VDMJ

Nick Battle, Fujitsu

(nick.battle@uk.fujitsu.com)

VDMJ Overview

 Where did VDMJ come from...?

* Provides support for VDM-SL and VDM++ parsing, static type
checking, interpreting/debugging, PO generation, test coverage
and combinatorial testing

* Pure Java (5 or later), no external dependencies

» Released under GPLv3 by Fujitsu

« Command line interface only

* Informally developed (eg. not specified in VDM)

« User Guide and Design Specification docs available

» Passes CSK test suite (>3000 tests, converted to JUnit tests)
* Quite fast (3000 tests in ~20 seconds).

Lexical Reader
(VDM-SL, VDM++)

Syntax Reader
(VDM-SL, VDM++)

AST Converter

VDMJ Architecture

Type Checker
(VDM-SL, VDM++)

—» AST(J)

Overture Parser

> Interpreter
(VDM—-SL, VDM++)
CommandReader DBGPReader

VDMJ Parser 1

LatexStreamReader extends InputStreamReader — overrding readLine()

lines as Unicode Java Strings

BacktrackInputReader creates a LatexStreamReader — using its readLine() to read the whole file

Unicode chars

LexTokenReader extends BacktracklnputReader — overrding push, unpush and pop
LexTokens
SyntaxReaders constructed with a LexTokenReader

AST

VDMJ Parser 2

= @ object
El@ﬁ SvntaxReader 253 21/04/09 12:59 nick_battle

------ ﬂ 5 BindReader 253 21/04/02 12:59 nick_battle
------- G‘ ClassReader 253 21/04/09 12:59 nick_battle
------- G DefinitionReader 253 21/04/09 12:59 nick_battle
------- '3 ExpressionReader 255 21/04/09 12:59 nick_battle
------- G ModuleReader 255 21/04/09 12:59 nick_battle
------- G PatternReader 253 21/04/0% 12:59 nick_batkle
------- G StatementReader 253 21/04/0% 12:59 nick_battle
------- G TypeReader 253 21/04/0% 12:59 nick_battle

* One SyntaxReader subclass for each major group in the grammar

* Top level ModuleReader and ClassReader combine the others and
return the AST (class list or module list)

» Each reader typically has one public method, like readPattern(),
readType(), readClass() etc. and many private methods.

 All readers are constructed by being passed a LexTokenReader

VDMJ AST 1

Class
Definition

Class
Definition

Class
Definition

Tree etc

etc

Function

Value
" Definition

Type
Definition

Definition

Inv
Function
Definition

Param
Patterns

Body
Expression

« AST is a "washing line" of classes or modules at the top level
» Classes and modules contain definitions

 Definitions can contain yet more definitions - "mk_(a,b) = tupval”

VDMJ AST 2

& oObject
Definition 149 10/03/09 14:54 nick_battle

- C g AssignmentDefinition 149 10/05/09 14:54 nick_battle

(@, InstancevariableDefinition 206 30/03/02 15:03 nick_battle
(3, ClassDefinition 237 080409 12:45 nick_battle
"0
------ ED BUSClassDefinition 167 18/03/09 15:36 nick_battls
b ED CPUClassDefinition 142 10/03/09 14:54 nick_batkle
(9, ClassInvariantDefinition 142 10/03/09 14:54 nick_battle
o
C] EqualsDefinition 142 10/03/09 14:54 nick_battle
]
€ ExplicitFunctionDefinition 235 090409 22:32 nick_battle
o
C] ExplicitOperationDefinition 142 10/03/09 1454 nick_hattle
o
&, ExternalDefinition 149 10/03/09 14:54 nick_battle
o
C] ImplicitFunctionDefinition 235 09/04/09 22:32 nick_battle
o
C] IrmplicitOperationDefinition 149 100302 14:54 nick_batkle
]
€ ImportedDefinition 149 10/035/09 14:54 nick_battle
o
ED InheritedDefinition 142 10/035/09 14:54 nick_batk=
&, LocalDefinition 149 10/03/09 14:54 nick_battle
o
(9, MulkiBindListDefinition 149 10/03/09 14:54 nick_battle
o
C] MutexSyncDefinition 149 10/03/09 14:54 nick_battle
o
(3, NamedTraceDefinition 149 10/03/09 14:54 nick_batkle
]
C] PerayncDefinition 142 10/05/09 14:54 nick_hattle
o
(3, RenamedDefinition 142 10/03/09 14:54 nick_battle
o
ED StateDefinition 149 10/03/02 14:54 nick_battle
readDefinition 'S4 nick_battle
GD ThreadDefinition 142 100302 14:54 nick_battl
wpeDefinition 154 nick_battle
ED TypeDefinition 149 10/03/09 14:54 nick_bakk
ntypedDefinition 54 nick_battle
ED UntypedDefinition 149 10/03/09 1<4:54 nick_batt
3, valueDefirition 142 10/03/0% 14:54 nick_battle
o

VDMJ AST 3

= @& object
= i Tvpe 149 10/03/09 14:54 nick_battle
B9 BasicType 149 10/03/09 14:54 nick_battle

(|

------ (2, BooleanType 149 10/03/09 14:54 nick_batte
o

------ C] CharacterType 149 10/03/02 1454 nick_battle
1]

- MumericType 149 10/03/09 14:54 nick_batt
------ GD IntegerType 145 10/03/02 14:54 nick_battle
------ ED MaturalOneType 149 10/03/09 14:54 nick_baktle
------ GD MaturalType 149 10/03/09 14:54 nick_battle
------ GD RationalType 142 10/03/02 14:54 nick_battl=
e GD RealType 149 10/03/09 14:54 nick_battle

------ ® TokenTwpe 142 10/03/09 14:54 nick_batkle
o

------ C BracketType 207 30/03/0%9 15:31 nick_batte
o

------ (&, ClassType 149 10/03/09 14:54 nick_battle
1]

------ C FunctionType 207 30/03/09 15:31 nick_battle
o

=@ InvariantType 149 10/03/09 14:54 rick_battle

o ED MarnedType 207 30/03/09 15031 nick_battle
e ED RecordType 207 30/03/09 15:31 nick_battle
EI----E,:, MapType 207 30/03/09 15:31 nick_batkle
------ ED OperationType 207 30/03/0% 15531 nick_battle
------ GD OptionalType 207 30/03/02 15231 nick_battl:s
------ ED ParameterType 149 10/03/0% 14:54 nick_batklz
------ GD ProduckType 207 30/03/09 15231 nick_batke
------ ED QuokeType 149 1000309 14:54 nick_battls
EI----E,:, SeqType 207 30/03/09 15:31 nick_battle
------ ED SetType 207 30/03/09 15:31 nick_batkle
------ ED UndefinedType 149 10/035/09 14:54 nick_battle
------ ED UnionType 207 30/03/09 15:31 nick_battle
------ ED UnknownType 149 10/03/09 14:54 nick_battle
------ ED UnresolvedType 235 08/04/09 22:26 nick_battle
------ ED YoidReturnType 149 10/03/09 14:54 nick_battle

------ GD WoidType 149 10/03/09 14:54 nick_battl=

= e

VDMJ AST 4

Chbject

&
o

Expression 149 10/03/09 14:54 nick_battle

C o ApplyExpression 142 10/05/09 14:54 nick_battle

=-- @5 BinaryExpression 149 10/03/09 14:54 nick_battle

EGS BooleanBinarvExpression 149 10/03/09 14:54 nick_battle

-ED AndExpression 149 10/03/09 14:54 nick_battle

------ GD EquivalentExpression 142 10/03/09 14:54 nick_battle

------ ED ImpliesExpression 149 10/03/09 14:54 nick_batts

e GD OrExpression 149 10/035/0% 14:54 nick_battle

------ ED CompExpression 226 070409 22116 nick_hatts

------ GD DomainfesByExpression 149 10/03/02 14:54 nick_battle

------ G.:, DomainResToExpression 149 10/03/09 14:54 nick_battle

------ GD EqualsExpression 142 10/03/09 14:54 nick_battle

------ GD InSetExpression 142 10/03/09 14:54 nick_battle

------ GD MapletExpression 149 10/03/09 14:54 nick_battle

------ GD MapUnionExpression 149 10/03/0% 14:54 nick_battle

------ GD MotEqualExpression 149 10/03/09 14:54 nick_battle

------ GD MotInSetExpression 149 10/035/0% 14:54 nick_battle

EI----GS mumericBinaryExpression 149 10/03/0% 14:54 nick_battle

------ GD DivExpression 149 10/03/09 14:54 nick_battle

------ ivideExpression : nick_batthe
ED DivideE ion 149 10/03/02 14:54 nick_battl

