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Abstract. In this paper we present a new and unique method of timing
property exploration based on the formal specification notation called
VDM++. We explain how the VDM++ notation and tool support is
being adapted to enable a pragmatic approach to detect potential tim-
ing bottlenecks with a software design before expensive commitment to
an efficient implementation is made. Finally, an industrial trial project
used to validate this approach is described. The application deals with a
guidance and control system for a missile.

1 VDM++ And VICE

VICE (VDM++ Specification In a Constrained Environment) is a European ES-
PRIT Project (no. 27618) aimed at demonstrating the applicability of the formal
technology VDM++ in highly constrained real-time systems. The objective of
VICE is to demonstrate the suitability and viability of using the formal method
VDM++ [2] for the development of highly constrained critical applications.

VICE proposes to address this issue through the use of formal methods and
within a trial application where the formal notation VDM++ and associated
tools are used for the specification and design of an airborne control system
within a missile. This application was selected as it demonstrates performance
in an extreme environment, and addresses the continuous trend of the military
industry to use Commercial-Of-The-Shelf (COTS) tools from civilian environ-
ments to significantly reduce costs.

The formal notation VDM++ was originally developed in the ESPRIT project
called AFRODITE [1] and subsequently improved by IFAD. This notation is sup-
ported by the VDM++ Toolbox [3]. It provides a precise, unambiguous basis for
analysis of requirements and allows early validation through testing and debug-
ging. In this way it is possible to bring testing activities forward to the speci-
fication phase of the development life-cycle. The current customer base for the
VDM++ technology consists of organizations who are interested in VDM++ be-
cause of its object-oriented extensions to the ISO standardized VDM-SL [5]. This
includes developers of sequential safety- or mission-critical applications which



have a requirement for correctness and reliability. However prior to the VICE
project neither the notation or tools provided significant support for concurrent,
real-time systems.

Matra BAe Dynamics (MBD) is Europe’s leading enterprise in the field of
guided weapons. Matra BAe Dynamics France (MBDF) is playing the role of
end-user and the overall coordinator of the VICE project. IFAD is playing the
role of technology provider and adapting the tools to the specific requirements
that are arising during the project.

The VICE project is scheduled to run for 24 months, and is currently at
month 18. Therefore this paper provides a snapshot of the project’s progress
so far and the direction in which the project will go. Thus this paper is orga-
nized as follows: the remainder of this section gives a description of the unique
characteristics of the defence avionics industry, and also describes the VDM++
technology. In Section 2 an overview of the approach to modelling of timing be-
haviour is described. The trial application being used in the project is described
in Section 3, together with an insight into how the timing properties of the target
application are being explored. Finally in Section 4 some concluding remarks are
given.

1.1 The Defence Avionics Industry

Missile production is a highly competitive global industry. Software used in mis-
siles is extremely complex due to both the highly constrained environment in
which it must execute and the required integrity of the software. Of itself this
renders development of such software problematic, but this is exacerbated by
uncertainty about the physical environment with which the software must inter-
act. That is, the system specifications are never fully available at the beginning
of the software development: they are completed or modified as system issues
are further investigated. For example the algorithms can depend on aerodynamic
configuration which is well known early in the development cycle, but also on
structural stress that can only be known by fire trials which can only be per-
formed late in the development process. This can result in requirements that
will be modified and completed throughout the system development. Using tra-
ditional approaches to software engineering this can prove to be time and cost
consuming.

At MBDF, software is developed for both ground-based systems and em-
bedded systems. In embedded systems there are often safety- or mission-critical
requirements including hard real-time requirements. A key question is: How can
we be sure that the dynamic architecture satisfies the timing requirements? Here,
by dynamic architecture we mean the allocation of computations to schedula-
ble threads. A major objective of the project is to demonstrate that the use of
VDM++ and the VDM++ Technology can help to answer such questions.



1.2 VDM++

In this section we describe the VDM++ notation. VDM++ is an object-oriented
specification notation; in VDM++ a complete formal specification consists of a
collection of class specifications. A class specification has the following compo-
nents:

Class header: This contains the class name declaration and inheritance infor-
mation (single or multiple).

Instance variables: The state of an object consists of variables which can be
of simple types, VDM-SL types such as sets, sequences and maps, and object
references (the clientship relation). Instance variables can have invariant and
initial expressions.

