Author: Peter Gorm Larsen and Marcel Verhoef
This example is used in the guidelines for developing distributed real time systems using the VICE extension to VDM++. This model is available in a sequential version, a concurrent version as well as in a distributed real-time VICE version. This is the distributed real time version of this example.
Properties | Values |
---|---|
Language Version: | vdm10 |
class BaseThread
types
public static ThreadDef ::
p : nat1
isP : bool;
instance variables
protected period : nat1 := 1;
protected isPeriodic : bool := true;
protected registeredSelf : BaseThread;
protected timeStamp : TimeStamp := TimeStamp`GetInstance();
operations
protected BaseThread : BaseThread ==> BaseThread
BaseThread(t) ==
(registeredSelf:= t;
timeStamp.RegisterThread(registeredSelf);
if(not timeStamp.IsInitialising())
then start(registeredSelf);
);
protected Step : () ==> ()
Step() ==
is subclass responsibility;
thread
(if isPeriodic
then (while true
do
(Step();
timeStamp.WaitRelative(period)
)
)
else (Step();
timeStamp.WaitRelative(0);
timeStamp.UnRegisterThread(registeredSelf);
);
);
end BaseThread
class FlareDispenser is subclass of GLOBAL, BaseThread
values
responseDB : map MissileType to Plan =
{<MissileA> |-> [mk_(<FlareOneA>,900),
mk_(<FlareTwoA>,500),
mk_(<DoNothingA>,100),
mk_(<FlareOneA>,500)],
<MissileB> |-> [mk_(<FlareTwoB>,500),
mk_(<FlareTwoB>,700)],
<MissileC> |-> [mk_(<FlareOneC>,400),
mk_(<DoNothingC>,100),
mk_(<FlareTwoC>,400),
mk_(<FlareOneC>,500)] };
missilePriority : map MissileType to nat =
{<None> |-> 0,
<MissileA> |-> 1,
<MissileB> |-> 2,
<MissileC> |-> 3 }
types
public Plan = seq of PlanStep;
public PlanStep = FlareType * Time;
instance variables
public curplan : Plan := [];
curprio : nat := 0;
busy : bool := false;
aperture : Angle;
eventid : [EventId];
operations
public FlareDispenser: Angle * [ThreadDef] ==> FlareDispenser
FlareDispenser(ang, tDef) ==
(aperture := ang;
if tDef <> nil
then (period := tDef.p;
isPeriodic := tDef.isP;
);
BaseThread(self);
);
pure public GetAngle: () ==> nat
GetAngle() ==
return aperture;
public addThreat: EventId * MissileType * Time ==> ()
addThreat (evid, pmt, ptime) ==
if missilePriority(pmt) > curprio
then (dcl newplan : Plan := [],
newtime : Time := ptime;
-- construct an absolute time plan
for mk_(fltp, fltime) in responseDB(pmt) do
(newplan := newplan ^ [mk_ (fltp, newtime)];
newtime := newtime + fltime );
-- immediately release the first action
def mk_(fltp, fltime) = hd newplan;
t = World`timerRef.GetTime() in
releaseFlare(evid,fltp,fltime,t);
-- store the rest of the plan
curplan := tl newplan;
eventid := evid;
curprio := missilePriority(pmt);
busy := true )
pre pmt in set dom missilePriority and
pmt in set dom responseDB;
protected Step: () ==> ()
Step () ==
(if len curplan > 0
then (dcl curtime : Time := World`timerRef.GetTime(),
done : bool := false;
while not done do
(dcl first : PlanStep := hd curplan,
next : Plan := tl curplan;
let mk_(fltp, fltime) = first in
if fltime <= curtime
then (releaseFlare(eventid,fltp,fltime,curtime);
curplan := next;
if len next = 0
then (curprio := 0;
done := true;
busy := false ) )
else done := true ) ) );
private releaseFlare: EventId * FlareType * Time * Time ==> ()
releaseFlare (evid, pfltp, pt1, pt2) ==
World`env.handleEvent(evid,pfltp,aperture,pt1,pt2);
public isFinished: () ==> ()
isFinished () == skip;
sync
mutex (Step);
mutex (addThreat);
per isFinished => not busy
end FlareDispenser
class Sensor is subclass of GLOBAL
instance variables
-- the missile detector this sensor is connected to
private detector : MissileDetector;
-- the left hand-side of the viewing angle of the sensor
private aperture : Angle;
operations
public Sensor: MissileDetector * Angle ==> Sensor
Sensor (pmd, psa) == ( detector := pmd; aperture := psa);
-- get the left hand-side start point and opening angle
