
Requests for Modification of periodic thread definitions
and duration and cycles statements

Ken Pierce1 and Kenneth Lausdahl2

1 School of Computing Science, Newcastle University,
Newcastle upon Tyne, NE1 7RU, United Kingdom

K.G.Pierce@ncl.ac.uk
2 Aarhus School of Engineering, Dalgas Avenue 2

DK-8000 Aarhus C, Denmark
kel@iha.dk

1 Overview

This note describes two RMs (Requests for Modification to the Language Board) re-
lating to VDM-RT that were submitted by Ken Pierce and Kenneth Lausdahl in March
2011. Both RMs are related. They originated while the authors were building real-time
controller models for the DESTECS3 project. The issue is that two key timing-related
constructs in VDM-RT (periodic thread definitions and duration / cycles statements)
only permit numeric literals to be used to define timing behaviour. This means that
“magic numbers” must be hard coded into specifications. We suggest that this is overly
restrictive and represents poor coding practice forced by the language, meaning that
specifications are harder to read and maintain.

The proposals therefore suggest that these constructs should allow a wider range of
expressions to be used instead, in order to increase flexibility and usability. We suggest
that at the very least values (i.e. constants) should be permitted in addition to numeric
literals. This is only a small change to the syntax and has no effect on the semantics.
As a further step, these constructs could allow references to instance variables, which
would allow more object-level flexibility. For example, this would allow instances of the
same class to have different periodic thread behaviour. This would introduce semantic
questions however, such as when references are read and if they can be modified during
execution.

Clearly, depending on the choices made, the semantics may or may not be affected
by the proposed changes. The authors therefore suggest that this choice be discussed
with the community, however we are keen to see (at least) values and instance variables
permitted in periodic thread definitions.

In the remainder of this note, Section 2 attempts to motivate the need for changes
with a view from the DESTECS project, followed by more details of the RMs in Sec-
tion 3 and 4.

3 http://www.destecs.org/

2 Motivation for requests

Our main reason for requesting these changes comes from our attempts (within the
DESTECS project) to build real-time controller models for use in co-simulation with
continuous-time plant (or environment) models.

Parts of the controllers that we wish to model in DESTECS —such as low-level PID
controllers— need to know the sample time (i.e. the thread period) in order to calculate
the control output. In a model where other time-related calculations are required (such
as calculation of discrete integrals), this information needs to be available in multiple
places. Typically, one would follow good programming practice and define a constant
(value) in order to ensure that the value used is correct in all places.

The necessity to hard code the thread period as a numeric literal permits the pos-
sibility that the actual thread period and the value that the controller uses to calculate
control actions can differ. This typically results in (often wildly) incorrect simulation
results. This situation can arise if the modeller changes one of the values and forgets to
change the other. This is particularly easy if the model is being altered by someone new
who didn’t originally write it. Therefore we believe that allowing constants to be used
in periodic thread definitions is entirely justified.

In the DESTECS project, we are also interested in design space exploration (DSE)
using co-simulation. This is where a set of candidate designs are evaluated by compar-
ing the results of co-simulation. The best design is chosen according to some parame-
ters, for example, the design that meets the requirements at the cheapest projected cost
of components.

To increase the ability to evaluate designs, we wish to introduce automation where
possible. Essentially, we would like the ability to alter certain parameters of controller
models, run simulations to gather results, then compare them. This is somewhat similar
to the combinatorial testing offered by the Overture tool already.

Parameters should include the number of controllers, their loop period and their de-
ployment architecture. In one case study (the ChessWay personal transporter [FLP+10])
for example, a small safety monitor runs on it’s own CPU at a speed much higher than
the main controller, in order to ensure the safety of the rider. We might wish to run mul-
tiple simulations with differing main controller and safety controller speeds, in order to
find the most effective combination.

The hard-coded nature of periodic threads and duration/cycle statements makes this
difficult, in addition to the class-level nature of periodic threads. Currently, the user must
edit the model in between each simulation run (ensuring that they update the relevant
values in all places in which they appear). This is far from convenient and can lead
to errors. Permitting instance variables to be referenced by periodic thread definitions
would allow threading behaviour to be specified through object constructors. This fits
with the object-oriented nature of VDM-RT and more easily permits automation.

Object-level periodic threads would also help in another aim of the DESTECS
project, which is to provide libraries of common components for building real-time
controllers in VDM (to help users unfamiliar with VDM to begin building working ex-
amples quickly). We would like to do this by providing classes that can be instantiated
as objects by users. It would be preferable to allow periodic behaviour to be config-

urable via a constructor, rather than requiring new users to begin using concepts such
as inheritance straight away.

3 Expressions in periodic thread definitions (ID: 3220182)

The DESTECS project [BLV+10] focuses on co-simulation of discrete-event controllers
written in VDM-RT with continuous-time models described in 20-sim [Bro97,Kle06].
The controller models that we wish to produce are typically real-time controllers that
must perform an action at a regular interval. For example, reading sensors and produc-
ing control actions at a frequency of 1000Hz (or a period of 1 millisecond).

