionField : real;
9 private localTimeStamp : real;

10

11 private timeConsumers : seq of App := [];
12

13 private newTimeInfoReady : bool := false;
14

15 operations
16

17 public registerApp : App ==> ()
18 registerApp(ap) ==
19 timeConsumers := timeConsumers ^ [ap];
20

21 public setTimeInfo: seq of real ==> ()
22 setTimeInfo(timeSeq) ==
23 (
24 if len timeSeq > 2 then
25 (
26 preciseOriginTS := timeSeq(1);
27 correctionField := timeSeq(2);
28 localTimeStamp := timeSeq(3);
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29 newTimeInfoReady := true;
30 )
31

32 );
33

34 public timeStep: () ==> ()
35 timeStep() ==
36 if newTimeInfoReady then
37 (
38 notifyTime();
39 newTimeInfoReady := false;
40 )
41 else
42 skip;
43

44 public notifyTime : () ==> ()
45 notifyTime() ==
46 let t : seq of real =
47 [preciseOriginTS,
48 correctionField,
49 localTimeStamp] in
50 for all i in set {1,...,len timeConsumers} do
51 timeConsumers(i).receiveTimeInformation(t);
52

53 public setSiteSync : Device ==> ()
54 setSiteSync(dv) ==
55 siteSync := dv;
56

57 public getTime:() ==> ()
58 getTime() ==
59 ();
60

61 public ClockSlave: App ==> ClockSlave
62 ClockSlave(ap) ==
63 (
64 registerApp(ap);
65 );
66

67 public triggerPrint: () ==> ()
68 triggerPrint() ==
69 for all i in set {1,...,len timeConsumers} do
70 timeConsumers(i).showReceivedTime();
71

72 thread
73 while true do
74 (
75 timeStep();
76 );
77
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78 sync
79 mutex(timeStep,setTimeInfo);
80 mutex(notifyTime,setTimeInfo);
81

82 end ClockSlave
� �
C.4.4 Deployer

�
1 system Deployer
2

3 instance variables
4

5 -- Architecture definition
6

7 /*
8 Computing units:
9 Priority: <FP> - Fixed priority

10 <PP> - Priority?
11

12 Speed is giving in MIPS - Millions of instructions per second
13 */
14

15 cpu1 : CPU := new CPU(<FP>, 1E7);
16 cpu2 : CPU := new CPU(<FP>, 1E9);
17

18 cpu3 : CPU := new CPU(<FP>, 1E7);
19

20 cpu4 : CPU := new CPU(<FP>, 1E9);
21

22 /*
23 Communication bus:
24 Modes: <CSMACD> - ?
25 */
26 bus : BUS := new BUS(<CSMACD>, 72E9,{ cpu1,cpu2});
27 bus2 : BUS := new BUS(<CSMACD>, 20E5, {cpu1,cpu3});
28

29

30 -- Used only to evaluate the fourth configuration
31 --(independent SiteSync block)
32 --bus : BUS := new BUS(<CSMACD>, 72E9,{ cpu1,cpu4});
33

34 siteSyncCom : BUS := new BUS(<CSMACD>, 72E9, {cpu4,cpu2});
35

36

37 public static siteSync : Device := new Device();
38 public static slave : Slave := new Slave();
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39 public static clkSlave : ClockSlave := new ClockSlave();
40 public static app : App := new App();
41 public static channel : PhyMessage := new PhyMessage();
42 public static simClk : Clock := new Clock();
43 public static timerRef : TimeStamp := new TimeStamp(1);
44

45 operations
46

47 public Deployer : () ==> Deployer
48 Deployer () ==
49 (-- TODO Deploy deployable object to cpu’s
50

51 slave.clk := simClk;
52

53 -- Establish the relationships between the entities
54

55 -- 1. Register the Application in the clock slave entity
56 clkSlave.registerApp(app);
57 clkSlave.setSiteSync(siteSync);
58

59 -- 2. Associate the clock slave to the siteSync entity
60 siteSync.setClockSlave(clkSlave);
61

62 -- 3. Configure the physical layer and associate it to the
63 -- slave port
64 slave.changePhyChannel(channel);
65

66 -- 4. Associate the slave port to the siteSync entity
67 siteSync.setSlavePort(slave);
68