------ reaterEqualExpression v NIck_DaCte
GD GreakterEqualE ion 149 10/03/09 14:54 nick_battl

------ reaterExprassion + NIck_Dattle
ED GreaterE ion 149 10/03/09 14:54 nick_battl

------ essEqualExpression o2 MICk_DEtEe
GD LessEqualE ion 149 10/03/09 14:54 nick_batkl

------ essExpression 2% Mick_Dattle
GD LessE ion 149 10003709 14:54 nick_battl

------ odExpression o2 Mick_Dattle
GD ModE ion 149 1000309 14:54 nick_battl

------ usExpression 154 nick_battle
GD PlusE ion 149 10/03/09 14:54 nick_batkl

------ emExpreassion o= MIck_DAttle
GD RemE ion 149 1000309 14:54 nick_battl

------ ubkractExpression w2 Mick_Dattle
GD SubtractE ion 149 10/03/09 1454 nick_batkl

------ imesExpression w2 MICk_Datte
GD TimesE ion 149 10/03/09 14:54 nick_battl

------ usPlusExpression 12T NICk_Dattle
GD PlusPlusE ion 149 10/03/09 14:54 nick_batkl

------ ropersubsetExpression Pt MIEK_Dattle
GD P SubsetE ion 149 10/03/09 14:54 nick_battl

------ @ RangeResByExpression 149 10/03/09 14:54 nick_battle

i
------ (9, RangeResTaExpression 149 10/03/09 14:54 nick_hattle
o

VDMJ AST 5

= @ object
ERCH <t =terment 149 10/03/09 14:54 nick_battle
------ C g AhwaysStaternent 142 10/03/09 14:54 nick_battle
------ © AssignmentSstakement 235 050402 22:26 nick_battle
o
------ (9, AtomicStatement 249 19/04/02 1910 nick_battle
o
------ (&, callobjectstatement 159 26/03/09 05:10 rick_battle
o
------ (9, Callstatement 149 10/03/09 14:54 nick_hattls
o
------ (9, CasesStatement 149 10/03/09 14:54 nick_battle
o
------ (9, ClassInvariantStatement 149 10/03/02 1454 nick_battle
o
------ C] CyclesSkaterment 149 1000309 14:54 nick_hatkle
o
------ (&, DefStatement 143 10/03/09 14:54 nick_battle
o
------ (9, Durationstatement 149 10/03/09 14:54 nick_hattle
o
------ (9, ElselfStatement 149 10/03/02 14:54 nick_battle
o
------ (9, ErrorStatement 149 10/03/02 14:54 nick_battle
o
------ (9, Exitstatement 149 10/03/0% 14:54 nick_battle
i]
------ (9, Forallstatement 149 10/03/02 14:54 nick_battle
o
------ © , Forlndexstatement 149 10/03/09 14:54 nick_battle
o
------ (9, ForPatternBindStatement 149 10/03/02 14:54 nick_battle
o
------ &, 1Fstatement 216 030409 16:27 nick_battle
o
------ GD LetBeStStatement 149 10/03/0% 14:54 nick_battle
------ etDefskaternen e MICE_Battle
ED LetDefStat E149 10/03/09 14:54 nick_batt]
------ at'fetSpecitiedstatemen a2 THEE_DAttle
GD MotYetSpecifiedstat E151 11/03/09 16:53 nick_battl
------ eriodicSkatermen 2% MICK_DAtte
GD PeriodicSkat E 149 10/03/09 14:54 nick_baktl
------ eturn3tatemen v nick_Dattle
GD Returnstat £ 149 10/03/09 14:54 nick_battl
I';'I----{B_.:, SimpleBlockstatemant 149 10/03/09 14:54 nick_batte
------ GD BlockStatement 219 06/04/09 14:43 nick_battls
e ED MonDeterministicStatement 149 10/035/0% 14:54 nick_battle
------ potatemnen :54 mick_battle
GD SkipSkat k149 10/03/09 14:54 nick_baktl
------ (9, SpecificationStatement 149 10/03/02 14:54 nick_battle
o
------ (@, startstatement 149 100309 14:54 nick_battle
o
------ (9, subclassResponsibiityStatement 149 10/03/09 14:54 nick_battls
o
------ ®, TixeStatement 142 10/03/09 14:54 nick_battle
o
------ racestatemen 23 Nick_Dattle
GD T akat E151 11/03/09 16:53 nick_batkl
------ rapStakernen w2 MIck_Dattle
ED TrapStat E149 10/03/09 14:54 nick_battl

B O object

Pattern 237 09/04/09 15:28 nick_battle

VDMJ AST 6

iCharacterPatkern 237 09/04/09 18:25 nick_battle
ConcatenationPattern 237 09/04/09 18:28 nick_battle
ExpressionPattern 237 09/04/09 15:28 nick_batkl:e
IdentifierPattern 237 09/04/09 18:28 nick_battle
IgnorePattern 237 090409 15258 nick_battle
InkegerPatkern 257 09/04/09 18:25 nick_battle
iQuokePattern 237 09/04/09 18:28 nick_batkle
RealPatkern 237 090402 15:258 nick_battle
RecordPatkern 237 090402 15:25 nick_batkle
SeqPatkern 237 09/04/09 15:258 nick_batke
SetPattern 237 09/04/09 18:28 nick_battle
StringPattern 257 09/04/09 15:28 nick_batkl=
TuplePattern 237 09/04/09 15:28 nick_battle
UnionPaktern 237 09/04/09 158:28 nick_batkl:s

VDMJ AST 7

= G Cbiject

Export 149 10/03/09 14:54 nick_battle
------ \2; Exportall 1459 10/03/09 14:54 nick_battle
------ ED ExportedFunction 142 10/03/09 14:54 nick_battle
------ ED ExportedOperation 149 10/03/09 14:54 nick_battle
------ GD ExportedType 149 10/03/09 14:54 nick_battle
o ED Exportedialue 149 10/03/09 14:54 nick_batkle

2= E I:le:u]ecl:

Irmport 149 10/03/09 14:54 nick_battle
o 2, Importall 149 10/03/09 14:54 nick_battle
= G,:, ImportedType 145 10/035/0% 14:54 nick_battle
EI GD Importedvalue 149 10/03/09 14:54 nick_battle
o ED ImportedFunction 149 100309 14:54 nick_batkle
b GD ImportedOperation 142 10/02/09 14:54 nick_batkle

VDMJ Type Checking 1
Principles

* VDM syntax allows "3 + true", but type checking does not

« Concerned with types, which are ultimately defined by the types of
literals and named definitions, and their combination via
expressions, statements and further function/operation definitions.

* Also concerned with the scope of the names of definitions, the
duplication of names (error) or when local named definitions are
unused or hide outer names (warning).

« Syntax does not link type names to their definitions, so "x: T = 123"
has an UnresolvedType called "T", but this may not even exist.

» Note that functions cannot see "state" definitions, and operation
post conditions can see "old" variable values

 Classes are types (hence ClassDefinition), but modules are not.

VDMJ Type Checking 2
Principles

= G iObject
TypeChecker 109 258/02/09 21:54 mver
------ ‘:-' 5 ClassTypeChecker 232 05/04/09 12:45 nick_battle
------- G ModuleTypeChecker 234 05/04/0% 17:01 nick_battle

= G Cbiject

Environment 109 28/02/09 21:54 myver
El - 5 FlatEnvironment 109 25/02/09 21:54 mver
JR - G FlatCheckedEnvironment 109 25/02/09 2154 mver
------- G ModuleErwironment 109 23/02/09 21:54 mver
------- G PrivateClassEnviranment 109 25/02/09 21:54 myver
------- G PublicClassEnvironment 1029 25/02/02 2154 mver

» Type checking is coordinated by subclasses of TypeCheck. The
actual business of checking is performed by the AST elements

 An Environment refers to a list of definitions and allows them to be
searched by name

» Environments chain together to add definitions to the current
"scope" temporarily, such as parameters inside a function or new
definitions from a let expression

VDMJ Type Checking 3
ModuleTypeChecker outline

e Check for duplicate module names in the list passed

* For each module, generate its definitions’ implicit definitions (like pre and
post functions)

* For each module, check the export definitions exist and are of the declared
type, and make a list of exported definitions for the module.

* For each module, go through the import definitions and resolve against the
exports.

» Create a list of all definitions from all modules (including their imports),
create an Environment that contains them all, and attempt to perform type
resolution on them — ie. find the type definition for every named type.

* In the pass order: [types, values, definitions], for each module, create a
ModuleEnvironment representing the visible definitions, and type check
the definitions of the given pass.

» Report any discrepancies between the final checked types of the modules’
definitions and their explicit imported types elsewhere.

« Any definition names that have not been referenced or exported produce
"unused" warnings.

