
Towards a Static Check of FMUs in VDM-SL

Nick Battle, Casper Thule, Cláudio Gomes, Hugo Daniel Macedo

17th Overture Workshop, Oct 2019

Work Outline

● VDM-SL model of FMI static semantics (configuration)
● Builds on 2016 work by Mirran, Peter J & Kenneth
● Extended to cover the whole of FMI 2.0
● Incorporated into a tool to analyse FMU files
● Tested against the FMI Cross-Check Repository

VDM Modelling
● XML/XSD easiest to model as records + invariants:
<ScalarVariable

name="h"
valueReference=”0”
causality="output"
variability="continuous"
initial="exact">

 <Real
start="1"
declaredType="Position"/>

</ScalarVariable>

ScalarVariable ::
name : NormalizedString
valueReference : nat
causality : [Causality]
variability : [Variability]
initial : [Initial]
variable : Real | Integer |...

inv sv ==
...;

Real ::
declaredType : [NormalizedString]
min : [real]
max : [real]
start : [real]

inv r ==
...;

VDM Modelling
● Split invariants out as validation functions:

Real ::
declaredType : [NormalizedString]
min : [real]
max : [real]
start : [real];

isValidReal: Real +> bool
isValidReal(...) ==

(max <> nil and min <> nil =>
max >= min)

and
(start <> nil =>

(min <> nil => min <= start)
and
(max <> nil => max >= start));

VDM Modelling
● Use sets to get around McCarthy logic:

isValidReal: Real +> bool
isValidReal(...) ==
{

-- If max and min defined, max is >= min
max <> nil and min <> nil =>

max >= min,

-- If start and min defined, min <= start
start <> nil and min <> nil =>

min <= start,

-- If start and max defined, max >= start
start <> nil and max <> nil =>

max >= start
}
= {true};

VDM Modelling

isValidReal: Real +> bool
isValidReal(...) ==
{

-- @OnFail(“2.2.7 max %s is not >= min %s”, max, min)
max <> nil and min <> nil =>

max >= min,

-- @OnFail(“2.2.7 start %s is not >= min %s”, start, min)
start <> nil and min <> nil =>

min <= start,

-- @OnFail(“2.2.7 start %s is not <= max %s”, start, max)
start <> nil and max <> nil =>

max >= start
}
= {true};

● Use VDM annotations for clean error handling:

VDM Modelling

isValidCoSimulation: [CoSimulation] +> bool
isValidCoSimulation(cs) ==

cs <> nil =>
cs.sourceFiles <> nil =>

/* @OnFail("4.3.1 CoSimulation source file names are not unique: %s",
 let files = cs.sourceFiles in
 { files(a).name | a, b in set inds files &
 a <> b and files(a).name = files(b).name })

 The file names within the sequence of source files listed for the
 CoSimulation must be unique. This is determined by checking that the
 set of names is the same size as the length of the list of files.

 */
(len cs.sourceFiles = card { f.name | f in seq cs.sourceFiles });

● Annotation comments can be extensive:

VDMCheck Tool

● To be useful, the model needs to drive an “FMU checking tool”
– XML extracted from FMU file with unzip
– A SAX parser generates a VDM-SL “fmu” value from FMU XML
– Parser adds XML line numbers for @OnFail messages
– Generated VDM-SL “fmu” value combined with model types/functions
– Execute isValidFMIModelDescription(fmu) automatically with “-e”
– @OnFail lists any problems found

● Process wrapped in a bash script, VDMCheck.sh
● Works on FMU ZIP files, or raw XML
● Similar to existing FMU Compliance Checker (fmuCheck -x)

VDMCheck Tool

$ VDMCheck.sh
Usage: VDMCheck.sh [-v <VDM outfile>] <FMU or modelDescription.xml file>

$ VDMCheck.sh WaterTank_Control.fmu
No errors found.

$ VDMCheck.sh modelDescription.xml
2.2.7 Causality/variability/initial/start <input>/<continuous>/nil/nil invalid at line 6
2.2.7 ScalarVariables["v1"] invalid at line 6
2.2.1 ScalarVariables invalid
2.2.8 Outputs should be omitted at line 10
Errors found.

https://github.com/INTO-CPS-Association/FMI2-VDM-Model/releases

https://github.com/INTO-CPS-Association/FMI2-VDM-Model/releases

VDMCheck Tool
● Trivial fields can have complicated semantics!

Real ::
declaredType : [NormalizedString]
min : [real]
max : [real]
start : [real];

isValidReal: Real +> bool
isValidReal(...) ==

(max <> nil and min <> nil =>
max >= min)

and
(start <> nil =>

(min <> nil => min <= start)
and
(max <> nil => max >= start));

“max >= min required”

“max >= start >= min req.”

“If not defined, the min/max is the largest
negative/positive number that can be
represented on the Machine.”

“The value[s] defined in the [declaredType]
TypeDefinition [are] used as default.”

Real ::
min : [real]
max : [real];

Lookup

VDMCheck Tool

fmiCheck -x
 FMI Cross-Check

Repository

VDMCheck

FMI Standard
v2.0

● But which static semantics is correct?

VDMCheck Tool
● FMI Cross-Check Repository has 692 FMU examples

● VDMCheck and fmuCheck -x executed on all of them:

Problem Found: VDMCheck fmuCheck -x

None 294 (42%) 530 (77%)

Missing ModelStructure InitialUnknowns 118 0

Invalid structured ScalarVariable names 123 123

Invalid ModelStructure Derivatives 124 27

Invalid ScalarVariable attributes 37 12

Invalid aliases 56 0

Invalid “reinit” flag 24 0

Real “unit” not defined in UnitDefinitions 14 0

Invalid ModelStructure Outputs 13 0

Unsorted InitialUnknowns 4 0

Future Work
● Continue to try to establish intended static semantics
● Link annotation comments directly to FMI Standard?
● Use code generation for efficiency?
● Extend model to cover FMI Standard dynamic (API) semantics
● Modelling of co-simulations of many FMUs

– Maestro JSON to VDM-SL conversion started
– Model defines initialization process and algebraic loops

● Migrate model to cover FMI v3.0?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