69 channel.setMasterFreq(10);
70 siteSync.setLocalFreq(20);
71 siteSync.getFreq();
72 siteSync.calculateNeighbourRR();
73

74 siteSync.setFinalDevice();
75

76 -- Configuration 1
77 cpu1.deploy(slave);
78 cpu1.deploy(clkSlave);
79 cpu1.deploy(app);
80 cpu1.deploy(siteSync);
81

82 cpu2.deploy(channel);
83 cpu2.deploy(simClk);
84

85

86 /*
87 -- Architecture 2
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88 cpu1.deploy(app);
89 cpu1.deploy(clkSlave);
90 cpu1.deploy(siteSync);
91

92 cpu2.deploy(slave);
93 cpu2.deploy(channel);
94 cpu2.deploy(simClk);
95 */
96

97 -- Architecture 3
98 /*
99 cpu1.deploy(clkSlave);

100 cpu1.deploy(app);
101

102 cpu2.deploy(siteSync);
103 cpu2.deploy(slave);
104 cpu2.deploy(channel);
105 cpu2.deploy(simClk);
106 */
107

108 -- Architecture 4
109

110 /*
111 cpu1.deploy(clkSlave);
112 cpu1.deploy(app);
113

114 cpu4.deploy(siteSync);
115

116 cpu2.deploy(slave);
117 cpu2.deploy(channel);
118 cpu2.deploy(simClk);
119 */
120

121 -- CPU’s are started implicit
122 );
123

124 end Deployer
� �
C.4.5 Device

�
1 class Device
2

3 instance variables
4

5 -- Device ID number
6 private deviceID : nat := 0;
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7

8 -- Set device as a bridge
9 public isBridge : bool := true;

10

11 -- Frequency of the current device.
12 private freq : nat := 0;
13

14 -- Slave port associated to the device
15 public slavePort : Slave;
16

17 -- Device with no external slaves connected
18 -- (finalDevice = true)
19 public finalDevice : bool := false;
20 --inv finalDevice => len masterPorts = 0;
21

22 -- Current device is Grand Master -> iGM = true
23 -- if device isGM it should not have masters attached.
24 public isGM : bool := false;
25 inv isGM => not finalDevice;
26 inv finalDevice => not isGM;
27

28 -- Frequency of the master device
29 private masterFreq : nat := 0;
30

31 private receivedSyncEvent : bool := false;
32 private syncRecTS : nat := 0;
33

34 -- Neighbour rate ratio measured by the slave port
35 private neighbourRateRatio : real := 1;
36

37 -- Precise origin timestamp, defined by GM and
38 -- never changed.
39 private preciseOriginTS : real := 0;
40

41 -- received correction field, to be recomputed
42 -- before use.
43 private receivedCorrectionField : real := 0;
44

45 -- CumulativeRateRatio received from the previous
46 -- node.
47 private cummulativeRateRatio : real := 1;
48 -- Delay from master to slave port
49 private linkDelay : real := 10;
50 -- Time that has been spent in the current node
51 private residenceTime : real := 0;
52

53 -- Correction field calculated at the current node,
54 -- to be used in the current node.
55 private newCorrectionField : real := 0;
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56 -- CummulativeRateRatio calculated at the current node,
57 -- to be used in the current node.
58 private newCummulativeRateRatio : real := 0;
59

60 -- Clock attached to the device
61 private clk : Clock;
62

63 private timeInfoAvailable : bool;
64

65 public cSlave : ClockSlave := new ClockSlave();
66

67 private followUpMessageReceived : bool := false;
68

69 private clockNotified : bool := false;
70

71

72 private readSyncEvent : bool := false;
73 private readFollowUpMessage : bool := false;
74

75 operations
76

77 public setClockSlave: ClockSlave ==> ()
78 setClockSlave(c) ==
79 cSlave := c;
80

81 -- Actions carried out at the device per time-step
82 public timeStep: () ==> ()
83 timeStep() ==
84 (
85 if receivedSyncEvent = false then
86 ( receiveSyncEvent(); IO‘print("#syncEvent#");)
87 else if receivedSyncEvent and not followUpMessageReceived then
88 ( receiveFollowUpMessage(); IO‘print("Follow up received");)
89 else if receivedSyncEvent and followUpMessageReceived then
90 ( notifyClock(); IO‘print("CLocks notified"););
91 );
92