Operations: Class methods that may be defined implicitly, explicitly (through
imperative statements), or as a mixture of both. The implicit style uses pre
and post condition expressions in the VDM-SL syntax.

Synchronization: Operation invocation is defined with the Rendez-Vous se-
mantics. It is possible to specify the circumstances in which an operation
may be executed using a permission predicate for the operation. This predi-
cate is over the instance variables of the object, and also history variables for
that object. A history variable can be used to count the number of requests,
activations and completions for an operation on that object.

Thread: In VDM++ active objects are considered to model active world enti-
ties. An object can be made active by the specification of a thread. A thread
is a sequence of statements which are executed to completion, at which point
the thread dies.

1.3 The IFAD VDM++ Toolbox

The IFAD VDM++ Toolbox is a comprehensive suite of tools for the analysis
and validation of formal models described in VDM++. In this section we describe
the features currently supported by the tools.

Syntax and Type Checking: Static analysis of models.
Execution: Execution of models using an integrated symbolic interpreter. De-

bugging of models using breakpoints and single/multiple stepping. Execution
of thread-based models, with cooperative round-robin scheduling.

Code Generation: Automatic generation of code from models, into C++ or
Java.

Pretty Printing and Test Coverage: Generation of test coverage informa-
tion from model execution. Output of formatted document, with colouring
based on test coverage, incorporation of tables containing percentage cover-
age.

API: CORBA-compliant API allowing interaction with tools from other appli-
cations.

Link with Rational Rose: Automatic generation of UML models in Rose from
VDM++ models, and vice versa. Automatic merging of heterogeneous mod-
els.



2 Modelling Timing Behaviour

2.1 Background

MBDF develops many real-time systems, with either hard, soft, or a mixture of
hard and soft real-time requirements. Such systems typically consist of a number
of concurrent tasks executing on a single processor with a real-time operating
system. The scheduling algorithm used varies from system to system. MBDF’s
main objective when performing timing analysis is the validation of dynamic
architectures before starting the software integration phase. Ideally feedback on
the feasibility of a particular dynamic architecture should be provided at the
earliest possible point in the design process. Specifically, it would be desirable to
receive feedback before performing schedulability analysis on the final production
code.

2.2 Existing Approach

Currently timing analysis is restricted to using the PERTS tool [4]. This tool
provides limited feedback about the feasibility of dynamic architectures. The user
provides as input the tasks to be scheduled. For instance with periodic tasks,
the (constant) time between two consecutive ready times should be provided; for
aperiodic tasks the time between two consecutive ready times can be modelled
as either uniform or exponential distributions. Priorities may also be assigned to
the various tasks. Using this input PERTS calculates whether the tasks are
schedulable, giving a yes/no response for each task. There are a number of
drawbacks to the current approach: the level of granularity at which analysis
is performed is quite coarse; and no feedback is provided on those parts of a
design which might be causing timing bottlenecks.

2.3 The VICE Approach

The underlying philosophy for the VICE project is the practical use of precise
models. For timing analysis this means using the models constructed during the
specification and design phases to improve the quality of feedback concerning the
appropriateness of particular dynamic architectures. The approach is pragmatic
because the objective is to provide feedback rather than formal guarantees of
the kind usually obtained by formal validation or verification.

The basic idea of the approach is to simulate the timing behaviour of the
target processor within the VDM++ Toolbox interpreter. To achieve this the
interpreter maintains an internal variable which corresponds to the clock of the
target processor i.e. the clock of the target processor will be simulated. The
interpreter will adopt the same scheduling algorithm as that intended for the
final system. During execution of the model a number of events will occur:

– Swapping in and out of threads
– Operation requests, activations and completions



We call such events, trace events. For the purposes of this paper we restrict our
interest to the swapping in and out of threads.