VDMJ Type Checking 4
ClassTypeChecker outline

» Make sure there are no duplicate class definitions.

» For all classes and their definitions, generate the implicit definitions. This
includes the construction of the class type hierarchy and the implicit local
names for access to inherited definitions.

» Create a PublicClassEnvironment that can see all public class definitions.

* For each class, chain a PrivateClassEnvironment to the public
environment, and perform type resolution on the definitions in the class.

» For each class, check for overloading and overriding of its definitions.

* In the pass order: [types, values, definitions], for each class, chain a
PrivateClassEnvironment to the public environment, and type check the
definitions of the given pass.

» Check for any definition names that have not been referenced, and
produce "unused" warnings.

VDMJ Type Checking 5
Key Methods

public ahstract class Definition implements Serializable

{

public void typeResolve (Environment enwv)

public void implicitDhefinitions (Environment bhase)

ahstract public void typeCheck(Enviromnent base, Naweicope =cope) !
public void unusedCheck]|()

public abhstract class Expression implements Serializable

{

abstract public Type typeCheck(Environwent env, Typelist qualifiers, NamelIcope scope):

public abstract class Statement implements Serializable

{

ahstract public Type typeCheck (Environmwent enwv, Namwelcope scope) !

Type checking methods on Definition are all void, whereas those on
Expression and Statement return the type of their content

Type resolution is only performed on Definitions, not Expressions and
Statements. Resolution of their types is delayed until their type check

Expression's typeCheck has a list of "qualifier" types, used to resolve
overloading with function apply expressions

NameScope indicates whether state etc. is in scope or not

l.."frf.'

VDMJ Type Checking 6
TypeComparator

* b olass for static type checking comparisons.

w

public class
{
public
public
public

TyvpeComparator

synchronized static boolean compatible (Type to, Type from)
synchronized static bhoolean cowmpatible (Typelist to, Typelist from)
synchronized static hoolean iz3ubType (Type sub, Type sup)

» TypeComparator is used to check whether one type is assignment
compatible with another, and whether one type is a subtype of another

« VDMJ always does type checking with "possible semantics”

* The "compatible" method provides possible semantics for type
conversion, eg. a real is possibly an int

* The "isSubType" method provides definite semantics for type
comparison, eg. a real is not a subtype of int. This is used in PO
generation

VDMJ Type Checking 7
Checking Functions (1)

If there are any polymorphic type parameters for this function, check that
the overall function type does not reference any type parameters except
those named type parameters.

For each type parameter, create a LocalDefinition of a ParameterType and
add this to a local Environment.

Check that the parameter patterns match the overall Type's parameters,
and iterate through curried sets of parameters, using the return value from
the overall Type (and its return value and so on for subsequent sets of
parameters). Remember the expected result.

Extend the local Environment with definitions for all the variables of all the
patterns from all of the curried parameter sets.

Type check the definitions this produced in the base environment (this will
just do type resolution, if necessary).

Label the local Environment as static (VDM++) if the definition’s access
specifier is static.

If we are in VDM++ and the function is not static, add a “self” definition to
the local Environment.

continued...

VDMJ Type Checking 8
Checking Functions (2)

« If there is a precondition expression, type check the definition for it.
« If there is a post condition expression, type check the definition for that too.

» Type check the body expression of the function, remembering the actual
type returned.

« If the actual return type is not (possibly) assignable to the expected return
type, raise an error.

« If the VDM++ accessibility of the expected return type is narrower than that
of the definition itself, raise an error (eg. a public function cannot have a
private or protected return type).

 |f the function is recursive and does not define a "measure" function, raise
a warning, else if there is a measure defined, check that it exists and has
the correct type.

* Check that the parameter variables have been referenced in the local
Environment, else raise an unused parameter warning. (This is
suppressed for pre and post condition functions, which are permitted to not
necessarily use their implicit parameters).

VDMJ Interpreter 1

* Interpreter evaluates expressions from their definitions in the AST

» Acts as the common “interface” for external user interaction
classes (command line or IDE).

» Uses a default module or class. Used for simplified naming.
Defaults to the first module/class on the AST list

» Contains a list of breakpoints, and methods to set/clear/list them,
as well as to locate expressions/statements in AST by file/line
number

« Contains a list of source file contents for source debugging

 Also acts as the initiator for PO generation, though POs are
generated in the AST elements.

* Initialization method creates or restores an “initial context”
representing the global static context for all subsequent
evaluations

« Can evaluate expressions in the initial context, or in a local context
when a breakpoint is reached

VDMJ Interpreter 2

. C) Object

1:'{;'5 Interpreter 174 20J03/09 14:25 nick_batkle
GD ClassInterpreter 174 20/03/09 14:28 nick_battle
GD ModuleInterpreter 180 25/02/02 10015 nick_battle

S C] Ohiject
~ @ AbstracktMap <k, ¥
~ O HashMap=k, V=

1:[. Conkexk 171 19/03/09 16:52 nick_baktls

» (9] RootContext 171 19/03/09 16:52 nick_battle
GD ObjectConkext 109 28/02/09 21:54 mver
@D StateContext 109 28/02/09 21:54 myver

« Evaluation is coordinated by subclasses of Interpreter. The actual
business of evaluation is performed by the AST elements

* Runtime name/value pairs held in Context subclasses which mirror
the Environment subclasses used in type checking

» Contexts chain together to form the runtime stack. RootContext is
the abstract base of a function/operation call. ObjectContext has a
“self’, and StateContext points to any module state

» Global values (module state or class static fields) are held in
ClassDefinition or Module definitions in AST

VDMJ Interpreter 3

class A
functions
public £: int ¥ int -> int
fia, b) ==
new Li)l.dgia + hi:
o: int -»> int
g(x)] ==
let ¢ *x + 1, 2= x - 1 in
let a = r + = 1in
==
end i

[thread 1]> stack

Stopped at break [1] in 'A' (test.wvwpp)] at line
a = 6

In context of let expression in 'A' [(test.wppl
r = 4
= = 2

In context of let expression in 'A' [(test.wvpp)
gliint) = [(int -> int)
X = 3
self = AL{HZ}

In object context of gi(x) in '"A' [(test.wvpp)] at
self = L{fi:
fiint, int) = [(int ¥ int -> int)
b =2
a =1

In object context of £fia, bl in '4' ([(console)

In root context of global static scope

11:17

at line 10:13

at line 9:9

line 5:9

at line 1:1

VDMJ Interpreter 4
g e

o 'y Yalue 130 25/03/09 10015 nick_battle
o E,:, Booleanvalue 109 25/02/09 2154 mver
------ arackervalue MvEr
(&, Charactervalue 109 25/02/09 21:54
I'_'I----E,:, FunctionYalue 109 25/02/0% 21:54 mwver
- ED iCompFunchionYalue 102 25/02/09 21:54 myver
Foe ED IterFunctionvalue 109 28/02/09 21:54 myver
e E,:, MapWalue 109 25/02/09 2154 mver
------ ED Milvalue 109 Z5/02/09 21:54 mver
I'_'I----E,:, Mumerichalue 102 Z5/02/09 21:54 mver
= ED Realvalue 109 25/02/09 21:54 myver
=] ED Rationalvalue 109 25/02/09 21:54 mver
= E,:, Integervalue 109 28/02/09 21:54 mver
= E,:, Maturalvalue 102 250202 21:54 mver
b ED MaturalOnevaloe 109 28/02/09 21:54 mwver
e ED Objectvalue 109 28/02/02 21:54 mver
------ peration'alue 54 mver
ED 0 tionvalue 109 23/02/02 21.54
------ ED Parameteryalue 109 28/02/09 21:54 mver
o E,:, QuaokeMalue 109 28/02/09 21:54 mver
------ ED Recordvalue 109 Z5/02/09 21:54 mver
I'_'I----E,:, ReferenceMalue 102 Z5/02/09 21:54 myver
e nvarianthalue mver
. ED I Evalue 109 25/02/09 21:54
o pdatableyalue 'S miver
(3, Updatablevalue 109 25/02/09 21:54
------ eqialue 116 nick_battle
&, seqvalue 276 07/04/09 22:16 nick_battl
e E,:, Sethalue 109 25/02/09 21:54 mver
------ ED Tokenvalue 109 28/02/0% 21:54 mwver
e ED Tuplebalue 102 25/02/0% 21:54 myver
------ ED UndefinedYalue 109 25/02/09 21:54 myver
EI----E,:, Yoidvalue 109 28/02/09 21:54 myver
Foe ED YoidReturnbalue 102 25/02/09 21:54 mver

VDMJ Interpreter 5
Key Methods

public abstract class Expression implements Serializable

{
abhstract public Value eval (Context ctxt):

public abstract class Statement implements Zerializable

{
abstract public Value eval (Context ctxt):;