93

94 -- Actions carried out at the device per time-step
95 public timeStep2: () ==> ()
96 timeStep2() ==
97 (
98 if receivedSyncEvent = false then
99 ( receiveSyncEvent();)

100 else if receivedSyncEvent and
101 not followUpMessageReceived then
102 ( receiveFollowUpMessage(); )
103 else if receivedSyncEvent and
104 followUpMessageReceived and
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105 not clockNotified then
106 ( notifyClock(); );
107 );
108

109 public markReadSE : () ==> ()
110 markReadSE() ==
111 readSyncEvent := true;
112

113 public markReadFUM : () ==> ()
114 markReadFUM() ==
115 readFollowUpMessage := true;
116

117 public readyForNext : () ==> ()
118 readyForNext() ==
119 (
120 readFollowUpMessage := false;
121 readSyncEvent := false;
122 );
123

124 public notifyClock : () ==> ()
125 notifyClock() ==
126 (
127 cSlave.setTimeInfo(
128 [preciseOriginTS,
129 receivedCorrectionField,
130 syncRecTS]);
131 clockNotified := true;
132 );
133

134 public makeTimeAvailable : () ==> ()
135 makeTimeAvailable() ==
136 timeInfoAvailable := true;
137

138 public getTimeInfo : () ==> seq of real
139 getTimeInfo() ==
140 return [preciseOriginTS,
141 receivedCorrectionField,
142 cummulativeRateRatio];
143

144 public timeInfoRead : () ==> ()
145 timeInfoRead() ==
146 timeInfoAvailable := false;
147

148 -- Sets the slave port that corresponds to the current device
149 public setSlavePort: Slave ==> ()
150 setSlavePort(s) ==
151 slavePort := s;
152

153 -- Sets device ID
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154 public setDeviceID: nat ==> ()
155 setDeviceID(id) ==
156 deviceID := id
157 pre deviceID = 0
158 post deviceID <> 0;
159

160 -- Gets device ID
161 public getDeviceID: () ==> nat
162 getDeviceID() ==
163 return deviceID
164 pre deviceID <> 0;
165

166 -- Receives the POTS
167 public receivePOTS: () ==> ()
168 receivePOTS() ==
169 preciseOriginTS := slavePort.receivePOTS();
170

171 public setLocalFreq : nat ==> ()
172 setLocalFreq(f) ==
173 freq := f;
174

175 -- Sets the frequency of the master device.
176 public setMasterFreq : nat ==> ()
177 setMasterFreq (f) ==
178 masterFreq := f
179 pre f <> 0;
180

181 -- Get the frequency of the master device attached to
182 -- the slave port.
183 public getFreq : () ==> ()
184 getFreq() ==
185 if (not isGM) then setMasterFreq(slavePort.getFreq());
186

187

188 -- Receives the follow up message sent by the master.
189 -- Reception is performed in one operation.
190 public receiveFollowUpMessage: () ==> ()
191 receiveFollowUpMessage() ==
192 ( let s : seq of real = slavePort.receiveFollowUpMessage() in
193 (
194 atomic (
195 receivedCorrectionField := s(1);
196 preciseOriginTS := s(2);
197 cummulativeRateRatio := s(3); );
198 if s(1) <> 0 and s(2) <>0 and s(3) <> 0 then
199 followUpMessageReceived := true;
200 );
201 );
202

242



Device

203 -- Receives the cummulative rate ratio at the slave
204 -- port. Cummulative rate ratio is sent by the master
205 -- device attached to the slave port.
206 public receiveCRR: () ==> ()
207 receiveCRR() ==
208 cummulativeRateRatio:= slavePort.receiveCRR();
209

210 -- Calculates the neighbour rate ratio. This calculation
211 -- is performed at every slave device.
212 public calculateNeighbourRR : () ==> ()
213 calculateNeighbourRR () ==
214 if (not isGM) then
215 neighbourRateRatio := freq / masterFreq
216 else
217 neighbourRateRatio := 1
218 pre not isGM => (freq <> 0 and masterFreq <> 0)
219 post neighbourRateRatio <> 0;
220