Each trace event is logged in a trace file, with the time at which the event
occurred. This time is the reading of the clock on the target processor as recorded
by the interpreter when the event occurred. To maintain the internal variable
representing the target processor’s clock, selected portions of the VDM++ model
are enhanced with duration information, a file of default duration information is
utilized and the user provides a default task switching overhead. The intention
is that for those parts of the model whose timing properties are known from
previous experience the designer should specify duration information. Elsewhere
worst case analysis based on the default duration information is used. Further
details of this are given below. An overview of the approach is given in Figure 1.
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Fig. 1. Overview

To the existing statements of VDM++, a new statement has been added,
the duration statement.

duration statement = duration(numeral) statement



A duration is an estimate of how much time a particular portion of a VDM
model will take to execute, in the implementation, on the target processor. The
information provided by a duration statement is used to override the default
execution time calculated for that portion.

In general the approach inside the interpreter is that the time of the previ-
ous event is recorded in an internal variable. The task switching overhead is a
constant defined by the user. The execution time for statements executed since
the previous event, is the sum of the execution times for each such statement.
The execution time for an individual statement is:

If the statement does not fall under the scope of a duration statement

The default value for that particular target architecture, as calculated using
worst case analysis using default timing behaviour for the target architec-
ture.

If the statement does fall under the scope of a duration statement

If this is statement si from a block s1, . . . , sn which is bound by the duration
statement duration t, then the execution time for this statement is zero if i
is less than n. If i is equal to n the time is incremented with the time of the
entire duration statement. That is, the time will not be incremented before
the entire duration statement is completed. This is a coarse approximation
if a thread is interrupted in the middle of execution of the body of a dura-
tion statement. However, to date this has not lead to any problems with the
VICE trial application.

2.4 Example

Consider a model in which two threads are executing concurrently:

Thread 1

(s1;
s2)

Thread 2

duration (20)(
t1;
t2);
duration (10) t3

Here, s1, s2 and t1,. . .,t3 are VDM++ statements. According to the model
and the scheduling policy a number of different interleavings are possible. We
consider two of these interleavings:



Interleaving 1 Interleaving 2
s1; t1;
Thread 2 switched in Thread 1 switched in
t1; s1;
t2; Thread 2 switched in
Thread 1 switched in t2;
s2; Thread 1 switched in
Thread 2 switched in s2;
t3; Thread 2 switched in

t3;

For the purposes of this example, suppose that using worst case analysis based
on default timing behaviour for the target architecture, the following execution
times are computed for the statements:

Statement Time
s1 10
s2 20
t1 30
t2 20
t3 40

Suppose further that the user specifies the task switching overhead to be 5
time units. We now consider each interleaving in turn.

Interleaving 1 Three events will be logged to the trace file for this interleaving.
After statement s1 has been executed thread 1 is switched out. The act of
switching the task requires 5 time units. So this event is recorded in the log
file as having occurred at time point 15. After this statements t1 and t2 are
executed. The time taken to execute these is 20 time units (by the duration
statement). Thread 1 is switched back in now, so including the overhead for task
switching this event is logged to the trace file to have occurred at time point
40. The s2 statement is now executed and the time is incremented with 25 time
units. Finally thread 2 is switched back in, statement t3 is executed and its
execution will terminate at time point 75 (by the duration statement). No other
trace events occur in this interleaving.

We can represent this interleaving diagrammatically:

Execution -

s1;(10)
-

t1;t2(20)
-

s2;(10)
-

t3;(10)

15 40 65 75Event time

In this diagram, arrows represent statements executed sequentially from a
single thread before an event occurs, and the figure in brackets following the



statement is the calculated execution time for that statement. Note that in the
trace file only the events and the times at which they occurred will be logged.
Recall that an event is a switch in or out of a thread, or a request, activation or
completion of an operation call.

Interleaving 2 Interleaving 2 represents a maximal interleaving. Following ex-
ecution of statement t1, thread 1 is switched in. However, since t1 is inside the
body of a duration statement the time is not yet incremented. Thus including
the task switching overhead, statement s1 is executed at time 5. After executing
s1 thread 2 is switched in again. Now the time is 20 time units. When t2 has
been completed the entire body of the duration statement in thread 2 is com-
pleted and thus the 20 time units from the duration statement is added. When
the execution of s2 then starts 45 time units has passed. Finally when s2 has
completed and t3 is ready to start in thread 2 the time will be 70 and after the
execution of t3 the time will be 80 time units.