pure public getAperture: () ==> GLOBAL`Angle * GLOBAL`Angle
getAperture () == return mk_ (aperture, SENSOR_APERTURE);
-- trip is called asynchronously from the environment to
-- signal an event. the sensor triggers if the event is
-- in the field of view. the event is stored in the
-- missile detector for further processing
public trip: EventId * MissileType * Angle ==> ()
trip (evid, pmt, pa) ==
-- log and time stamp the observed threat
detector.addThreat(evid, pmt,pa,World`timerRef.GetTime())
pre canObserve(pa, aperture, SENSOR_APERTURE)
end Sensor
class Environment is subclass of GLOBAL, BaseThread
types
public InputTP = (Time * seq of inline);
public inline = EventId * MissileType * Angle * Time;
public outline = EventId * FlareType * Angle * Time * Time
instance variables
-- access to the VDMTools stdio
io : IO := new IO();
-- the input file to process
inlines : seq of inline := [];
-- the output file to print
outlines : seq of outline := [];
-- maintain a link to all sensors
ranges : map nat to (Angle * Angle) := {|->};
sensors : map nat to Sensor := {|->};
inv dom ranges = dom sensors;
busy : bool := true;
-- Amount of time we want to simulate
simtime : Time;
operations
public Environment: seq of char * [ThreadDef] ==> Environment
Environment (fname, tDef) ==
(def mk_ (-,mk_(timeval,input)) = io.freadval[InputTP](fname) in
(inlines := input;
simtime := timeval);
if tDef <> nil
then (period := tDef.p;
isPeriodic := tDef.isP;
);
BaseThread(self);
);
public addSensor: Sensor ==> ()
addSensor (psens) ==
(dcl id : nat := card dom ranges + 1;
atomic (
ranges := ranges munion {id |-> psens.getAperture()};
sensors := sensors munion {id |-> psens}
)
);
private createSignal: () ==> ()
createSignal () ==
(if len inlines > 0
then (dcl curtime : Time := World`timerRef.GetTime(),
done : bool := false;
while not done do
def mk_ (eventid, pmt, pa, pt) = hd inlines in
if pt <= curtime
then (for all id in set dom ranges do
def mk_(papplhs,pappsize) = ranges(id) in
if canObserve(pa,papplhs,pappsize)
then sensors(id).trip(eventid,pmt,pa);
inlines := tl inlines;
done := len inlines = 0;
return)
else (done := true;
return))
else (busy := false;
return));
public handleEvent: EventId * FlareType * Angle * Time * Time ==> ()
handleEvent (evid,pfltp,angle,pt1,pt2) ==
(outlines := outlines ^ [mk_ (evid,pfltp,angle,pt1,pt2)] );
public showResult: () ==> ()
showResult () ==
def - = io.writeval[seq of outline](outlines) in skip;
public isFinished : () ==> ()
isFinished () == skip;
public Step : () ==> ()
Step() ==
(if World`timerRef.GetTime() < simtime
then createSignal()
else busy := false;
);
sync
mutex (handleEvent);
mutex (createSignal);
per isFinished => not busy;
end Environment
class MissileDetector is subclass of GLOBAL, BaseThread
-- the primary task of the MissileDetector is to
-- collect all sensor data and dispatch each event
-- to the appropriate FlareController
instance variables
-- maintain a link to each controller
ranges : map nat to (Angle * Angle) := {|->};
controllers : map nat to FlareController := {|->};
inv dom ranges = dom controllers;
-- collects the observations from all attached sensors
threats : seq of (EventId * MissileType * Angle * Time) := [];
-- status of the missile detector
busy : bool := false
operations
public MissileDetector: [ThreadDef] ==> MissileDetector
MissileDetector(tDef)==
(if tDef <> nil
then (period := tDef.p;
isPeriodic := tDef.isP;
);
BaseThread(self);
);
-- addController is only used to instantiate the model
public addController: FlareController ==> ()
addController (pctrl) ==
(dcl nid : nat := card dom ranges + 1;
atomic
(ranges := ranges munion {nid |-> pctrl.getAperture()};
controllers := controllers munion {nid |-> pctrl}
);
);
-- addThreat is a helper operation to modify the event
-- list. currently events are stored first come first served.