221 -- Calculates the new cummulative rate ratio to be sent
222 -- to the attached slave unit.
223 public calculateCRateRatio : () ==> ()
224 calculateCRateRatio () ==
225 newCummulativeRateRatio := cummulativeRateRatio *
226 neighbourRateRatio
227 pre neighbourRateRatio <> 0 and cummulativeRateRatio <> 0;
228

229 -- Calculates the new correction field to be sent to the
230 -- attached slave unit.
231 public calculateNewCorrectionField : () ==> ()
232 calculateNewCorrectionField () ==
233 if isGM then ()
234 else (
235 newCorrectionField := linkDelay + residenceTime *
236 newCummulativeRateRatio + receivedCorrectionField;);
237

238 -- Receives a correction field sent by master unit.
239 public receiveCorrectionField : () ==> ()
240 receiveCorrectionField() ==
241 receivedCorrectionField := slavePort.receiveCorrectionField();
242

243 -- Sets the current device as a final device.
244 -- A final device will not have slave devices and
245 -- will not be acting as a master device.
246 public setFinalDevice: () ==> ()
247 setFinalDevice() ==
248 finalDevice := true
249 pre not isGM
250 post finalDevice;
251
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252 -- Receives a synchronization sync event and
253 -- time stamps it.
254 public receiveSyncEvent: () ==> ()
255 receiveSyncEvent () ==
256 (
257 receivedSyncEvent := slavePort.receiveSyncEvent();
258 receivedSyncEvent := true;
259 updateTimeRef();
260 );
261

262 -- Updates the time reference when the time stamp operation
263 -- is invoked.
264 public updateTimeRef: () ==> ()
265 updateTimeRef() ==
266 (
267 --IO‘print("\n Sync event --> timestamp generated");
268 syncRecTS := slavePort.getIngressTime();
269 );
270

271 -- Shows the device state
272 public showDevice : () ==> ()
273 showDevice () ==
274 (
275 IO‘print("\nInfo for device: ");
276 IO‘print(deviceID);
277 IO‘print("\nIs GM:");
278 IO‘print(isGM);
279 IO‘print("\nIs final device: ");
280 IO‘print(finalDevice);
281 IO‘print("\nIs sync event received: ");
282 IO‘print(receivedSyncEvent);
283 IO‘print("\nSync event received at: ");
284 IO‘print(syncRecTS);
285 IO‘print("\nFrequency: ");
286 IO‘print(freq);
287 IO‘print("\nMaster frequency: ");
288 IO‘print(masterFreq);
289 IO‘print("\nLinkDelay: ");
290 IO‘print(linkDelay);
291

292 IO‘print("\nNeighbour Rate Ratio: ");
293 IO‘print(neighbourRateRatio);
294 IO‘print("\nRecCummulative Rate Ratio: ");
295 IO‘print(cummulativeRateRatio);
296

297 IO‘print("\nReceived CorrectionField: ");
298 IO‘print(receivedCorrectionField);
299 IO‘print("\nPrecise Origin TimeStamp: ");
300 IO‘print(preciseOriginTS);
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301 );
302

303 thread
304 while true do
305 (
306 timeStep();
307 );
308

309 sync
310 mutex(updateTimeRef);
311 mutex(timeStep);
312 mutex(notifyClock,receiveFollowUpMessage);
313

314 mutex(timeStep,receivePOTS);
315 mutex(timeStep,receiveCRR);
316

317 -- mutex(timeStep, receiveSyncEvent);
318

319 end Device
� �
C.4.6 Environment

�
1 class Environment
2

3 types
4

5 public timeStimulus = seq of real;
6

7 instance variables
8

9 simSteps : nat := 3;
10

11 timeStimuli : seq of timeStimulus := [];
12

13 --public static timerRef : TimeStamp := new TimeStamp(5);
14

15 operations
16

17 public loadStimuli: () ==> ()
18 loadStimuli() ==
19 (
20 --loadStimulus([20,30,50]);
21 let i : seq of timeStimulus = [[40,20,10],[30,80,90]] in
22 for all e in set {1,...,len i} do
23 loadStimulus(i(e));
24 );
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25

26 public loadStimulus: timeStimulus ==> ()
27 loadStimulus(s) ==
28 timeStimuli := timeStimuli ^ [s];
29