Expression and Statement's eval methods return their Value, given the
passed Context

Evaluation recurses over the AST, evaluating and combining the Values of
sub-expressions or contained Statements

The Context is extended by expressions or statements which add variables
(eg. let expressions)

Evaluations can throw ContextExceptions — a runtime exception which
includes the Context (stack) as well as a number, text and location

VDMJ Interpreter 6
TailExpression.eval

@Crrerride
public Value eval (Context cthxt)

i
bhreakpoint.check(location, ctxt):;

Valuelist seq = null;

try
{
seq = new Valuelist(exp.evalctxt) .segiWalue (ctxt)) ;

'
catch [(ValueException e)

{
return short(e);

if [(sedq.isEmptvy (]
{
abort (4033, "Tail sequence i3 empty™, CLxt);

sedq. remowe (0 ;
return new JeqiWalue (sed):

VDMJ Interpreter 7
BlockStatement.eval

[drrerride
public Value ewval (Context ctxt])
1
breakpoint.check({location, ctxt):

Context evalContext = new Context(location, "block statemwent™, ctxt);

for (Definition d: assigmentDhefs)
{
evalContext.put (d.getNamedValues (evalContext))

for [(Statenment =: statenents)

{
Value rv = s.evalievalContext) :

if ('rv.isVoid(]]

{

return r-r;

return new VoidValue|();

VDMJ Exercise 1

sequence for loop = ‘for’, pattern bind, ‘in’, [‘reverse’], expression, ‘do’, statement ;

» Currently, the "reverse" keyword is part of the sequence loop grammar

* It would be better to treat "reverse" as a new unary sequence operator, like
hd, tl, len, elems, inds and conc.

« Grammar becomes: "for", pattern bind, "in", expression, "do", statement

» ReverseExpression.java is partly written in SVN. The VDMJ parser has
been changed to build the AST already.

» Complete the eval method of ReverseExpression as an exercise —
compare with TailExpression.java

 Test with "print rev [1,2,3]" — should give [3,2,1]. Check that the reverse for
loop still works too. See whether you can set a breakpoint.

* The typeCheck method is also blank. Complete this as an exercise too —
test with "rev 123". It should complain that the argument is not a sequence.

» What should the getProofObligations method look like?

VDMJ Exercise 2

Create, manage, and run configurations

Fun a Java application

B x | i Mame: |VDM4+ Test |
bype fiter text | M =i JRE| U Classpath| B Su:uurn:e| -] Enviru:unment| = Q:Imn'ncln|
4 Edlipse Application Pragram arguments:
=] Java Applet -wdmpp -i test.vpp B‘
w» [3] Java Application ' —
7] DEGPReader | Yariables, .. |
(3] WDM-5L Test WM argurnents:
BN YDM++ Test — -
¥ Ju nit | B‘
J¥ 3Unit Plug-in Test |M|

p m2 Maven Build
& 035ai Framework

Working directory:
i) Default: | |

@ Other: | fiwarkspace_loc:YDMITeskst |

Warkspace. . | |Ei|e Sysker. .. | | Yariables. .. |

Filter matched 15 of 15 items

(7 Run | Close |

VDMJ Exercise 3

Interpreter started

> p rev 1234

Error 3292: Argument to 'rewv!
> p rev [1,2,3,4]

= [4, 3, 2, 1]

Executed in 0.013 secs.
> p rev "hello"

= "glleh™

Executed in 0.0020 =secs.
> p rev []

= [1

Executed in 0.0010 =ecs.
>

Tests...

iz not a sSedquence in

IAI

[console)

at line 1:1

VDMJ Exercise 4
Solutions...

BCrrerride

public Type typeCheck (Environment enwv, Typelist qualifiers, Nawmelcope scope)
{
Type etype = exp.typecheckienv, null, scope):;

if [l'etype.is3edqi]]

{
report (3292, "Argumwent to 'rev' iz not a sequence™);
return new ZegType(location, new UnknownTypelocation)):

return etype:

Hirrerride
public Value eval (Context CcLxt]
{
breakpoint.check(location, ctxt):

Valuelist seq = null;

try

{
seq = new ValuelListiexp.evalictxt) .segqWalue (ctxt)) !
Collections.rererselised) !

¥

catch (ValusException e)

{
return abort (e

return new Seglalue (sedq) :

VDMJ

Nick Battle, Fujitsu

(nick.battle@uk.fujitsu.com)

VDMJ Overview

* Where did VDMJ come from...?

* Provides support for VDM-SL and VDM++ parsing, static type
checking, interpreting/debugging, PO generation, test coverage
and combinatorial testing

* Pure Java (5 or later), no external dependencies

* Released under GPLv3 by Fuijitsu

» Command line interface only

* Informally developed (eg. not specified in VDM)

» User Guide and Design Specification docs available

» Passes CSK test suite (>3000 tests, converted to JUnit tests)

* Quite fast (3000 tests in ~20 seconds).

VDMJ Architecture

Lexical Reader Type Checker
(VDM-SL, VDM++) (VDM-SL, VDM++)

h

Syntax Reader
(VDM-SL, VDM++)

Interpreter
(VDM-SL, VDM++)

4

AST Converter

Y v

CommandReader DBGPReader

-

Overture Parser

This is the overall architecture of VDMJ.

VDM source files are read by the Lexical Reader which uses a LaTeX filter to remove
markup, and produces a stream of LexTokens. The reader is told which dialect it is
reading (VDM-SL or VDM++, VICE is under development).

The LexTokens are used by the Syntax Reader to create the AST.

Alternatively, the Overture parser can be used to produce its own AST (different) and this
can be translated to VDMJ's AST by an ASTConverter (fast).

The AST is examined by the Type Checker for static type errors, and enriched with extra
type information. There are module and class specific checkers for checking the different
dialects.

ASTs that have been type checked can be serialized and compressed, and saved to disk.
Loading such ASTs again from disk is faster than re-parsing and re-checking them (at
least for large specifications).

The Interpreter creates a runtime environment based on the classes or modules in the
AST, then allows expressions to be evaluated in that environment. The Interpreter also
allows the setting of breakpoints etc. The Interpreter is operated through the command
line (console) or via the Xdebug remote debugging protocol.

VDMJ Parser 1

LatexStreamReader extends InputStreamReader — overrding readLine()

lines as Unicode Java Strings

A J

BacktrackInputReader creates a LatexStreamReader — using its readLine() to read the whole file

Unicode chars

A J

LexTokenReader extends BacktrackinputReader — overrding push, unpush and pop

LexTokens

A4

SyntaxReaders constructed with a LexTokenReader

i

AST

These four class groups comprise the VDMJ parser.

A LatexStreamReader extends InputStreamReader, replacing its readLine with a method
that searches for LaTeX markup headers, turning such "non-content" lines into blank
lines. This has the effect of preserving line number layout, but avoiding the syntax errors
that LaTeX markup would otherwise produce.

A BacktrackinputReader is used to replace the InputReader's mark() and reset() methods
with a more flexible stack of markers that can be pushed and popped. This allows
arbitrary backtracking to occur which simplifies the token reader and syntax readers. To
enable this, the entire source file is read in to memory (via the readLine of the LaTeX
reader). The output is a sequence of Unicode Java chars.

The LexTokenReader extends BacktracklnputReader, replacing its push/pop methods
with its own which push/pop the full lexical state — eg. including the current line number,
character position and last token read. It provides two methods to the SyntaxReaders, in
addition to push/pop, to read the next token from the stream or repeat the last token. The
output is a stream of LexTokens.

Lastly, SyntaxReaders consume the LexTokens and build the AST. There are different
SyntaxReader subclasses for each of the major syntactic groups in the grammar
(definitions, expressions, statements, patterns, bindings and types), plus two top level
readers for modules and classes respectively.

VDMJ Parser 2

2 @ object
SRCH < rtaxReader 253 21/04/09 12:59 nick_battle
T o BindReader 253 21/04/09 12:52 nick_battle
------- @J ClassReader 253 21/04/0% 12:59 nick_battle

------- @J DefinitionReader 253 21/04/09 12:59 nick_battle

[GJ ExpressionReader 255 21/04/02 12:52 nick_battls
; o ModuleReader 253 21/04/09 12:59 nick_battle

o PattermReader 255 21/04/09 12:59 nick_battle

o StatementReader 253 21/04/09 12:59 nick_battle
e @J TwpeReader 755 21/04/09 12:59 nick_hattls

» One SyntaxReader subclass for each major group in the grammar

* Top level ModuleReader and ClassReader combine the others and
return the AST (class list or module list)

» Each reader typically has one public method, like readPattern(),
readType(), readClass() etc. and many private methods.