-- one could imagine using a different ordering instead.
public addThreat: EventId * MissileType * Angle * Time ==> ()
addThreat (evid,pmt,pa,pt) ==
(threats := threats ^ [mk_ (evid,pmt,pa,pt)];
busy := true );
-- getThreat is a local helper operation to modify the event list
private getThreat: () ==> EventId * MissileType * Angle * Time
getThreat () ==
(dcl res : EventId * MissileType * Angle * Time := hd threats;
threats := tl threats;
return res );
public isFinished: () ==> ()
isFinished () ==
for all id in set dom controllers do
controllers(id).isFinished();
protected Step: () ==> ()
Step() ==
( if threats <> []
then (def mk_ (evid,pmt, pa, pt) = getThreat() in
for all id in set dom ranges do
def mk_(papplhs, pappsize) = ranges(id) in
if canObserve(pa, papplhs, pappsize)
then controllers(id).addThreat(evid,pmt,pa,pt);
busy := len threats > 0);
);
sync
mutex (Step);
-- addThreat and getThreat modify the same instance variables
-- therefore they need to be declared mutual exclusive
mutex (addThreat,getThreat);
-- getThreat is used as a 'blocking read' from the main
-- thread of control of the missile detector
per getThreat => len threats > 0;
per isFinished => not busy
end MissileDetector
class TimeStamp
values
public stepLength : nat = 1;
instance variables
currentTime : nat := 0;
wakeUpMap : map nat to [nat] := {|->};
barrierCount : nat := 0;
registeredThreads : set of BaseThread := {};
isInitialising : bool := true;
-- singleton instance of class
private static timeStamp : TimeStamp := new TimeStamp();
operations
-- private constructor (singleton pattern)
private TimeStamp : () ==> TimeStamp
TimeStamp() ==
skip;
-- public operation to get the singleton instance
pure public static GetInstance: () ==> TimeStamp
GetInstance() ==
return timeStamp;
public RegisterThread : BaseThread ==> ()
RegisterThread(t) ==
(barrierCount := barrierCount + 1;
registeredThreads := registeredThreads union {t};
);
public UnRegisterThread : BaseThread ==> ()
UnRegisterThread(t) ==
(barrierCount := barrierCount - 1;
registeredThreads := registeredThreads \ {t};
);
public IsInitialising: () ==> bool
IsInitialising() ==
return isInitialising;
public DoneInitialising: () ==> ()
DoneInitialising() ==
(if isInitialising
then (isInitialising := false;
for all t in set registeredThreads
do
start(t);
);
);
public WaitRelative : nat ==> ()
WaitRelative(val) ==
(WaitAbsolute(currentTime + val);
);
public WaitAbsolute : nat ==> ()
WaitAbsolute(val) == (
AddToWakeUpMap(threadid, val);
-- Last to enter the barrier notifies the rest.