30 -- Model simulation entry point
31 public run: () ==> ()
32 run() ==
33 (
34 IO‘print("\nEndpoint device receiving time corrections");
35

36 loadStimuli();
37 IO‘print(timeStimuli);
38

39 -- Simulation starts
40

41 start(Deployer‘simClk);
42 start(Deployer‘slave);
43 start(Deployer‘clkSlave);
44 start(Deployer‘siteSync);
45

46

47

48 duration(0) feedPhyMessage();
49

50

51 while Deployer‘app.infoProvided() = false do
52 (
53 wait();
54 );
55

56 -- Shows the simulation results
57 Deployer‘siteSync.showDevice();
58 Deployer‘app.showReceivedTime();
59

60 IO‘print("\nModel over\n");
61 IO‘print("####### Unused time stimuli: ");
62 IO‘print(timeStimuli);
63

64 );
65

66 public feedPhyMessage: () ==> ()
67 feedPhyMessage() ==
68 (
69 Deployer‘channel.signalSyncEvent();
70 Deployer‘channel.setFollowUp(hd timeStimuli);
71 timeStimuli := tl timeStimuli;
72 );
73
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74

75 wait: () ==> ()
76 wait() ==
77 skip;
78

79 end Environment
� �
C.4.7 PhyMessage

�
1 class PhyMessage
2

3 instance variables
4

5 -- sync event flag. Holds true value if a sync event
6 -- is put on the bus.
7 private syncEvent : bool := false;
8

9 -- Contents of the follow up message
10 private preciseOriginTS : real := 0.0;
11 private cummulativeRateRatio : real := 0.0;
12 private correctionField : real := 0.0;
13

14 -- Frequency sent by a master
15 private masterFreq : real := 0;
16

17 private fupSet : bool := false;
18

19 operations
20

21 -- Gets the contents of the follow up message.
22 public getFollowUp: () ==> seq of real
23 getFollowUp() ==
24 if not fupSet then
25 return []
26 else
27 return [correctionField,
28 preciseOriginTS,
29 cummulativeRateRatio];
30

31 -- Sets the contents of the follow up message.
32 public setFollowUp: seq of real ==> ()
33 setFollowUp(s) ==
34 (
35 setCRR(s(1));
36 setCorrectionField(s(2));
37 setPOTS(s(3));
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38 fupSet := true;
39 );
40

41 -- Signals a Synchronization event
42 public signalSyncEvent: () ==> ()
43 signalSyncEvent() ==
44 (
45 --IO‘print("\nMaster port --> Sync event sent");
46 syncEvent := true;
47 IO‘print("Message in hardware buffer at: "); IO‘print(time);
48 );
49

50 -- Check if there is a Synchronization event
51 public getSyncEvent: () ==> bool
52 getSyncEvent() ==
53 (
54 --IO‘print("\nSlave port --> Sync event received");
55 return syncEvent;
56 );
57

58 -- ###################################################
59 -- Getters and setters for the different fields in the
60 -- Physical Message.
61

62 public setMasterFreq : real ==> ()
63 setMasterFreq(f) ==
64 masterFreq := f;
65

66 public getMasterFreq: () ==> real
67 getMasterFreq() ==
68 return masterFreq;
69

70 public setCRR: real ==> ()
71 setCRR(crr) ==
72 cummulativeRateRatio := crr;
73

74 public setCorrectionField: real ==> ()
75 setCorrectionField(crf) ==
76 correctionField := crf;
77

78 public setPOTS: real ==> ()
79 setPOTS(pots) ==
80 preciseOriginTS := pots;
81

82 public getCField: () ==> real
83 getCField() ==
84 return correctionField;
85

86 public getPOTS: () ==> real
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87 getPOTS() ==
88 return preciseOriginTS;
89

90 public getCRR: () ==> real
91 getCRR() ==
92 return cummulativeRateRatio;
93

94 sync
95

96 mutex(getFollowUp,setFollowUp);
97 mutex(signalSyncEvent,getSyncEvent);
98

99 end PhyMessage
� �
C.4.8 Port

�
1 class Port
2

3 instance variables
4

5 -- Physical channel associated to the port
6 protected channel : PhyMessage;
7

8 -- Associated ID to the port
9 protected portID : nat;