We can represent this interleaving diagrammatically:

Execution -

t1;(0)
-

s1;(10)
-

t2;(20)
-

s2;(20)
-

t3;(10)

5 20 45 70 80Event time

3 A Guidance And Control Application

In this section we describe the trial application being used to validate the
project’s proposed approach. The trial application is a simplified autopilot sys-
tem for a missile (see Figure 2).

The system performs the functions of navigation (which inform the missile
about its position in space), of guidance (which drives the missile along the
desired path and time schedule which it must follow) and control (which controls
the movements of the missile around its centre of gravity). The missile which the
autopilot must control is equipped with an engine whose thrust axis is parallel to
the axis Gx. It has two horizontal fins (left and right-hand side) and one vertical
fin, for which movement is limited to ±5◦ in increments of 0.5◦.

The missile flight must be controlled according to three functions: its centre of
gravity must follow the correct path (guidance function); the missile movements
around its centre of gravity must be stabilized and controlled (control function);
and the missile’s instantaneous situation in space must be known (navigation
function).

3.1 Simplified UML description

At the most basic level we can think of the autopilot as a closed-loop system
which reads information from sensors and generates commands to control sur-
faces based on this information and the desired trajectory. At a deeper level,



Fig. 2. Missile’s Control Surfaces

an autopilot system has an inherent object structure, corresponding to the tasks
performed by the system, and information stored and used in the system. In this
section we give an overview of this structure.

The Autopilot: is the principal object of the system; it coordinates all the
computations needed to pilot the missile.

The InertialMeasurementUnit : is the interface between acceleration and
angular rate sensors and the system. This object corresponds to a physical
module called inertial measurement unit (IMU).

The Route: is the desired trajectory which the missile has to follow as closely
as possible.

The Navigation: uses the flight parameters already delivered by the IMU and
computes the current missile attitude. This information is set in the flight
parameters object.

The Guidance: compares the current missile attitude with the desire trajec-
tory and generates commands to make the missile follow the trajectory.

The ControlSurfaces: is the interface with all the physical control surface.
The FlightParameters: represents the current missile attitude based on the

most recent IMU value.
The GuidanceOrders: contains the different values computed by the guid-

ance to change the current missile trajectory. They are used with the flight
parameters to compute the missile orders.

The Mission: represents the current state of the missile e.g. before launch,
during flight etc.

The MissileControl: represents the last phase of the missile order computa-
tions. It combines the current missile attitude and current missile orders to
deduce the new missile commands.

A diagram showing the inter-class relationships can be seen below.
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This diagram shows the different permanent links between classes. It has to
be read from left to right. When an arrow (an association for UML) is traced
from left to right, the left class provides some information. When the arrow is
traced from the right to the left then the right class is sending some information
to the left class.

3.2 Dynamic Structure

The autopilot system is an embedded dynamic system. An overview of the dy-
namic structure can be seen in Figure 3. In this diagram, each box (except Flight)
corresponds to an active object in the system (that is, an object with its own
thread).

Thus we can see that the system consists of a number of periodic and ape-
riodic threads. Details of periodic frequencies are not available for reasons of
confidentiality. However there is a hard real-time requirement on the delay be-
tween IMU readings becoming available, and commands being sent to control
surfaces.

The job then of the autopilot system is to synchronize the different threads,
ensuring that on arrival of the IMU readings the different threads are released
in the correct order.
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Fig. 3. Overview of Dynamic Structure

3.3 Testing approach

One of the objectives of this project is to allow early testing of the application.
The VDM++ technology provides four important tests tools: a debugger that
is useful for unitary testing; a batch mode that is useful for large scale testing;
an IO class that can be used to read input and write output; and the log file
described in Section 2.

To test the model some input data (IMU readings) that has been generated by
a guidance missile model is used. After execution with a batch file the computed
results are compared with the results from the same model.

Note that the unique aspect of the testing is the use of the log file. This
can be used in three ways: for diagnosing deadlocks; for solving behavioural
problems relating to incorrect sequencing; and for checking that hard real-time
requirements have been satisfied by the model. The first two of these uses are in
fact related, as deadlocks typically occur due to incorrect sequencing of threads.
By analysing the log file it is possible to see precisely which thread was released
when it should not have been, and what triggered its release. In this way the
cause can be traced backwards until its root is found and remedied.

