
Design and Application of a Test Case

Generator for VDM-SL

Georg Droschl

Austrian Research Center Seibersdorf and
IST { Technical University of Graz

M�unzgrabenstr. 11, 8010 Graz, Austria, Europe.
droschl@ist.tu-graz.ac.at, http://www.ist.tu-graz.ac.at

Abstract. This paper describes a pragmatic approach to the develop-
ment of test cases which proved to be of value in validating a speci�ca-
tion of an access control system. VDMTools1 is a commercial product for
the development of formal VDM-SL speci�cations [7]. Using VDMTools,
formal speci�cations may be analyzed by running test cases. Test data
generation is one of the most technically challenging steps of testing soft-
ware. However, test case generation is not supported by VDMTools. Our
interest in test case generation is purely practical: a test case generator
has been developed and used in the formal development of an access con-
trol system. The test case generator draws test cases from a knowledge
base containing the collections of valid sequences of events. By valid we
mean those traces that are to be supported by the application. This pa-
per brie
y discusses the access control system, the generator as well as
the experiences gained in the testing process.

1 An Access Control as a Case Study

CSS is a comprehensive security system which has been developed by ARCS2. In
a case study investigating the bene�ts of formal methods, part of CSS (the SSD-
0e, or simply SSD, module) is re-developed based on the original requirements.

System Size. Both the existing implementation of SSD, and the one under de-
velopment using formal methods, are based on a list of 60 requirements given
on 10 A4 pages, expressed in English language. The program developed using
\traditional" methods, consists of about 12.000 lines of PASCAL code. The size
of the VDM-SL speci�cation currently consists of about 70 A4 pages, half of
which are informal text and diagrams.

1.1 Basic Functionality of SSD

In the following, SSD will brie
y be introduced. See [5] for details.

1 VDMTools is (c) 1999 by IFAD (www.ifad.dk).
2 This work is supported by a PhD scholarship provided by ARCS - Austrian Research
Center Seibersdorf, 2444 Seibersdorf, Austria, Europe (www.arcs.ac.at).



CSS includes features ranging from digital video recording to automatic door
control. SSD is the module which essentially deals with access control issues.
Simply put, it provides an interface between the guards on duty, the operator
and the rest of the system.

The basic principle of SSD is as follows: there are a number of guards, each
of which follow a certain round, for example to supervise an industrial site by
night. The task of the guard is to monitor the area of the site which is covered by
a particular round. On the way through the round, the guard visits (and \hits")
stations one-by-one. An example round is shown in Fig. 1.

Fig. 1. An Example Round. Stations are represented by triangles. The stations to be
visited by the guard on a speci�c round are marked in black.

Basically, for each round there is one guard. Then, there is a human operator
whose task is to supervise the guards on their way through the rounds. SSD has
a number of features which support the operator and the guards. For example,
doors may unlock automatically after the guard has hit some station. Also,
lights may be turned on automatically and intrusion circuits deactivated. Once
the guard has passed that area (and hit the following station), the respective
devices are put back in their prior states.

1.2 Events, Interface Functions and Scenarios

In the current formal speci�cation of SSD, there are 34 events. In most cases,
an event is triggered when the guard or the operator interact with the system.
A trace is a particular sequence of events. A scenario is de�ned as the set of
all possible traces for which the system is required to behave correctly. For one



Event/Interf. Func.! Potential next event(s)

01 HX1�rst ! HX1norm HX1last OPint OPterm Halarm
02 HX1norm ! HX1norm HX1last OPint OPterm Halarm
03 HX1last ! OPselRE OPselX1 OPselX2 OPdisS OPenS
04 HX1cont ! HX1�rst HX1norm HX1last Halarm OPint OPterm

05 HRE�rst ! HREnorm HRElast OPterm
06 HREnorm ! HREnorm HRElast OPterm
07 HRElast ! OPselRE OPselX1 OPselX2 OPdisS OPenS