10

11 protected clk : Clock;
12

13 operations
14

15 public timeStamp : () ==> ()
16 timeStamp() ==
17 is not yet specified;
18

19 public timeStep : () ==> ()
20 timeStep() ==
21 is not yet specified;
22

23 -- Change the associated channel to the slave
24 public changePhyChannel : PhyMessage ==> ()
25 changePhyChannel(ch) ==
26 channel := ch;
27

28 public getPhyChannel : () ==> PhyMessage
29 getPhyChannel() ==
30 return channel;
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31

32 -- Changes the associated ID to the port
33 public changePortID: nat ==> ()
34 changePortID(id) ==
35 portID := id;
36

37 end Port
� �
C.4.9 Slave

�
1 class Slave is subclass of Port
2

3 instance variables
4

5 ingressTime : real := 0;
6

7 -- sync event flag. Holds true value if a sync event
8 -- is put on the bus.
9 private syncEvent : bool := false;

10

11 -- Contents of the follow up message
12 private preciseOriginTS : real := 0.0;
13 private cummulativeRateRatio : real := 0.0;
14 private correctionField : real := 0.0;
15

16 private followUpReady : bool := false;
17

18 public clk : Clock;
19

20 partialTime : real := 0;
21

22

23 operations
24

25 public checkSync : () ==> ()
26 checkSync() ==
27 (
28 duration(0) partialTime := time;
29 duration(0) syncEvent := channel.getSyncEvent();
30 if syncEvent = true then
31 duration(0) timeStamp(); -- Time stamp
32 );
33

34 public checkFollowUp: () ==> ()
35 checkFollowUp() ==
36 (
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37 let i : seq of real = channel.getFollowUp() in
38 (
39 if len i = 0 then
40 followUpReady := false
41 else
42 (
43 atomic (
44 correctionField := i(1);
45 preciseOriginTS := i(2);
46 cummulativeRateRatio := i(3););
47 )
48 );
49 );
50

51 public timeStamp : () ==> ()
52 timeStamp() ==
53 ( duration(0) ingressTime := clk.getTime();
54 duration(0) IO‘print("Received at time: ");
55 IO‘print(partialTime);
56 );
57

58 public getIngressTime : () ==> real
59 getIngressTime () ==
60 return ingressTime;
61

62 -- Class constructor
63 public Slave: PhyMessage ==> Slave
64 Slave(phy) ==
65 channel := phy;
66

67 -- Receives the cummulative rate ratio
68 public receiveCRR: () ==> real
69 receiveCRR() ==
70 channel.getCRR();
71

72 -- Receives the correction field
73 public receiveCorrectionField: () ==> real
74 receiveCorrectionField() ==
75 channel.getCField();
76

77 -- Receives the precise origin time stamp
78 public receivePOTS : () ==> real
79 receivePOTS() ==
80 channel.getPOTS();
81

82 -- Receives the follow up message
83 -- Receives Precise Origing Time Stamp, cummulative rate ratio
84 -- and correction field in one invocation
85 public receiveFollowUpMessage: () ==> seq of real
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86 receiveFollowUpMessage() ==
87 return [correctionField,preciseOriginTS,cummulativeRateRatio];
88

89 -- Checks if there is a synchronization event
90 -- available
91 public receiveSyncEvent: () ==> bool
92 receiveSyncEvent() ==
93 return syncEvent;
94

95 -- Gets the frequency associated to the master
96 public getFreq: () ==> real
97 getFreq() ==
98 return channel.getMasterFreq();
99

100 public timeStep: () ==> ()
101 timeStep() ==
102 (
103 if not syncEvent then
104 checkSync()
105 else
106 if not followUpReady then
107 checkFollowUp();
108 );
109

110 thread
111

112 while true do
113 (
114 duration(0) timeStep();
115 -- -- duration(1000) ()
116 );
117

118 --periodic(2E5,0,0,0) (timeStep);
119

120 end Slave
� �
C.4.10 TimeStamp

�
1

2 class TimeStamp
3

4 values
5

6 public stepLength : nat = 1;
7

8 instance variables
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9

10 currentTime : nat := 0;
11 wakeUpMap : map nat to [nat] := {|->};
12 barrierCount : nat1;
13

14 operations
15

16 public TimeStamp : nat1 ==> TimeStamp
17 TimeStamp(count) ==
18 barrierCount := count;
19