* All readers are constructed by being passed a LexTokenReader

The SyntaxReaders comprise the syntax analyser of the VDMJ parser.

The readers use "recursive descent" parsing with backtracking, which means that the
structure of the code closely resembles the structure of the grammar being parsed. This
is intuitive and easy to debug, but laborious to write.

The readers create and attach new instances of other readers to their lexical stream
when they need to read parts of the parse of a larger structure. For example, a
DefinitionReader creates a TypeReader and PatternReader to parse the type/parameter
signature of a function, and an ExpressionReader to parse the body expression, finally
putting the parts together into an ExplicitFunctionDefinition object (part of the AST).

Syntax errors throw exceptions. The syntax recovery catches these exceptions and
advances in the stream until a token in one of two lists is encountered: the first is a list of
tokens which must be read up to and past; the second list is those which must be read
up to and from which parsing will continue. For example, when parsing statements,
immediately after a semi-colon would be a good place to recover, and at the next
definition section ("functions" or "types" etc) would be a good place to recover from (ie.
including that token).

In the case of grammar ambiguities, the parser uses backtracking to keep the structure of
the code simple, at the cost of re-reading the source. For example, a lexical identifier at
the start of a statement is either an assignment or an operation call. Assignments start
with state designators and operation calls with object state designators (in VDM++), and
the parser cannot tell which it is until more tokens have been read. To keep the parse of
the two separate and clean, the statement parser "pushes" the position at the start; tries
to parse one alternative, and if that fails tries to parse the other(s) after "popping" back.

VDMJ AST 1

Tree Class Class
Definition Definition
Value Type
Definition Definition
Inv
Function
Definition

* AST is a "washing line" of classes or modules at the top level

Class
etc

Function
Definition

etc

Param
Patterns

Body
Expression

* Classes and modules contain definitions
* Definitions can contain yet more definitions - "mk_(a,b) = tupval"

At the top level an AST is a list of class or module definitions, so it is more like a washing
line than a "tree".

The top level definitions contain a list of definitions for the various subsections of the
class or module (values, types, functions, operations, threads, sync, trace, instance
variables).

Each definition contains a tree structure representing the parsed structure of the source
file, including the patterns, types, binds, expressions, statements etc read by the various
SyntaxReaders.

Definitions can contain definitions, for example because they include something that
generates a function definition (eg. types with invariants generate a definition of inv_T
with the body of that function being the expression parsed), or because they are defined
with patterns that produce several named variables, such as a value definition defined as
"mk_(a, b) = ..." which defines "a" and "b".

VDMJ AST 2

(03009 14:54 nick_battle

E| o dssignmentDefinition 14% 10/03/09 14:54 nick_battle
- (3 InstanceVariableDefiniion 206 30/03/0% 15:03 rick_battle
EI----(;J ClassDefinition 232 0870402 12:45 nick_battle

@, BUSClassDefinition 167 18/03/09 15:36 rick_battls

GJ CPUClassDefinition 149 10/03/09 14:54 nick_battle
------ GJ ClassInvariantDefinition 149 10/03/09 14:54 nick_battlz
------ @J EqualsDefinition 142 10/03/09 14:54 nick_battle
------ @J ExplicitFunctionDefinition 235 02/04/0% 22:32 nick_battle
------ @J ExplicitOperationDefinition 149 10/03/09 14:54 nick_battle
------ @J ExternalDefinition 142 10/03/0% 14:54 nick_battle
------ GJ ImplicitFunctionDefinition 235 02/04/09 22:32 nick_battle
------ GJ ImplicitOperationDefiniion 145 10/03/09 14:54 nick_battle
------ GJ ImportedDefinition 149 10/035/09 14:54 nick_battle
------ @J InheritedDefinition 149 10/03/09 14:54 nick_battle
------ GJ LocalCefinition 142 10/03/0% 14:54 nick_battls
------ @J MultiBindListDefinition 142 10/03/02 14:54 nick_battle
------ @J MutexSynchefinition 142 10/03/09 14:54 nick_battle
------ GJ MamedTraceDefinition 142 10/03/09 14:54 nick_battle
------ GJ PerSyncDefinition 149 10/03/0% 14:54 nick_battle
------ @J RenamedDefinition 149 10/03/05 14:54 nick_battle
------ @J StateDefinition 149 10/03/09 14:54 nick_battle
------ GJ ThreadDefinition 149 10/03/0% 14:54 nick_battls
------ @J TypeDefinition 142 10/03/09 14:54 nick_battle
------ @J UntypedDefinition 142 10/03/0% 14:54 nick_battle
------ @J WalueDefinition 149 10/03/09 1454 rick_battlz

All AST definitions in VDMJ are subclasses of Definition.

Most of the subclass names relate directly to the names of the grammar for the
corresponding definition types. Note that not all of them are top level grammar items,
such as AssignmentDefinition, which appears in the "dcl" statement grammar, and is
identical to the grammar for instance variable definitions. Similarly, EqualsDefinitions
appear in "def" statements.

ExternalDefinitions are for the "ext" clauses that can be given with operation definitions.

ImportedDefinitions and RenamedDefinitions are used in module import clauses. They
wrap another defintion, but indicate that the defintion is not within the module (or has
been renamed within the module).

LocalDefinitions are used for local variables, such as those created from parameter
patterns and "let" defintions. They just contain a name and a type.

MultiBindListDefinition is used for several grammatical constructs which use "bind lists",
such as quantified forall and exists expressions.

UntypedDefinition is the odd one out. This is used as a placeholder when a value
definition is given, but where there is no type information, such as "x = 1" rather than
"x:nat = 1". The UntypedDefinition is subsequently replaced with a typed definition
(usually a LocalDefinition) in the type checking phase.

VDMJ AST 3

= @ object

=R CH Type 149 10/03/09 14:54 nick_battle

=] BasicType 142 10/03/02 1454 nick_battle

--GJ BooleanType 149 10/03/09 14:54 nick_battle
--GJ CharacterType 149 10/03/02 14:54 nick_battle
o MumeticType 149 10/03/09 14:54 nick_battle
GJ IntegerType 149 10/03/09 14:54 nick_battle
GJ MaturaloneType 149 10/03/09 14:54 nick_battle
GJ MaturalType 142 10/03/02 14:54 nick_battle
GJ RationalType 149 10/03/02 14:54 nick_battle
GJ RealType 149 10/03/09 14:54 nick_battle
--GJ TokenType 142 10/03/09 14:54 nick_battle
------ GJ BracketType 207 30/03/09 15:31 nick_battle
------ GJ ClassType 149 10/03/0% 14:54 nick_battle
------ GJ FunctionType 207 30/03/09 15:31 nick_battle
B @8 IrwariantType 149 10/03/09 14:54 nick_battle
O NamedType 207 30/03(0% 15:31 rick_battle
e GJ RecordType 207 30003/09 1531 nick_battle
[]----GJ MapType 207 30/03/0% 15:31 nick_battle
------ o OperationType 207 30/03/02 15:31 nick_battle
------ GJ OptionalType 207 30/03/09 15:31 nick_battle
------ GJ ParameterType 149 10/03/09 14:54 nick_battle
------ GJ ProductType 207 3000302 15:31 nick_battle
------ GJ QuoteType 149 10/03/02 14:54 nick_battle
[]----GJ SeqType 207 30/03/09 15:31 nick_battle
------ GJ SetType 207 30/03/09 15:31 nick_battle
------ GJ UndefinedType 142 10/03/09 14:54 nick_battle
------ GJ UnionType 207 3000309 15:31 nick_batkle
------ GJ UnknownType 142 10/03/09 14:54 nick_battle
------ GJ UnresolvedType 235 05/04/09 22:26 nick_battle
------ GJ WoidReturnType 149 1070309 14:54 nick_battle
------ GJ WoidType 149 10/03/09 14:54 nick_battle

Types in AST are represented by subclasses of the Type class. Their names closely
follow the names in the grammar.

Notice that the types which can have invariants (NamedTypes and RecordTypes) are
distinguished in the Type hierarchy, whereas in the grammar the invariant is part of the
TypeDefinition rather than the Type itself. This is for the VDMJ runtime, which needs
access to the invariant, given only the type, when new values are being created.

VoidType means "no type" and is used to indicate that most statements don't return a
value. The VoidReturnType is the type of the bare "return" statement — ie. this should
return from the operation, but the return type is still void.

UnknownType is used during error handling. This type will pretend to be anything and
tries to behave in a way that will not aggravate the type checker into producing a cascade
of spurious errors due to a single cause.

UnresolvedType is used to hold named types when then come from the syntax phase.
They are replaced with real types in an early phase of type checking (called type
resolution).

