Explicit vs. Implicit
Polymorphism in OML

Thomas Christensen
MSc. (CS) (Soon)
University of Aarhus, Denmark

Agenda

= Explicit vs. Implicit polymorphism in OML
» Type inference

= Problems

= Generics In OML

= Conclusion

= Questions

Explicit Polymorphism

class PolyFunctionTestl

functions
ldentity[@param] : @param -> @param

Identity (p) == p;

doTest: () -> int
doTest() ==
let a = Identity[int] -- Explicit function instantiation
In
a(42);

end PolyFunctionTestl

Implicit polymorphism

doTest: () -> Int
doTest() == Identity(42);

doTest : () -> bool
doTest() == Identity(false);

doTest : () -> char
doTest() == ldentity(“a”);

Type Inference

= Omitted type annotations need to be
reconstructed by the type-checker

= Classical ML-style type inference uses
the Hindley-Milner algorithm.
= 1. Assign type variables to all expressions
= 2. Generate type constraints using the AST
» 3. Solve constraints by unification

Type Inference

 Recent (2 days ago) addition to OML
o Untyped Explicit Functions

functions
Foo - 1nt * 1Int * Int -> Int
Foo (X, YV, Z2) == X +Vy + Z

 Fully implemented (Disclaimer: on the syntactic
level only)

Type Inference

 Recent (2 days ago) addition to OML
o Untyped Explicit Functions

functions
Foo - 1nt * 1Int * Int -> Int
Foo (X, YV, Z2) == X +Vy + Z

 Fully implemented (Disclaimer: on the syntactic
level only)

Problems...

= Union types

* The actual type of the element in the union type
cannot be determined statically.

* |n the presence of union types the algorithm may
Infer too general a type to be actually useful

= |nvariants

» User-defined types may have arbitrarily complex
Invariants imposed on them. Respecting the
Invariants would require evaluating them at compile
time.

Example 1

f[Op] : seq of @p -> @p
T(xX) == 1f len x =1

then x(1) + 1

else x(2) or fTalse;
let a = [true, 87]
in f(a)

f[@p] : seq of @p -> @p
f(x) == if len x = 1
then x(1) + 1

Example 1 e else X(2) or false:

= Constraints generated from inference
rules

= Example — sequence length operator

|- Ien(X) - nat

= Generates constraints
* [X] = seq of A
" Jlen X] = nat

fl@p] : seq of @p -> @p
f(xX) == 1f len x =1
then x(1) + 1
else x(2) or false;

Example 1 =~ - —no2nm

let a = [true, 87]
in £(a)

= Generate constraints...
= Syntax: [X] type of expression X

" [a] = (nat | bool) = [@p]

» Ja] = seq of a = seqg of [@p]
» [X] = seq of a = seq of [@p]
» [X] = seq of nat

= [X] = seq of bool

f[@p] : seq of @p -> @p
f(x) == if len x =1
then x(1) + 1
else x(2) or false;

Example 1 =~ - —no2nm

let a = [true, 87]
in f(a)

= Solving by unification gives us
» [a] = seq of (bool | nat)
* [@p] = bool | nat
" [a] bool | nat
» [X] = seq of nat
* [X] = seq of bool

f[@p] : seq of @p -> @p
f(x) == if len x =1
then x(1) + 1
else x(2) or false;

Example 1 =~ - —ni2n=w

let a = [true, 87]
in f(a)

» [x] = seq of nat
seq of bool

Incompatible types'!

|
[r—

X
S

[

* |s this a problem ?

f[@p] : seq of @p -> @p
f(x) == if len x =1
then x(1) + 1
else x(2) or false;

Example 1 =~ - —ni2n=w

let a = [true, 87]
in f(a)

» [x] = seq of nat
seq of bool

Incompatible types !

|
[r—

X
S

[

* |s this a problem ?

» Not necessatrily, if our specification includes a
type declaration that matches (bool | nat)

types
natbool = bool | nat

fl@p] : seq of @p -> @p
f(xX) == 1f len x =1
then x(1) + 1
else x(2) or false;

Example 1 T

types
natbool = bool | nat

» [X] = seq of natbool
» [X] = seq of natbool

* |ncompatibility goes away

= This IS not unsound, as we Infer an
existing type.

fl@p] : seq of @p -> @p
f(xX) == 1f len x =1
then x(1) + 1
else x(2) or false;

Example 1 =~ - —no2nm

let a = [true, 87]
in £(a)

= However, IS It "ethical” ?

* \We may have defined a type to be used in a
specific modelling context.

» Using this type in another, possibly
unrelated context may make our intentions
unclear.

= Access modifiers (private, public,
protected) can control whether the

Inference algorithm may use the predefined
type in the new context.

fl@p] : seq of @p -> @p
f(xX) == 1f len x =1
then x(1) + 1

else x(2) or false;
Example 1 tot & = feree e T
in f(a)

= How about if there is no previously
defined natbool type ?

* The inference algorithm can create one.

» Result: All specifications are guaranteed to

be statically type correct since we can create
suitable union types on the fly

* Do we really want this ? (No)
* Report a type error instead.

Example 2 - Non-disjoint

union types

class PolyFunctionTest6

types
natreal = nat | real

functions
f[@p] : seq of @p -> @p
f(x) == if len x =1

then x(1) mod 2 -- mod :

else x(2) + 76; -

doTest : () -> int
doTest () ==
let a = [42.1 , 87]
in f[natreal] (a);

end PolyFunctionTest6

+

int * int
real * real

-> int
-> real

Example 2 - Non-disjoint
union types

class PolyFunctionTest6

types
natreal = nat | real [X] = seq of nat | real

functions
f[@p] : seq of @p -> @p
f(xX) == 1f len x =1
then x(1) mod 2 -—mod : Int * Int -> iInt
else x(2) + 76; —— + - real * real -> real

doTest - () -> Int Should we merge disjoint types to the

doTest() == "
let a = [42.1 , 87] most general type ~
in f[natreal](a); [x] = seq of real

end PolyFunctionTest6

To be completely safe...

= Allow only operations on the union type
which are valid for all member types in
the union.

* (This restriction is ignored in the C
language, leading to "Implementation-
dependant " results [K&R] and potential
safety violations)

Proposal for Generics In
OML

= Adding generics to OML
= Similar to generics in Java 1.5

Linkedlist<String> = new LinkedList<String>()

= Class declarations parameterized with a
list of type variables

Proposal for Generics in
OML

= Syntax:

= Currently at the pre-experimental stage.
= Thanks to Marcel for hacking the grammar into place...

Conclusion

types
natbool = nat | bool

functions
f[@p] : seq of @p -> @p
f(x) == if len x =1

then x(1) + 1
else x(2) or false;

doTest : () -> int
doTest () ==
let a = [true, 87]
in f[natbool] (a);

e This example typechecks OK in VDMTools POS mode
(8 errors in DEF mode), but fails at runtime as it
attempts to evaluate: 87 or false.

Conclusion

* Thus, type inference cannot bring us from POS to DEF
correct.

* Proof obligations and dynamic checks are still
necessary.

e |t can provide:

* Fewer type annotations while retaining the same level of static
type correctness.

o Specifically it can give us implicitly typed polymorphic
functions.

Conclusion

e Generics may provide us with additional
flexibility in specifying classes.

« Additionally it may move certain type-
checks from run-time to compile time.

* The latest version of the OML grammar
(created Sunday afternoon) supports the

generics syntax. Further work is needed
to fully implement this.

end Presentation

= Questions

= Comments
»= Objections
= Discussion
= Suggestions