Checking of hard real-time requirements is also an example of a more general
technique we can use: since the log file is essentially a sequence, it is possible
to read it back into the VDM++ Toolbox using the VDM++ IO class, and
then analyze it using arbitrary VDM++ predicates. This allows an extremely
powerful mechanism for validating run-time properties of the system.

3.4 Benefits with the VICE approach

Using the approach described above is very useful as it allows the debugging of
real-time software architectures as soon as possible in order to detect unsatisfied
requirements. It should be a good way to support and to simplify software test
phases such as the integration one. Generally, when this activity is performed,



the first step starts with testing together hardware and software. At this stage,
when a problem occurs, developers encounter great difficulty in finding the real
cause of the failure (Is it a dynamic or a scheduling failure of the software? Is it
a hardware failure? etc ). Separating these problems would give developers much
more confidence in their application if it has already been tested statically and
dynamically.

Another point from our previous experience is that the production of an op-
erational hardware platform can be delayed in time while the project milestones
are not. In that case, software people could continue performing deep testing
with a simulated behaviour of the application, and of its environment, that is
close to the real one.

These two points are key issues for project managers who are concerned with
the reduction of costs and development duration.

This approach should also be of interest to our customers, for it would make
it possible for the software team to reply speedily to queries concerning the feasi-
bility of adapting the system to respond to changed requirements. Determining
the feasibility would be aided by the pre-existing model, and by its object-
oriented architecture. In the case of a major problem, software specialists could
also propose alternative solutions (either software or hardware) to satisfy these
new requirements and help customers choose between them.

4 Concluding Remarks

4.1 Current Status

MBDF has already experienced the use of formal methods in different case stud-
ies in the field of embedded safety- or mission-critical systems. These studies
involved a formal method approach for the specification and, if possible, for
design and code generation.

Currently, the functional requirements included in our specifications contain
no reference to safety- or mission-critical issues although, from a quality point
of view, code must be produced according to best practices. In the future, the
national and international customers of MBDF will probably enjoin us to develop
new equipment in accordance with recognised safety standards. For this reason,
MBDF has started to evaluate the benefit of specifying functional requirements
with formal methods without real success so far due to limitations of the ones
investigated. At the moment, VDM++ offers the same characteristics as the
formal methods listed and criticised above.

MBDF wants now to explore new tracks and more precisely focus on the
representation and validation of timing requirements – a major point in the
safe dynamic behaviour of an embedded real-time application. VDM++ and the
extensions specified so far by the VICE team represent the appropriate starting
point to this work allowing precise description and testing, in the design phase,
of the dynamic architecture of the trial application.

The modified VDM++ language will offer a completely integrated set of
functionalities both for functional and timing requirements analysis. Thanks to



this, VDM++ will have a clear lead over other methods and give the ability to
MBDF to reduce its investment and functioning costs. MBDF (and UK) places
its hopes in this promising approach and has no doubt that this will help the
company to improve its competitiveness in the international defence market.

4.2 Future Direction

The work described in this paper is an early experiment in using a formal spec-
ification language that has constructs for concurrency and time, and which is
supported by a commercial tool that provides animation.

The ability to explore the temporal behaviour of a proposed system from its
specification has the potential to become an important factor in the adoption by
industry of formal specification techniques. It may even motivate their regular
use on non-critical real-time applications.

The main benefits that this technology promises are: a systematic way of
expressing temporal constraints, aiding system conception and definition; a user-
friendly environment for exploring the consequences of the various elements of
the system having particular temporal properties; and the ability, early in the
system development, to allow performance requirements to influence intelligently
the proposed hardware and software solution.

We believe that through the VICE project, the VDM++ notation and tool-
box have taken a step in the right direction to realise these benefits. However,
we can see further developments which would help. In particular, we have ideas
about defining temporal deadlines, windows, and jitter constraints over the time
trace. Also, we are aware that the accuracy of the scheduling model is crucial,
and can imagine a future version of the toolbox either providing a number of
options to enable a user to tailor it, or providing a mechanism for a user to over-
ride the default scheduler. A desirable, but more extensive development, would
be the addition of the ability to model multi-processor systems with heteroge-
nous scheduling policies. Future industrial feedback will clarify exactly which
extensions will be needed to realise the desired benefits.
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