VDMJ AST 4

2 O object
E‘""'GS E

14:54 nick_| :
1 ApplyExpression 149 10/03/09 14:54 nick_battle
®7 BinaryExpression 149 10/03/09 14:54 nick_battle

= QD EBooleanBinaryExpression 149 10/03/09 14:54 nick_battle
; "GD AndExpression 149 10/03/09 14:54 nick_battle
"GD EquivalentExpression 149 10/03/09 14:54 nick_battle
"GD ImpliesExpression 142 10/03/09 14:54 nick_battle
"GU OrExpression 149 10/03/09 14:54 nick_battle
----- GD CompExpression 226 070409 2216 nick_battle
----- GD DomainResByExpression 142 10/05/09 14:54 nick_battle
----- GD DomainResToExpression 142 10/05/09 14:54 nick_battle
----- GD EqualsExpression 149 10/03/09 14:54 nick_battle
----- GD InSetExpression 149 10003709 14:54 nick_battle

GD MapletExpression 149 10/035/09 14:54 nick_battle
----- GD MapUnionExpression 149 10/05/09 14:54 nick_battle
----- GD NotEqualExpression 142 10/03/09 14:54 nick_batte
----- GD NotInSetExpression 142 10/03/09 14:54 nick_batte
I:—]----@S NurmericBinaryExpression 149 10/03/09 14:54 nick_battle
------ GD DivExpression 149 10/03/02 14:54 nick_batklz

@D DivideExpression 142 10/03/09 14:54 nick_battle
------ GD GreaterEqualExpression 149 10/03/09 14:54 nick_battle
------ @D GreaterExpression 149 10/03/0% 14:54 nick_battle
------ GD LessEqualExpression 149 10/03/09 14:54 nick_battle
------ GD LessExpression 142 10/03/09 14:54 nick_battle
------ GD ModExpression 142 10/03/02 14:54 nick_battle
""" @D PlusExpression 142 10/03/09 14:54 nick_battle
------ GD RermExpression 149 10/03/0% 14:54 nick_battle
------ @D SubtractExpression 149 10/03/09 14:54 nick_battle
------ GD TimesExpression 142 10/03/09 1454 nick_baktle
----- GD PlusPlusExpression 142 10/03/09 14:54 nick_battle
----- GD ProperSubsetExpression 142 10/05/09 14:54 nick_battle
----- GD RangeResEyExpression 149 10/03/0% 14:54 nick_battlz
----- GD RangeResToExpression 149 10/03/0% 14:54 nick_battlz

All AST expressions in VDMJ are subclasses of the Expression class.

Most Expressions relate directly to an expression in the grammar. A couple are
manufactured in order to make the type checking and execution easier, such as
PreOpExpression and PostOpExpression (which include a link to the module state
definition, and are used exclusively for operations' pre and post expressions). Similarly
StatelnitExpression is used in the setup of module state (the body of the state's "init"
clause, if any).

VDMJ AST 5

= @ object
SRCH ment 149 1
C o Abwaysskatement 149 10/03/09 1454 nick_battle
----- GD AssignmentStatement 235 080409 22:26 nick_battle
----- GD AtomicStatement 242 12/04/09 19:10 nick_battle
----- GD CallobjectStatement 182 26/03/09 05:10 nick_battle
----- GD CallStatement 149 10/03/02 14:54 nick_battle
----- GD CasesStatement 142 10003109 14:54 nick_battle
----- GU ClassInvariantStaternent 149 10/03/0% 14:54 nick_battl=
----- GD CyrlesStatement 149 10/03/09 14:54 nick_hattle
----- GD DefStatement 149 10/035/02 14:54 nick_battle
----- GD DurationStatement 142 10/03/02 1454 nick_battle
----- GD ElselfStatement 142 10/03/09 14:54 nick_battle
----- GD ErrorStatement 142 10/03/09 14:54 nick_battle
GD ExitStatement 149 10/05/09 14:54 nick_battls
----- GD ForallStaternent 149 100309 14:54 nick_hattle
----- GD ForIndexStatement 149 10/03/09 14:54 nick_battle
----- GD ForPatternBindStatement 142 10/03/09 14:54 nick_battle
----- GD IfStatement 216 03/04/09 16:27 nick_battle
----- 60 LetBeStStakement 142 10/03/02 14:54 nick_battle
GD LetDefStaterment 149 10/03/0% 14:54 nick_battls
----- GD Mot¥etSpecifiedStatement 151 1170309 16:55 nick_battle
----- GD PerindicStatement 149 10/03/0% 14:54 nick_battle
----- GD ReturnStatement 149 10/03/09 14:54 nick_battle
EI---GD SimpleBlockstatement 142 10/03/09 14:54 nick_battle
(@ BlockStatement 212 06/04/02 14:43 rick_battle

----- [C] SubclassRespansibilityStatement 149 10/0309 14:54 nick_battle
o
----- @, TixeStatement 149 10/03/09 14:54 nick_battle
o
----- GD TraceStaternent 151 1170302 16:53 nick_battle 10
----- (C] TrapStatement 149 10/03/02 14:54 nick_battle
(]

All AST statements in VDMJ are subclasses of Statement.

The class names closely follow the grammar. The hierarchy is less structured than the
Expression hierarchy because generally statements are independent of each other. The
only subclassing is with SimpleBlockStatements, which are just a sequence of
statements, where the BlockStatement subclass can have additional DclStataments at
the start, and a NonDeterministicStatement subclass is used to identify a block used in
this way.

= @ Object

-

VDMJ AST 6

Patte 09/04/09 15 ick_battle

5 BooleanPattern 237 03/04/09 15:28 nick_battle
GD CharacterPattern 237 09/04/09 1825 nick_battle
GD ConcatenationPattern 257 09/04/09 15:26 nick_battle
GD ExpressionPattern 237 09/04)02 18:25 nick_battls
GD IdentifierPattern 237 09/04/09 18:28 nick_battle
GD IgnorePattern 237 09/04/09 15:28 nick_battle
@D IntegerPattern 237 09/04/02 13:28 nick_battle
GD CQuotePattern 237 0900409 15:28 nick_battlz
GD RealPattern 237 02)04/02 18:28 nick_battle

GD RecordPattern 237 09/04/09 15:25 nick_battle
GD SeqPattern 237 09/04/02 18:258 nick_battls

@D SetPattern 237 09/04/09 18:28 nick_battle

GD StringPatkern 237 09/04/09 15:28 nick_battle
GD TuplePattern 237 02/04/09 18:28 nick_battle

GD UnionPattern 237 09/04/09 15:25 nick_battle

11

All AST patterns in VDMJ are subclasses of Pattern, and closely follow the grammar.

Note that a Pattern plus a Type is able to generate a set of typed Definitions for the

identifiers it includes.

VDMJ AST 7

= @ obiect
SR vk 140 10/03/0% 14:54 nick battle
= i Export 149 10/03/09 14:54 nick_battle
{8y Exportall 149 10/03/09 14:54 nick_battle
60 ExportedFunckion 149 1070302 14:54 nick_battle
GD ExportedOperation 149 10/035/09 14:54 nick_battlz
GD ExportedType 149 10/03/029 14:54 nick_battle
------- GD Exportedialue 149 1070309 14:54 nick_battle

= O objed
EI@% Import 149 10/03/09 14:54 nick_battle
o Importall 142 10/03/09 14:54 nick_battls
GD ImportedType 149 10/03/09 14:54 nick_battle
-@ Importedvalue 149 10/05/02 14:54 nick_battls
n
] ImportedFunction 149 1070302 14:54 nick_battle
o
------- (C] ImportedOperation 142 10/03/09 14:54 nick_battle
o

12

Modules differ from classes in AST in that they have import/export defintions in addition
to a list of definitions.

VDMJ Type Checking 1
Principles

* VDM syntax allows "3 + true", but type checking does not
» Concerned with types, which are ultimately defined by the types of
literals and named definitions, and their combination via

expressions, statements and further function/operation definitions.

* Also concerned with the scope of the names of definitions, the
duplication of names (error) or when local named definitions are
unused or hide outer names (warning).

» Syntax does not link type names to their definitions, so "x:T = 123"
has an UnresolvedType called "T", but this may not even exist.

» Note that functions cannot see "state" definitions, and operation
post conditions can see "old" variable values

* Classes are types (hence ClassDefinition), but modules are not.