08 HX2�rstG1 ! HX2�rstG2 Halarm OPint OPterm
09 HX2�rstG2 ! HX2normG1 Halarm OPint OPterm
10 HX2normG1 ! HX2normG2 HX2lastG2 Halarm OPint OPterm
11 HX2normG2 ! HX2normG1 Halarm OPint OPterm
12 HX2lastG2 ! OPselRE OPselX1 OPselX2 OPdisS OPenS
13 HX2contG1 ! HX2�rstG2 HX2normG2 Halarm OPint OPterm

14 Halarm ! OPclralarm OPterm

15 OPselRE ! HRE�rst OPterm Halarm
16 OPselX1 ! HX1�rst OPterm Halarm
17 OPselX2 ! HX2�rstG1 OPterm Halarm

18 OPint ! OPcont OPterm
19 OPcont ! OPterm HX1cont HX2contG1 Halarm
20 OPterm ! OPselRE OPselX1 OPselX2 OPdisS OPenS

21 OPclralarm ! OPcont OPterm

22 OPdisS ! OPenS OPselRE OPselX1 OPselX2
23 OPenS ! OPdisS OPselRE OPselX1 OPselX2

24 Eintersect ! HX1�rst HRE�rst HX2�rstG1 OPterm Halarm
25 EX1seq ! OPcont OPterm
26 EX1time ! OPcont OPterm
27 EX1id ! OPcont OPterm

28 EX2seq ! OPcont OPterm
29 EX2timeG1 ! OPcont OPterm
30 EX2id ! OPcont OPterm
31 EX2twiceG1 ! OPcont OPterm
32 EX2twiceG2 ! OPcont OPterm
33 EX2anotherG2 ! OPcont OPterm
34 EX2timeG2 ! OPcont OPterm

Fig. 2. (Most of) SSD's scenario: table of events and potential transitions (the actual
scenario is made a little more restrictive by extraneous constraints). There are three
groups of events, Hit (\H"), Operator Interference (\OP") and Error (\E"). For hit,
there are three possible selection modes: executing with one guard (\X1"), executing
with two guards (\X2") and recording (\RE").



single round, Fig. 2 summarizes SSD's events and the set of potential transitions
between events.

In the formal speci�cation, for each event, there is an interface function. In-
terface functions model changes in system state. Most important, each round has
its own state. An interface function is shown in Fig. 3. The formal speci�cation
consists of type declarations, a state, a scenario, 34 interface functions and a
number of auxiliary functions.

Each interface function has a pre condition, restricting the input parameters
to those, that can be handled by that function. Using the interface functions'
pre conditions, a selector function may choose an appropriate interface function,
whenever an event has occurred. Even though, there may be more than one
interface function that is considered appropriate, it has to be made sure that
there is at least one.

A scenario has been incorporated into the VDM speci�cation, to reject illegal
sequences of events. The goal of this work has been to create test cases in the
validation process of the speci�cation: Make sure that all possible sequences of
events are covered by the interface functions. In particular, is there an interface
function covering all events, that may occur, according to the scenario ?

operations

1.0 HX 1norm : R-Adr �ROUNDS � S -hit-return
o

! R

.1 HX 1norm (r -adr ; rounds; hr) 4

.2 (dcl r0 : R := f (r -adr ; rounds),

.3 new -r : R := r0;

.4 new -r :lasthit := mk-LastHit (which-hit-S (hr);when-hit-S (hr));

.5 new -r :nexthit := mk-NHS (next-enabled -S (r0;which-hit-S (hr)); nil );

.6 new -r :stations(which-hit-S (hr)):ststate := hit;

.7 return new -r )

.8 pre R-adr -exists (r -adr ; rounds) ^

.9 let r0 = f (r -adr ; rounds) in

.10 hit-S -known (hr) ^

.11 which-hit-S (hr) > 1 ^

.12 which-hit-S (hr) < max -S (r0) ^

.13 which-hit-S (hr) = next-hit-S (r0) ^

.14 R-Mode-X 1 (r0) ^

.15 R-running (r0) ^

.16 (S -returned -id (hr) ) G-on-duty-in-R (r0;G-id (hr)))

.17 post let new -r = RESULT in

.18 same-R (new -r ; f (r -adr ; rounds)) ^

.19 S -last-hit (new -r) = which-hit-S (hr) ^

.20 S -time-last-hit (new -r) = when-hit-S (hr) ;

Fig. 3. An interface function in VDM-SL (one out of 34). There is both an ex-
plicit/executable part (in lines 1.2-1.7) and in implicit part (pre condition in lines 1.8-
1.16 and post condition in lines 1.17-1.20).