BarrierReached();
-- Wait till time is up
Awake();
);
BarrierReached : () ==> ()
BarrierReached() ==
(
while (card dom wakeUpMap = barrierCount) do
(
currentTime := currentTime + stepLength;
let threadSet : set of nat = {th | th in set dom wakeUpMap
& wakeUpMap(th) <> nil and wakeUpMap(th) <= currentTime }
in
for all t in set threadSet
do
wakeUpMap := {t} <-: wakeUpMap;
);
)
post forall x in set rng wakeUpMap & x = nil or x >= currentTime;
AddToWakeUpMap : nat * [nat] ==> ()
AddToWakeUpMap(tId, val) ==
wakeUpMap := wakeUpMap ++ { tId |-> val };
public NotifyThread : nat ==> ()
NotifyThread(tId) ==
wakeUpMap := {tId} <-: wakeUpMap;
pure public GetTime : () ==> nat
GetTime() ==
return currentTime;
Awake: () ==> ()
Awake() == skip;
public ThreadDone : () ==> ()
ThreadDone() ==
AddToWakeUpMap(threadid, nil);
sync
per Awake => threadid not in set dom wakeUpMap;
mutex (IsInitialising);
mutex (DoneInitialising);
mutex (AddToWakeUpMap);
mutex (NotifyThread);
mutex (BarrierReached);
mutex (AddToWakeUpMap, NotifyThread);
mutex (AddToWakeUpMap, BarrierReached);
mutex (NotifyThread, BarrierReached);
mutex (AddToWakeUpMap, NotifyThread, BarrierReached);
end TimeStamp
class GLOBAL
values
public SENSOR_APERTURE = 90;
public FLARE_APERTURE = 120;
public DISPENSER_APERTURE = 30
types
-- there are three different types of missiles
public MissileType = <MissileA> | <MissileB> | <MissileC> | <None>;
-- there are nine different flare types, three per missile
public FlareType =
<FlareOneA> | <FlareTwoA> | <DoNothingA> |
<FlareOneB> | <FlareTwoB> | <DoNothingB> |
<FlareOneC> | <FlareTwoC> | <DoNothingC>;
-- the angle at which the missile is incoming
public Angle = nat
inv num == num < 360;
public EventId = nat;
public Time = nat;
operations
pure public canObserve: Angle * Angle * Angle ==> bool
canObserve (pangle, pleft, psize) ==
def pright = (pleft + psize) mod 360 in
if pright < pleft
-- check between [0,pright> and [pleft,360>
then return (pangle < pright or pangle >= pleft)
-- check between [pleft, pright>
else return (pangle >= pleft and pangle < pright);
end GLOBAL
class World
instance variables
public static timerRef : TimeStamp := TimeStamp`GetInstance();
public static env : [Environment] := nil;
operations
public World: () ==> World
World () ==
(-- set-up the sensors
env := new Environment("scenario.txt", nil);
env.addSensor(CM`sensor0);
env.addSensor(CM`sensor1);
env.addSensor(CM`sensor2);
env.addSensor(CM`sensor3);
-- add the first controller with four dispensers
CM`controller0.addDispenser(CM`dispenser0);
CM`controller0.addDispenser(CM`dispenser1);
CM`controller0.addDispenser(CM`dispenser2);
CM`controller0.addDispenser(CM`dispenser3);
CM`detector.addController(CM`controller0);
-- add the second controller with four dispensers
CM`controller1.addDispenser(CM`dispenser4);
CM`controller1.addDispenser(CM`dispenser5);
CM`controller1.addDispenser(CM`dispenser6);
CM`controller1.addDispenser(CM`dispenser7);
CM`detector.addController(CM`controller1);
-- add the third controller with four dispensers
CM`controller2.addDispenser(CM`dispenser8);
CM`controller2.addDispenser(CM`dispenser9);
CM`controller2.addDispenser(CM`dispenser10);
CM`controller2.addDispenser(CM`dispenser11);
CM`detector.addController(CM`controller2);
);
-- the run function blocks the user-interface thread
-- until all missiles in the file have been processed
public Run: () ==> ()
Run () ==
(-- start the environment
timerRef.DoneInitialising();
-- wait for the environment to handle all input
env.isFinished();
-- wait for the missile detector to finish
CM`detector.isFinished();
-- print the result
env.showResult())
end World
class CM
instance variables
-- maintain a link to the detector
public static detector : MissileDetector := new MissileDetector(nil);
public static sensor0 : Sensor := new Sensor(detector,0);