13

VDMJ Type Checking 2
Principles

= @ object
EG’} TyvpeChecker 109 28/02/09 21:54 mver
------ C o ClassTypeChecker 232 08/04/09 12:45 nick_battle
o GJ MaoduleTypeChecker 234 0&/04/02 17:01 nick_hattle

@ object

E@’j Environment 106 09 21154 mver
E| C o FlatEnvironment 109 28/02/09 21:54 mver
¢ LD FlatCheckedEnvironment 109 28/02/09 21:54 mver
--GJ ModuleErwironment 109 25/02/09 21:54 mver
--GJ PrivateClassEnvironment 109 25/02/09 21:54 mver
GJ PubliciClassEnvironment 109 Z8/02/09 21:54 mwver

* Type checking is coordinated by subclasses of TypeCheck. The
actual business of checking is performed by the AST elements

* An Environment refers to a list of definitions and allows them to be
searched by name

* Environments chain together to add definitions to the current

"scope" temporarily, such as parameters inside a function or new
definitions from a let expression

14

VDMJ Type Checking 3
ModuleTypeChecker outline

» Check for duplicate module names in the list passed

» For each module, generate its definitions’ implicit definitions (like pre and
post functions)

» For each module, check the export definitions exist and are of the declared
type, and make a list of exported definitions for the module.

» For each module, go through the import definitions and resolve against the
exports.

Create a list of all definitions from all modules (including their imports),
create an Environment that contains them all, and attempt to perform type
resolution on them —ie. find the type definition for every named type.

In the pass order: [types, values, definitions], for each module, create a
ModuleEnvironment representing the visible definitions, and type check
the definitions of the given pass.

Report any discrepancies between the final checked types of the modules’
definitions and their explicit imported types elsewhere.

Any definition names that have not been referenced or exported produce
"unused" warnings.

15

VDMJ Type Checking 4
ClassTypeChecker outline

* Make sure there are no duplicate class definitions.

For all classes and their definitions, generate the implicit definitions. This
includes the construction of the class type hierarchy and the implicit local
names for access to inherited definitions.

For each class, chain a PrivateClassEnvironment to the public
environment, and perform type resolution on the definitions in the class.

For each class, check for overloading and overriding of its definitions.

In the pass order: [types, values, definitions], for each class, chain a
PrivateClassEnvironment to the public environment, and type check the
definitions of the given pass.

» Check for any definition names that have not been referenced, and
produce "unused" warnings.

Create a PublicClassEnvironment that can see all public class definitions.

16

VDMJ Type Checking 5
Key Methods

public abstract class Definition implements Serializable
{
public void typeResolve (Environment enwv)
public void implicitDefinitions (Enviromnent base)
ahstract public void typeCheck (Enviromment hase, Name3cope scope) !
public void unusedCheck()

public abstract class Expression implements Serializable
{
ahstract public Type typeCheck (Environment env, Typelist gualifiers, NameScope scope):

public abstract class 3tatement implements Serializable
{
abstract public Type typeChecki(Environment env, MNameS3cope scope);

» Type checking methods on Definition are all void, whereas those on
Expression and Statement return the type of their content

 Type resolution is only performed on Definitions, not Expressions and
Statements. Resolution of their types is delayed until their type check

» Expression's typeCheck has a list of "qualifier" types, used to resolve
overloading with function apply expressions

* NameScope indicates whether state etc. is in scope or not
17

VDMJ Type Checking 6

TypeComparator
-"f TE
* b zlass for static type checking comparisons.
w

public class TypeComparator

{
public synchronized static boolean cowpatible (Type to, Type from)
public synchronized static boolean compatible |(Typelist to, Typelist from)
public synchronized static boolean isZubType (Type sub, Type sup)

» TypeComparator is used to check whether one type is assignment
compatible with another, and whether one type is a subtype of another

» VDMJ always does type checking with "possible semantics"

* The "compatible" method provides possible semantics for type
conversion, eg. a real is possibly an int

» The "isSubType" method provides definite semantics for type
comparison, eg. a real is not a subtype of int. This is used in PO
generation

18

VDMJ Type Checking 7
Checking Functions (1)

« If there are any polymorphic type parameters for this function, check that
the overall function type does not reference any type parameters except
those named type parameters.

 For each type parameter, create a LocalDefinition of a ParameterType and
add this to a local Environment.

» Check that the parameter patterns match the overall Type’s parameters,
and iterate through curried sets of parameters, using the return value from
the overall Type (and its return value and so on for subsequent sets of
parameters). Remember the expected result.

< Extend the local Environment with definitions for all the variables of all the
patterns from all of the curried parameter sets.

» Type check the definitions this produced in the base environment (this will
just do type resolution, if necessary).

« Label the local Environment as static (VDM++) if the definition’s access
specifier is static.

« If we are in VDM++ and the function is not static, add a “self” definition to
the local Environment.

e continued...

19

VDMJ Type Checking 8
Checking Functions (2)

« If there is a precondition expression, type check the definition for it.
« If there is a post condition expression, type check the definition for that too.

» Type check the body expression of the function, remembering the actual
type returned.

« If the actual return type is not (possibly) assignable to the expected return
type, raise an error.

« If the VDM++ accessibility of the expected return type is narrower than that
of the definition itself, raise an error (eg. a public function cannot have a
private or protected return type).

« If the function is recursive and does not define a "measure" function, raise
a warning, else if there is a measure defined, check that it exists and has
the correct type.

» Check that the parameter variables have been referenced in the local
Environment, else raise an unused parameter warning. (This is
suppressed for pre and post condition functions, which are permitted to not
necessarily use their implicit parameters).

20

VDMJ Interpreter 1

* Interpreter evaluates expressions from their definitions in the AST

» Acts as the common “interface” for external user interaction
classes (command line or IDE).

» Uses a default module or class. Used for simplified naming.
Defaults to the first module/class on the AST list

» Contains a list of breakpoints, and methods to set/clear/list them,
as well as to locate expressions/statements in AST by file/line
number

» Contains a list of source file contents for source debugging

« Also acts as the initiator for PO generation, though POs are
generated in the AST elements.

* |nitialization method creates or restores an “initial context”
representing the global static context for all subsequent
evaluations

» Can evaluate expressions in the initial context, or in a local context
when a breakpoint is reached

21

VDMJ Interpreter 2

-« @ Object

Zﬁiﬁ‘:‘lnterpreter 174 20/03/09 14:28 nick_battle

GD ClassInterpreter 174 20/03/09 14:28 nick_battle
GD ModuleInterpreter 150 25/03/09 10:15 nick_batte

- (3 object
+ (O* abstractMap<k, ¥
» (B HashMap<k, ¥

fﬁim Context 171 19/03/09 16:52 nick_battle

+ (B4 RootContext 171 19/03/09 16:52 rick_battle
GD ObjectContexk 109 26/02/0% 21:54 mver
GD StateConkext 109 25/02/09 21:54 mver

 Evaluation is coordinated by subclasses of Interpreter. The actual
business of evaluation is performed by the AST elements

* Runtime name/value pairs held in Context subclasses which mirror
the Environment subclasses used in type checking

» Contexts chain together to form the runtime stack. RootContext is
the abstract base of a function/operation call. ObjectContext has a
“self’, and StateContext points to any module state

* Global values (module state or class static fields) are held in
ClassDefinition or Module definitions in AST

22

VDMJ Interpreter 3

class A
functions
public f£f: int * int -»> int
fia, b) ==
new A{).gia + b):

g: int -> int
gix) ==
let ¥ = x + 1, = =% - 1 in
let & = r + 5 in
ar

end L [thread 1]> stack

Stopped at break [1] in 'A' (test.wpp) at line 11:17
a =&
In context of let expression in '4A' [(test.vpp) at line 10:13
4
2
In context of let exXpression in '4A' (test.vpp) at line 9:9
giint) = {int -> int)
x =3
zelf = A{#2}
In object context of gi(x) in 'A' (test.vpp) at line 5:9
self = A{#H1}

r

=

fiint, int) = (int ¥ int -> int)
b =2
a=1

In object context of £la, b) in '4' (console) at line 1:1
In root context of glokbal static scope
23

Contexts are used as "stack frames", but they encompass less than an entire frame for a
function or operation.

In the example above, a breakpoint has been set on line 11 which returns the final value
"a". The inset shows the stack trace when control reaches the breakpoint.

Note that the only name/value pair in the top Context is a=6, being the Context of the
"let" expression that defines it. Then the outer "let" expression defines another Context
that defines r and s. Then the object context for g(x) defines x, g itself, and the "self"
value. Lastly the object context for f(a,b) defines a, b, f itself and its "self". Notice that the

two self pointers have different object references (#1 and #2), due to the fact that "g" is
applied via a new object reference.