1.3 Motivation

VDMTools [7] supports analysis of speci�cations by animation and test. How-
ever, in order to guarantee a systematic approach to testing the speci�cation,
the test suite has to be selected in a thorough manner [11]. Even though test
case generation has been applied to VDM-SL [2, 10], there is no ready-to-use
tool available. Fig. 4 shows the testing process [13] of VDMTools.

Fig. 4. The Testing Process of VDMTools

2 Test Case Generation for the Access Control

In this section, the test case generator will be brie
y introduced. The generator
creates a test suite which is submitted to VDMTools. The approach taken is
closely related to test sequencing as discussed in [2].

The testing process aims at answering two questions:

{ Does the speci�cation support all sequences of events that are drawn from
the scenario? Since a SSD interface function may only be invoked if its pre
condition holds, and only valid events pass the pre condition, illegal traces
may be detected by the pre condition check facility of VDMTools.

{ Is the re�nement is correct ? In other words, do the explicit, executable
parts of the functions satisfy their implicit counterparts ? For all function
invocations a post condition check is performed.



Algorithm. The algorithm of the test case generator consists of a four step
process, in which a hypothetical (or \virtual") scene is created. A key issue
in test case creation is that they are essentially randomly drawn. However, the
user needs to o�er some input, e.g. on the maximum size of the round. Figure 5
shows an example of a test�le.

---------- Startup -----------------------------

clear_RDB(),

exinsR( mk_simple_R(13,[

mk_simple_S(10,true,<normal>),

mk_simple_S(6,true,<normal>),

mk_simple_S(2,false,<disabled>),

mk_simple_S(3,true,<normal>)],true) ),

---------- Trace -----------------------------

OPselX1_t(13),

HX1first_t(13,mk_S_hit_return(11,nil,true,false,mk_Time(0,1,0),1,true)),

HX1norm_t(13,mk_S_hit_return(13,nil,true,false,mk_Time(0,2,0),2,true)),

HX1last_t(13,mk_S_hit_return(13,nil,true,false,mk_Time(0,3,0),4,true)),

OPselX1_t(13),

HX1first_t(13,mk_S_hit_return(11,nil,true,false,mk_Time(0,4,0),1,true)),

HX1norm_t(13,mk_S_hit_return(13,nil,true,false,mk_Time(0,5,0),2,true)),

HX1last_t(13,mk_S_hit_return(13,nil,true,false,mk_Time(0,6,0),4,true)),

OPselX1_t(13),

HX1first_t(13,mk_S_hit_return(11,nil,true,false,mk_Time(0,7,0),1,true))

---------- End of Testfile -----------------------------

Fig. 5. An simple example test script that has been created automatically. There is
just one trace of 10 events, and a single guard. First, the created round is submitted
to VDM by invoking some function that has been created for the test generator. The
actual round (ID 13) consists of four stations, with number 3 disabled, which will thus
be skipped by the guard. The are two cycles of the following: The operator selects the
round for executing by one guard. Then, the guard hits stations 1, 2 and 4.

1. station setup - a collection of stations is \invented". For each station, the
generator requires3: (1) a station identi�er, (2) a 
ag called codable, which
is true if and only if the station will return the identity of the guard after a
hit, and (3) a 
ag which is set if the station has been disabled.

2. round setup - a collection of virtual rounds is build upon the stations created
in step one. A round consists of (1) a unique identi�er, (2) a list of stations,
and (3) a 
ag telling whether the round has gone through a certain start up
procedure called recording.