public static sensor1 : Sensor := new Sensor(detector,90);
public static sensor2 : Sensor := new Sensor(detector,180);
public static sensor3 : Sensor := new Sensor(detector,270);
public static controller0 : FlareController := new FlareController(0, nil);
public static controller1 : FlareController := new FlareController(120, nil);
public static controller2 : FlareController := new FlareController(240, nil);
public static dispenser0 : FlareDispenser := new FlareDispenser(0, nil);
public static dispenser1 : FlareDispenser := new FlareDispenser(30, nil);
public static dispenser2 : FlareDispenser := new FlareDispenser(60, nil);
public static dispenser3 : FlareDispenser := new FlareDispenser(90, nil);
public static dispenser4 : FlareDispenser := new FlareDispenser(0, nil);
public static dispenser5 : FlareDispenser := new FlareDispenser(30, nil);
public static dispenser6 : FlareDispenser := new FlareDispenser(60, nil);
public static dispenser7 : FlareDispenser := new FlareDispenser(90, nil);
public static dispenser8 : FlareDispenser := new FlareDispenser(0, nil);
public static dispenser9 : FlareDispenser := new FlareDispenser(30, nil);
public static dispenser10 : FlareDispenser := new FlareDispenser(60, nil);
public static dispenser11 : FlareDispenser := new FlareDispenser(90, nil);
end CM
class FlareController is subclass of GLOBAL, BaseThread
instance variables
-- the left hand-side of the working angle
private aperture : Angle;
-- maintain a link to each dispenser
ranges : map nat to (Angle * Angle) := {|->};
dispensers : map nat to FlareDispenser := {|->};
inv dom ranges = dom dispensers;
-- the relevant events to be treated by this controller
threats : seq of (EventId * MissileType * Angle * Time) := [];
-- the status of the controller
busy : bool := false
operations
public FlareController: Angle * [ThreadDef] ==> FlareController
FlareController (papp, tDef) ==
(aperture := papp;
if tDef <> nil
then (period := tDef.p;
isPeriodic := tDef.isP;
);
BaseThread(self);
);
public addDispenser: FlareDispenser ==> ()
addDispenser (pfldisp) ==
let angle = aperture + pfldisp.GetAngle() in
(dcl id : nat := card dom ranges + 1;
atomic
(ranges := ranges munion
{id |-> mk_(angle, DISPENSER_APERTURE)};
dispensers := dispensers munion {id |-> pfldisp}
);
);
-- get the left hand-side start point and opening angle
pure public getAperture: () ==> GLOBAL`Angle * GLOBAL`Angle
getAperture () == return mk_(aperture, FLARE_APERTURE);
-- addThreat is a helper operation to modify the event
-- list. currently events are stored first come first served.
-- one could imagine using a different ordering instead
public addThreat: EventId * MissileType * Angle * Time ==> ()
addThreat (evid,pmt,pa,pt) ==
(threats := threats ^ [mk_ (evid,pmt,pa,pt)];
busy := true );
-- getThreat is a local helper operation to modify the event list
private getThreat: () ==> EventId * MissileType * Angle * Time
getThreat () ==
(dcl res : EventId * MissileType * Angle * Time := hd threats;
threats := tl threats;
return res );
public isFinished: () ==> ()
isFinished () ==
for all id in set dom dispensers do
dispensers(id).isFinished();
protected Step: () ==> ()
Step() ==
(if threats <> []
then (def mk_ (evid,pmt, pa, pt) = getThreat() in
for all id in set dom ranges do
def mk_(papplhs, pappsize) = ranges(id) in
if canObserve(pa, papplhs, pappsize)
then dispensers(id).addThreat(evid,pmt,pt);
busy := len threats > 0 );
);
sync
-- addThreat and getThreat modify the same instance variables
-- therefore they need to be declared mutual exclusive
mutex (addThreat,getThreat);
mutex (Step);
-- getThreat is used as a 'blocking read' from the main
-- thread of control of the missile detector
per getThreat => len threats > 0;
per isFinished => len threats = 0 --not busy
end FlareController