VDMJ Interpreter 4
=@

Bk walue 180 25/03/09 10:15 nick_battle
------ GJ BooleanMalue 102 25/02/09 21:54 mwer
------ @J Charactervalue 109 Z3/02/09 21:54 mwver
EI-"-@J FunctionValue 109 28/02/02 21:54 mwver
B CompFunctionvalus 109 25/02/09 21:54 niver
GJ IterFunctionValue 109 25/02/09 21:54 mwver
------ @J Map¥alue 102 28/02/02 21:54 nver
------ GJ Milwalue 109 25/02/09 21:54 mver
-8 Numericvalue 109 28/02/09 21:54 mver
-3 Realvalue 109 28/02/09 21:54 mver
=@, Rationalvalue 109 28/02/09 21:54 mver
=3 Inteqervalue 109 28/02/02 21:54 mver
=& Maturalvalue 109 28/02/03 21:54 mver
(@ Naturalonevalue 109 28/02/09 21,54 mver
------ @J Objectvalue 109 26/02/09 21:54 mver
------ @J Operationvalue 109 23/02/09 2154 mver
------ GJ Parametervalue 109 Z5/02/09 21:54 mver
------ GJ Quatevalug 109 28/02/02 21:54 myver
------ GJ Recordialue 109 28/02/09 21:54 mwver
Ele'j Reference¥alue 109 25/02/09 21:54 mver
@ Invariantvalue 109 25/02/09 21154 mver
GJ Updatablevalue 109 25/02/09 21:54 mver
------ @J Seqvalue 226 07/04/09 22116 nick_battle
------ @J Setvalue 109 25/02/09 21:54 mver
------ @J Token¥alue 109 Z8/02/02 2154 mver
------ GJ Tuplettalue 109 25/02/09 21:54 mver
------ GJ Undefinedvalus 102 25/02/09 21:54 nver
I':'I----(aJ Voidvalue 109 Z5/02/09 2154 mver
@ voidReturn¥alue 109 28/02/09 21:54 mver

24

The Value hierarchy represents all runtime VDM values in VDMJ.

It can be compared to the Type hierarchy, in that there are Values corresponding to most
Types, but note that there is no "UnionValue" — a value cannot be a union of values, at
runtime the value must be one of the alternative types discovered during type checking.

Note that NumericValues form a hierarchy: a nat1 is a nat, which is an int, what is a rat,
which is a real.

Abstract ReferenceValues are values which refer to other values. The concrete
InvariantValue is a value associated with a type with an invariant function, such that any
value it refers to must conform to that invariant. An UpdatableValue adds a "set" method
to allow changes to the value being referenced.

VoidValue is "no value", and is returned by statements which do not return a value. The
VoidReturnValue is returned by the bare "return" statement, which does not return a
value as such, but which causes the flow of control to return as though it did.

VDMJ Interpreter 5
Key Methods

public abstract class Expression implements Serislizable
{
ahstract public Value eval (Context ctxt):

public abstract class Statement implements Serislizable
{
ahstract public Value ewval(Context cLxt):

Expression and Statement's eval methods return their Value, given the
passed Context

Evaluation recurses over the AST, evaluating and combining the Values of
sub-expressions or contained Statements

The Context is extended by expressions or statements which add variables
(eg. let expressions)

Evaluations can throw ContextExceptions — a runtime exception which
includes the Context (stack) as well as a number, text and location

25

VDMJ Interpreter 6
TailExpression.eval

Aoverride
public Value ewval (Context ctxt)
{
hreakpoint.check(location, ctxt):

Valuelist seqg = null:

try
{
seq = new ValueList (exp.eval (ctxt) .segqiValue (ctxt))
i
catch (ValueException e)
{
return shortie);
}

if (seq.isEmpty ()
{

abort (4033, "Taill =sequence i= empty"™, cLxt):;
i

seq.remove (0) ;
return new Segialue(sedq):

26

This is the eval method of a TailExpression.

The AST element only contains one sub-expression, "exp", which is the sequence
expression for which the tail is to be taken.

The sub-expression is evaluated using the same Context as passed — "exp.eval(ctxt)" —
which yields a Value (presumably a SeqValue). The seqValue method will take any Value
and return the inner List<Value> type that it contains, or throw a ValueException if the
Value does not actually contain a sequence.

Note that the value returned by seqValue is duplicated by being passed to a new
ValuelList constructor. This is so that the copy can be modified — without doing this, the
original list would be modified, which could change the value of a string literal, for
example.

For a tail expression, the resulting list must not be empty, and a test is made for that
case, aborting (throwing a ContextException) with error 4033 if that is the case.

Otherwise the list is manipulated to remove the head, and a new SeqValue is returned
based on the remaining tail of the list.

All statements and expressions must include the breakpoint check line at the start of their
eval methods if a breakpoint is permitted to stop before their evaluation.

VDMJ Interpreter 7
BlockStatement.eval

[rrerride
public Value ewval (Context ctxt)
{
breakpoint.check(location, ctxt);

Context evalContext = new Context|location, "block statement™, ctLxt):

for (Definition d: assignmentDefs)
{

evalContext.put (d.getNamedValues (evalContext))}
}

for (Statement =: Statements)
{
Value rv = =.ewval(evalContext);

if [lrwv.isVoidi))
{
return rv:
H
i

return new VoidWValue():

27

This is the eval method of a block statement — ie. a statement that can include dcl
statements to define new variables.

This evaluation must execute the statements in the block within a Context that is based
on the one passed in, but extended with the name/value pairs defined by the dcl
statements at the start of the block. The AST element calls these definitions
"assignmentDefs" — a List<Definition>.

A new Context is created, given a sensible location and title (for stack display) and
chained onto the end of the one passed in. The new context is populated with
name/value pairs generated from the dcl definitions by calling their "getNamedValues"
method. All Definitions' implementations of this method return a List<NameValuePair>
which can be added directly to a Context.

Having extended the context passed in, each statement in the block is evaluated and the
return value of each in sequence is tested to see whether it is non-void. If so, the block
evaluation terminates at that point and the value is returned as the value of the block.
Otherwise the statements are all executed and a new VoidValue is returned.

As with the Expression example, all Statements must call the breakpoint check method if
a breakpoint is allowed to stop before their execution.

VDMJ Exercise 1

sequence for loop = ‘for’, pattern bind, ‘in’, [‘reverse’], expression, ‘do’, statement ;

 Currently, the "reverse" keyword is part of the sequence loop grammar

« It would be better to treat "reverse" as a new unary sequence operator, like
hd, tl, len, elems, inds and conc.

« Grammar becomes: "for", pattern bind, "in", expression, "do", statement

* ReverseExpression.java is partly written in SVN. The VDMJ parser has
been changed to build the AST already.

* Complete the eval method of ReverseExpression as an exercise —
compare with TailExpression.java

 Test with "print rev [1,2,3]" — should give [3,2,1]. Check that the reverse for
loop still works too. See whether you can set a breakpoint.

» The typeCheck method is also blank. Complete this as an exercise too —

test with "rev 123". It should complain that the argument is not a sequence.

» What should the getProofObligations method look like?

28

VDMJ Exercise 2

Run Configurations (. <

Create, manage, and run configurations

Fun a Java application

>

RIS

Marme: | YDM++ Test

‘ type filker text |

4 Edlipse Application
[Java Applet
+ [31 Java Application
[3] DBGPReader
[31 vDM-5L Test

v Ju Jurit

JU Junik Plog-in Test
» m2 Maven Build

4 05Gi Framewark

Filter matched 15 of 15 iberms

@ Main W =i RE ‘ &.»‘} Classpath | Ey Source| ﬁ Erwironment | B gommon|

Program arguments:

~vdmpp - kest,vpp

E

WM arguments:

|. Variables... |

E

‘working directory:

|. Wariable:

) Defal: |

@ Other: |${workspace_loc:VDMJTests}

‘workspace

@

29

Interpreter started

> p rev 1234

Error 3292: Argument to
> p rev [1,2,5,4]

= [%, 3, 2, 1]

Executed in 0.013 secs.
» p rev "hello™

= M"olleh™

Executed in 0.0020 secs.
= p rev []

=11

Executed in 0.0010 secs.
>

VDMJ Exercise 3

‘rev!

Tests...

is not a sequence in

X

(zonsole)

at line 1:1

30

VDMJ Exercise 4
Solutions...

Boverride

public Type typeCheck (Environmenht emnv, Typelist qualifiers, Name3cope scope)

1
Type eTLype = exp.typeCheck(env,

if (!etype.isleq())
i

mull, scope);

report (3292, "Argument to 'rev' is not a sequence");

return new SeqType(location,

return etype:
i

BOverride
public Value eval (COntext CLXL)
i
breakpoint.check(location, ctxt)

Valuelist seq = null;

try
{

new UnknownType (location)):

seq = new Valuelist (exp.ewval (ctxt) .seqlalue (ctxt))

Collections. reverse(sed) !
i
catch (ValueException e)
{

return abortie);

return new SeqWValus (sedq)

31