3. guard setup - a number of virtual night guards are invented. The guard
information consists of (1) (2) two personal codes, and (3) references to

3 Please note that in the VDM-SL speci�cation covering the full functionality of SSD,
there is much more detail.



the round the guard is assigned to, as well as (4) to the station that has
previously been hit. In line 2 of Fig. 6 the respective data type de�nition is
shown.

4. traces setup - traces are drawn from the scenario according to Fig. 2. For
each event, a guard has to be selected as illustrated by Fig. 6.

1 type

2 GUARD= CODE * ALARMCODE * INROUND * LASTHIT;

3

4 fun

5 draw_nonbusy_guard() = (* draw one arbitrary guard *)

6 let (* from created ones previously *)

7 val num=rand(!num_guards-1)+1;

8 val (cod,alcod,x,y)=nth(!guards,num-1);

9 in

10 (cod,alcod,x,y) : GUARD

11 end;

Fig. 6. An SML function for the choice of a \non-busy" guard. When the �rst station
is hit, a non-busy guard has to be selected. That is, a guard that is not assigned to any
of the rounds. Every guard has two codes (line 2). The \dynamic" information consists
of the round the guard is assigned to, and the station that has previously been hit.
Initially these �elds are empty.

The programming language Standard ML has been selected for implementa-
tion of the test case generator [9, 12]. The test case generator consists of about
900 lines of ML code. The design of the test case algorithm and its development
in Standard ML have taken about 150 hours. Some of SSD's VDM-SL data
structures had to be re-build in SML.

SML has an environment that is quite mature. Thus, the development of the
code has progressed quickly. However, errors on the VDM side were sometimes
a little more diÆcult to track down, partly because its interface does not always
behave as 
exible as desirable. For example, a feature like SML's facility of
evaluating/declaring single expressions would greatly be appreciated.

3 Conclusion

Test case generation has been considered for tests executed as part of the speci�-
cation validation process of the access control system SSD. Testing SSD's speci�-
cation has been carried out in two phases: First, remove the most basic errors on
a function-by-function basis. Then, automatically created test cases have been
applied on the speci�cation.

In SSD there are three round selection modes: There are either (1) one or
(2) two guards on a round. (3) There is a feature which allows to determine the



mean time it takes a guard from one station to the next. In the following, we
will discuss a testing session where most of the essential events of the main mode
called \executing with one guard" have been taken into account: this corresponds
to 10 of the 34 interface functions given in Fig. 2.

In the �rst phase, the focus was on invoking all of the interface functions to
be considered in the test. Non-interface functions have only been invoked if a
problem had previously occurred in the dynamic type check, the pre- and post
condition checks or the check of invariants. Some of the errors found in the �rst
phase were due to SML programming errors. On the speci�cation side, some
non-executable expressions and type problems have shown up. In 3 out of 10
interface functions mistakes in the functionality have been spotted. On average,
it took about 5 minutes to track down the source of a problem.

In the second phase, a set of traces were automatically created and applied
on the speci�cation. Since the sequences of events have been selected following a
random order, and the test case generator supports multiple guards and multiple
rounds, even a small test suite was suÆcient to reveal shortcomings of the spec-
i�cation. In the present project, the next step will be to re-work certain parts of
the speci�cation, and to re-run the test suite.

In principle, the taken approach has proved to be very e�ective in the detec-
tion of errors. On the VDMTools side, pre- and post condition checks have been
used intensively.

The model of SSD has a strong state-transition character. In [1] a taxonomy
of applications is given. According to the item relative diÆculty of data, control,

and algorithmic aspects of problem, SSD may essentially be classi�ed as a mixed

data-control problem. VDM-SL [8] is a speci�cation language that is well-suited
for modeling data. For event-based problems, usually other formalisms are em-
ployed. Still, VDM has been selected, mainly because the data aspect of SSD is
an important one, and because there is good tool support.