20 public WaitRelative : nat ==> ()
21 WaitRelative(val) ==
22 WaitAbsolute(currentTime + val);
23

24 public WaitAbsolute : nat ==> ()
25 WaitAbsolute(val) == (
26 AddToWakeUpMap(threadid, val);
27 -- Last to enter the barrier notifies the rest.
28 BarrierReached();
29 -- Wait till time is up
30 Awake();
31 );
32

33 BarrierReached : () ==> ()
34 BarrierReached() ==
35 (
36 while (card dom wakeUpMap = barrierCount) do
37 (
38 currentTime := currentTime + stepLength;
39 let threadSet : set of nat = {th | th in set domwakeUpMap
40 & wakeUpMap(th) <> nil and
41 wakeUpMap(th) <= currentTime }
42 in
43 for all t in set threadSet
44 do
45 wakeUpMap := {t} <-: wakeUpMap;
46 );
47 )
48 post forall x in set rng wakeUpMap & x = nil or x >= currentTime;
49

50 AddToWakeUpMap : nat * [nat] ==> ()
51 AddToWakeUpMap(tId, val) ==
52 wakeUpMap := wakeUpMap ++ { tId |-> val };
53

54 public NotifyThread : nat ==> ()
55 NotifyThread(tId) ==
56 wakeUpMap := {tId} <-: wakeUpMap;
57
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58 public GetTime : () ==> nat
59 GetTime() ==
60 return currentTime;
61

62 Awake: () ==> ()
63 Awake() == skip;
64

65 public ThreadDone : () ==> ()
66 ThreadDone() ==
67 AddToWakeUpMap(threadid, nil);
68

69 sync
70 per Awake => threadid not in set dom wakeUpMap;
71

72 mutex(AddToWakeUpMap);
73 mutex(NotifyThread);
74 mutex(BarrierReached);
75

76 mutex(AddToWakeUpMap, NotifyThread);
77 mutex(AddToWakeUpMap, BarrierReached);
78 mutex(NotifyThread, BarrierReached);
79

80 mutex(AddToWakeUpMap, NotifyThread, BarrierReached);
81

82 end TimeStamp
� �
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AppendixD
Representations and models used at
different levels of abstraction

An adequate level of description should be provided at each abstraction level in order to be able to
describe and analyse the relevant aspects of it. The aspects of interest at different abstraction lev-
els vary considerably, therefore several modelling languages and methods, are required to create
expressive and adequate representations at each level. Several authors [Wolf03, Waddington&06,
Edwards&97] remark the fact that heterogeneous modelling is the most promising was of working
with Hardware/Software systems. By using different modelling techniques in a systematic man-
ner, clearly defining and understanding borderlines and interfaces between the representations,
the best out of each modelling technology can be obtained. Besides defining the links between
the models, it is responsibility of the modeller to apply the correct language at each level of ab-
straction, considering the kind and amount of details the model has to incorporate. For example,
incorporating specific hardware details at an algorithmic level would not be relevant to discuss
the system behaviour from a software perspective, further more, such a level of detail would be
an inconvenient while understanding the software components of the system. On the other hand,
specific hardware details are essential in a CAM model.

At an algorithmic level, languages like Unified Modelling Language (UML), Matlab or Specifica-
tion Description Languages (SDL) are efficient in terms of expressiveness and precision. SystemC
is performing better than the previous languages when it comes to model hardware implementa-
tions, furthermore, it is flexible and can be used across the interface level, the transaction level
and the cycle accurate level. However, since it is an extension of the programming language C++,
models tend to be mixed with implementation details.

In general, the lower the level of abstraction, the more details will be present. This implies more
precision and complexity in the system representation. Taking as an example a hardware block, at
the algorithmic level it might be represented by a black box that provides an interface to the appli-
cation logic. This abstraction is isolating memory addresses from business logic through functions
to read/write data to the interface. At an interface level it is relevant to know where exactly the
data is placed and which procedure has to be followed in order to read/write data to the memory
block. Details that were not relevant at an algorithmic level now are becoming important e.g.:
concrete memory addresses, reserved areas... Figure D.1 shows part of this information and an
adequate representation of it. Note that at this level time details are not relevant, details that will
be incorporated in a TLM model when the current representation is refined.
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Figure D.1: Part of the memory map of an Audio Video Bridging (AVB) core interface. This
memory map serves as an interface between the software and the hardware layers.

