Author: Shin Sahara
This example is made by Shin Sahara as a test of local higher order functions defined inside explicit function definitions in order to test the correct interpretation of these constructs.
Properties | Values |
---|---|
Language Version: | classic |
Entry point : | Diet`BMI(100,200) |
Entry point : | Diet`getWeightFromBMI(55,76) |
class Diet
values
public e = 1E-10;
public h = 1e-5;
functions
static public BMI : real* real -> real
BMI(weight, height) ==
let h100 = height / 100 in
weight / h100 ** 2
pre
weight > 0 and height > 0
post
RESULT > 0;
static public getWeightFromBMI : real * real -> real
getWeightFromBMI(height, aBMI) ==
let
f = lambda weight : real & aBMI - BMI(weight, height)
in
newton(f)(60)
pre
height > 0 and aBMI > 0
post
abs(aBMI - BMI(RESULT, height)) <= e;
static public newton: (real ->real) -> real -> real
newton(f)(x) ==
let isFinish = lambda y : real & abs(f(y)) < e,
nextApproximate = lambda y : real & y - (f(y) / derivative(f)(y)) in
Funtil[real](isFinish)(nextApproximate)(x);
static public derivative : (real -> real) ->real -> real
derivative(f)(x) == (f(x+h) - f(x)) / h ;
static public Funtil[@T] : (@T -> bool) -> (@T -> @T) -> @T -> @T
Funtil(p)(f)(x) == if p(x) then x else Funtil[@T](p)(f)(f(x));
end Diet