This approach can, in principle, be used to test the implementation of the
speci�cation. The IFAD Toolbox supports C++ code generation. In order to test
the C++ code, part of the test case generator would have to modi�ed, to invoke
C++ functions.

What are the shortcomings of this approach ? Currently, interface functions
consist of both pre- and post conditions and of an explicit counterpart. The tests
described in this paper only cover speci�cations which are on an operational
level. It does not cover implicit functions, without an explicit part, because such
functions cannot, in general, be executed.

Second, the test generation algorithm does not take into account auxiliary
functions. For example, there may be sequences of operation applications in
the auxiliary functions, that remain uncovered. Even though the test coverage
facility provided by the Toolbox may give feedback, it is not straightforward to
take this into account in test case generation program.

Third, the random event selection process requires further analysis. Cur-
rently, there is no way to measure at which degree the scenario has actually
been covered by test cases.



In parallel to this work, theorem proving has been investigated for analyzing
the speci�cation (see [6] and [3]). [4] investigates the situation of using two tools
(namely VDM and PVS) in one project.

4 Acknowledgments

The author of this paper would like to thank Erwin Schoitsch, Wolfgang Herzner,
Hossein Selami and Walter Kuhn of the Austrian Research Center for their
interest in applying formal methods on an industrial application. Peter Lucas has
provided invaluable guidance throughout this project. Thanks go to the members
of the local formal methods group for comments on various aspects of this work.
In particular, Bernhard Aichernig, Brigitte Fr�ohlich, Andreas Gerstinger, Johann
H�orl, Heinz Kammerlander, Andreas Kerschbaumer and Rudi Schlatte. John
Fitzgerald has provided useful feedback on this paper.

References

1. A. Davis. Software Requirements: Objects, Functions and States. Prentice Hall,
Englewood Cli�s, 1993.

2. J. Dick and A. Faivre. Automating the generation and sequencing of test cases
from model-based speci�cations. In J. C. P. Woodcock and P. G. Larsen, editors,
FME'93: Industrial-Strength Formal Methods, pages 268{284. Formal Methods Eu-
rope, Springer-Verlag, April 1993. Lecture Notes in Computer Science 670.

3. G. Droschl. Analyzing the requirements of an access control using VDMTools and
PVS. To appear in the proceedings of FM'99: World Congress on Formal Methods
(Works in Progress: Industrial Experiences), Toulouse, France, September 20{24,
Springer, 1999.

4. G. Droschl. On the integration of formal methods: Events and scenarios in PVS
and VDM. To appear in the proceedings of 3rd Irish Workshop in Formal Methods,
Juli 1{2, Galway, Ireland, 1999.

5. G. Droschl. Formal speci�cation and analysis of an access control using IFAD's
VDMTools. Technical Report IST-TEC-99-06, IST, TU-Graz, Austria, January
1999.

6. G. Droschl. Using PVS for requirements analysis of an access control. Technical
Report IST-TEC-99-05, IST, TU-Graz, Austria, February 1999.

7. R. Elmstr�m, P.G. Larsen, and P. B. Lassen. The IFAD VDM-SL toolbox: A prac-
tical approach to formal speci�cations. ACM SIGPLAN Notices, 29(9), September
1994.

8. P.G. Larsen and N. Plat. An overview of the ISO VDM-SL standard. ACM

SIGPLAN Notices, 27(8), August 1992.
9. L. Paulson. ML for the Working Programmer. Cambridge University Press, second,

paperback edition, 1992.
10. J.K. Pedersen. Automatic test case generation and instatiation for VDM-SL spec-

i�cations. Master's thesis, Odense University, 1998.
11. R.M. Poston. Automating Speci�cation-Based Software Testing. IEEE Computer

Society, Los Alamitos, �rst edition, 1996.
12. J.D. Ullman. Elements of ML Programming. Prentice-Hall, 1994.
13. The VDM Tool Group. User Manual for the IFAD VDM-SL Toolbox. IFAD,

Odense, Danmark., 1999.