The best way to achieve this in VDM-RT is with a periodic thread definition:�
thread
periodic(period,delay,jitter,offset)
� �

The values of period, delay, jitter and offset can only be hard coded as
numeric literals. Therefore to run a controller thread at 1000Hz (one thousand times per
second, or 1 millisecond per cycle), the following definition could be used:�
thread
periodic(1,0,0,0)
� �
3.1 Extension 1: Using values (and simple calculations)

The following definition currently couldn’t be used, however it is perhaps a more in-
tuitive way to define the behaviour and better coding practice. Here a constant called
FREQUENCY is used to set the frequency (in Hz), with the conversion to period (in
milliseconds) handled in the periodic definition:�
values

FREQUENCY: nat1 = 1000

thread
periodic(1000/FREQUENCY, 0, 0, 0)
� �

3.2 Extension 2: Using instance variables

Note that threads also are class-level (as opposed to object-level). This means that each
object instance of a periodic class must have the same periodic behaviour. In order
to model two copies of a controller running at the same time but at different speeds
(or perhaps more likely different jitter or delay), it is necessary to define a controller
class without a thread and then create two subclasses that only describe the periodic
behaviour, for example:

�
-- this object will run normally
class MyControllerA is subclass of MyController

thread
periodic(1, 0, 0, 0)

end MyControllerA

-- this object is more jittery
class MyControllerB is subclass of MyController

thread
periodic(1, 10, 0, 0)

end MyControllerB
� �
By permitting instance variable expressions to appear in periodic definitions, peri-

odic behaviour can become object-level and permit instances of the same class do have
different thread behaviour. Consider this example:�
class MyController

instance variables
private frequency: nat1 := 1000

thread
periodic(1000/frequency, 0, 0, 0)

end MyController
� �
Here, the value of frequency can be set in the constructor. This makes practices such

as automated testing possible, including automated exploration of alternative designs
and deployments which is one of the aims of the DESTECS approach. This modification
would also permit objects instantiated from libraries of classes to have their periodic
behaviour configured through a constructor:�
class LibController

instance variables
-- default frequency
private frequency: nat1 := 1000

operations
public LibController: nat1 ==> LibController

LibController(freq) ==
-- user-configurable frequency
frequency := freq

thread
periodic(1000/frequency, 0, 0, 0)

end LibController
� �
A clear issue is when the value of frequency is evaluated and whether or not it can

be changed. In order to ensure that a periodic thread’s behaviour is unchanging over
the course of an execution (i.e. by not allowing frequency to be assigned during run-
time), we suggest that something like a final keyword (or equivalent) is introduced.
In the Java language [GJSB05], a final variable can be assigned to at most once during
construction of an object and must be assigned to during object construction. If this
concept were adopted into VDM-RT, then periodic definitions could be restricted only
to permit instance variables that are declared final:�
instance variables

private final frequency;
� �
4 Values in duration / cycles statements (ID: 3220223)

The issue with duration and cycles is very similar to that of periodic threads described
above. These two statements delay the internal clock of VDM-RT to simulate actions
taking time. This delay can be based on the speed of the (simulated) CPU, using cycles,
or based on (simulated) time, using duration. The following assignment statements
would therefore take 10 (simulated) clock cycles to complete:�
cycles(10) (x := 1; y := 2; z := true)
� �

Or the statement could be modified to take 2 (simulated) milliseconds, regardless of
the (simulated) CPU speed:�
duration(2) (x := 1; y := 2; z := true)
� �

As with periodic threads however, only numeric literals are permitted for describing
the number of cycles or duration. Therefore the following is not valid:�
values

CYCLES: nat = 7

operations
public op1: () ==> ()
op1() ==

cycles(CYCLES) (
x := 1; y := 2; z := true

)
� �
So again magic numbers must be hard coded into specifications and durations / cy-

cles statements cannot be altered through object-construction (they are static by class).
We therefore request that expressions of time in duration and cycles statements not be
restricted to numeric literals. Again there is a question of how flexible we want the lan-
guage to be (values, instance variables, or functions, etc.) and when and how often the
expressions should be evaluated (i.e. once during object construction or every time the
statement is executed). We therefore suggest that the community should discuss these
issues together and modify the RMs accordingly.

Note there are also related RMs to the two described here, namely 3220437: Ex-
tend duration and cycles (allow intervals + probabilities) and 3220324: Sporadic thread
definitions.

Acknowledgements

The author’s work is supported by the EU FP7 project DESTECS.

References

[BLV+10] J. F. Broenink, P. G. Larsen, M. Verhoef, C. Kleijn, D. Jovanovic, K. Pierce, and
Wouters F. Design support and tooling for dependable embedded control software.
In Proceedings of Serene 2010 International Workshop on Software Engineering for
Resilient Systems. ACM, April 2010.

[Bro97] Jan F. Broenink. Modelling, Simulation and Analysis with 20-Sim. Journal A Special
Issue CACSD, 38(3):22–25, 1997.

[FLP+10] John Fitzgerald, Peter Gorm Larsen, Ken Pierce, Marcel Verhoef, and Sune Wolff.
Collaborative Modelling and Co-simulation in the Development of Dependable Em-
bedded Systems. In D. Méry and S. Merz, editors, IFM 2010, Integrated Formal
Methods, volume 6396 of Lecture Notes in Computer Science, pages 12–26. Springer-
Verlag, October 2010.

[GJSB05] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java Language Specifi-
cation, Third Edition. Addison-Wesley Longman, Amsterdam, 3 edition, June 2005.

[Kle06] Christian Kleijn. Modelling and Simulation of Fluid Power Systems with 20-sim.
International Journal of Fluid Power, 7(3), November 2006.