The description provided at the interface level is sufficient and precise enough for a programmer
that is using the hardware, and is adequate for a hardware engineer to understand the interfaces
that should be provided by the hardware layer. However a hardware engineer needs to represent
more details while modelling a hardware block. In this case, what happens between clock cycles
becomes relevant, and the information representation goes down to the bit level. At this level,
specific Hardware Description Languages (HDL) like VHDL or Verilog are used. As an example
of the level of detail that can be modelled with this languages, a VHDL representation of a tri-
state buffer1 is presented in D. This representation is useful for a hardware engineer aiming to
implement the actual RTL layer. The architecture and behaviour are described at the bit level, e.g:
en line 3 three bit variables are declared. The values these bits are holding during tristate operation
are further specified in lines 10, 13 and 14.

1 entity test_tristate is
2 generic ( width : integer := 17 );
3 port ( en1, en2, en3 : in std_ulogic;
4 inp1, inp2, inp3 : in std_logic_vector (width downto 0);
5 tribus : out std_logic_vector (width downto 0));
6 end test_tristate;
7

8 architecture rtl of test_tristate is
9 begin

10 tribus <= inp1 when (en1 = ’1’) else
11 (others => ’Z’);
12 tribus <= inp2 when (en2 = ’1’) else
13 (others => ’Z’);
14 tribus <= inp3 when (en3 = ’1’) else
15 (others => ’Z’);
16 tribus <= ( others => ’H’ );
17 end rtl;

It is possible to go even further and analyse the actual silicon implementation in the FPGA. In
figure figure D.2, the used silicon area is shown. This representation of the system is critical for
fine-tuning, floor planning and optimization. As it has been shown, multiple system views are of-
fered by multiple modelling and representation technologies. Different representation techniques

1Logic device able to output a high or low logical level or present a high impedance (disconnected) state
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(in the end, modelling techniques) at the implementation level are widely accepted in industry.
All of the above presented models, are providing relevant details at different levels of abstraction.
Note that so far the models have been performed considering a single system. Besides this sce-
nario, many problems are solved by systems that are communicating with other active systems,
e.g. a network bridge, which implements certain business logic and communicates with other
devices. This introduces an additional abstraction level, which is the Systems of Systems view.
Certain communication and interaction requirements from the System of System point of view
might be worth to consider while performing the Hardware/Software partitioning. Different par-
titioning schemes might have an impact from the distributed-real time perspective that should be
considered in the development process.
Additional details on the properties the modelling languages should present will be provided in
section 2.4. Further discussion on modelling technologies in the Hardware/Software co-design
area will be exposed in chapter 4.

Figure D.2: Used silicon area in a programmed FPGA. Layout information can be obtained
through specific tools provided by the manufacturer. Source: xilinx.com

257

xilinx.com




AppendixE
MATLAB Based Methodology for
Hardware/Software Validation

The official MATLAB based methodology is considering primarily three scenarios. In the first
one,shown in figure E.1 MATLAB is used as a test bench providing on-the-fly stimulus to an
HDL block, simulated in a specialized EDA tool and to Algorithms running in MATLAB. Later
on, results can be analysed in the MATLAB tool.

Figure E.1: MATLAB Simulink used as a testing infrastructure. Source: [Simulink]

In the second scenario, figure E.2, a MATLAB block is substituting an Hardware Definition Lan-
guage block. The advantage of such an approach is that different functionality can be evaluated
rapidly by implementing it in a high level programming language, without having to implement
it in HDL. It must be remarked that this second simulation is taking place in the EDA simulator
tool, and using MATLAB only as a functionality provider.
The last scenario, shown in figure E.3, is a combination of the previous two. Simulink is use to
provide stimulus and to implement some of the HDL blocks. Part of the functionality is run in
the EDA simulator and the rest in Simulink blocks. Finally, simulation results are analysed in
Simulink.
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Figure E.2: MATLAB Simulink combining an algorithm block and an HDL implementation.
Source: [Simulink]

Figure E.3: Combined test approach for HDL and Simulink simulations. Source: [Simulink]
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