
Overture 16 preface

Preface

The 16th Overture Workshop will be held on Saturday 14 July 2018 in association with the
Federated Logic Conference (FLoC) 2018 and the 22nd International Symposium on Formal
Methods (FM 2018).

The 16th Overture Workshop is the latest in a series of workshops around the Vienna Devel-
opment Method (VDM), the open-source project Overture, and related tools and formalisms.
VDM is one of the best established formal methods for systems development. A lively commu-
nity of researchers and practitioners in academia and industry has grown around the modelling
languages (VDM-SL, VDM++, VDM-RT, CML) and tools (VDMTools, Overture, Crescendo,
Symphony, and the INTO-CPS chain). Together, these provide a platform for work on modelling
and analysis technology that includes static and dynamic analysis, test generation, execution
support, and model checking.

Current projects on model-based design for cyber-physical systems (INTO-CPS and the
CPSE Labs experiments TEMPO, CPSBuDi and IPP4CPPS) are generating real results. There
are also important developments in Japan with the release of VDMTools under an open source
licence. It is thus timely to focus on the future of the methods and toolchain, improvements
in capabilities, and potential applications. We also propose to hold a structured discussion on
possible commercial futures.

Previous workshops have been invaluable in encouraging both new and established members
of the community in their work, and helping to determine priorities and future directions.
Proceedings of former workshops are available at http://www.overturetool.org/.

We would like the members of the programme committee to do a great job providing in
depth feedback to the authors of the submitted papers. That has not only raised the quality
of the papers themselves, but moreover also provide a lot of stimulus for discussions at the
workshop.

We would also like to thank the pc chairs of the F-IDE workshop, for considering joining
forces by bringing our communities a step closer together, to share our invited talks.

May 27, 2018
Noordwijk and Newcastle-Upon-Tyne

Marcel Verhoef
Ken Pierce

i

PRELIM
IN

ARY P
ROCEEDIN

GS

Overture 16 Program Committee

Program Committee

Keijiro Araki Kyushu University
Victor Bandur Aarhus University
Nick Battle Semi-Retired
Luis Diogo Couto United Technologies Research Center
John Fitzgerald Newcastle University
Leo Freitas Newcastle University
Fuyuki Ishikawa National Institute of Informatics
Peter Gorm Larsen Aarhus University
Paolo Masci HASLab/INESC TEC and Universidade do Minho
Tomohiro Oda Software Research Associates, Inc.
Jose Oliveira University of Minho
Ken Pierce Newcastle University
Nico Plat Thanos
Marcel Verhoef European Space Agency
Peter W. V. Tran-Jørgensen Aarhus University

1

PRELIM
IN

ARY P
ROCEEDIN

GS

Overture 16 Author Index

Author Index

Araki, Keijiro 3

Fitzgerald, John 6
Fraser, Simon 7
Freitas, Leo 5

Gamble, Carl 6, 8

Larsen, Peter Gorm 2, 3, 4
Lausdahl, Kenneth 1, 2, 4

Mace, John 6
Macedo, Hugo Daniel 4
Mansfield, Martin 6
Morisset, Charles 6

Nilsson, René Søndergaard 1, 4

Oda, Tomohiro 3

Pierce, Ken 6, 8

Thule, Casper 2

W. V. Tran-Jørgensen, Peter 1

Zervakis, Georgios 8

1

PRELIM
IN

ARY P
ROCEEDIN

GS

Overture 16 Table of Contents

Table of Contents

Enhancing Testing of VDM-SL models . 1

Peter W. V. Tran-Jørgensen, René Søndergaard Nilsson and Kenneth Lausdahl

Overture FMU: Export VDM-RT Models as Tool-Wrapper FMUs . 2

Casper Thule, Kenneth Lausdahl and Peter Gorm Larsen

ViennaVM: a Virtual Machine for VDM-SL development . 3

Tomohiro Oda, Keijiro Araki and Peter Gorm Larsen

Transforming an industrial case study from VDM++ to VDM-SL . 4

René Søndergaard Nilsson, Kenneth Lausdahl, Hugo Daniel Macedo and Peter Gorm
Larsen

VDM at large: analysing the EMV Next Generation Kernel . 5

Leo Freitas

Design Space Exploration for Secure Building Control . 6

Martin Mansfield, Charles Morisset, Carl Gamble, John Mace, Ken Pierce and John
Fitzgerald

Integrating VDM-SL into the continuous delivery pipelines of cloud-based software 7

Simon Fraser

Multi-modelling of Cooperative Swarms . 8

Georgios Zervakis, Ken Pierce and Carl Gamble

1

PRELIM
IN

ARY P
ROCEEDIN

GS

Enhancing Testing of VDM-SL models

Peter W. V. Tran-Jørgensen1, René S. Nilsson1,2, and Kenneth Lausdahl3

1 Department of Engineering, Aarhus University, 8200 Aarhus N, Denmark
{pvj,rn}@eng.au.dk

2 AGCO A/S, Dronningborg Allé 2, 8930 Randers NØ, Denmark
3 Mjølner Informatics A/S, 8200 Aarhus N, Denmark

kgl@mjolner.dk

Abstract. We find that testing of VDM-SL models is currently a tedious and
error-prone task due to lack of tool support for conveniently defining tests, ex-
ecuting tests automatically, and validating test results. In VDM++, test-driven
development is supported by the VDMUnit framework, which offers many of the
features one would expect from a modern testing framework. However, since VD-
MUnit relies on object-orientation and exception handling, this framework does
not work for testing VDM-SL models. In this paper, we discuss the challenges of
testing VDM-SL models, and propose a library extension of Overture/VDMUnit
that improves this situation. We demonstrate usage of this library extension, and
show how it also enables one to reuse tests to validate code-generated VDM-SL
models.

Keywords: VDM, unit testing, continuous validation, code-generation

1 Introduction

Currently, there is a lack of tool support for unit and integration testing in VDM-SL [9],
which we find makes testing tedious and error-prone due to lack of support for con-
veniently defining tests, executing them automatically, and validating the results. Con-
cretely, testing of VDM-SL models requires a significant amount of extra boiler-plate
code that must be added and maintained by the modeller throughout the development
process. On the other hand, modern development environments often offer test support
in the form of frameworks that reduce the time spent on validation.

Most popular programming languages are supported by one or more well-established
unit and integration testing frameworks. Examples of these include the JUnit framework
for Java [16], Google Test for C/C++ [12], and NUnit for C# [23]. All of these frame-
works provide a convenient way to

– define tests (for example by annotating test methods, or by using special naming
conventions),

– intercept and control the life-cycle of a test (for example using special “set up”
and “tear down” methods to allocate and free resources before/after executing each
test),

– check test results (by writing assertions),
– easily run groups of tests and,

PRELIM
IN

ARY P
ROCEEDIN

GS

P. W. V.Tran-Jørgensen et al.

– generate test reports.

Often testing frameworks are implemented using peculiarities of the language they
support. For example, recent versions of JUnit (version 4 and 5) use annotations to
mark test methods, whereas NUnit uses C# attributes, and Google Test uses macros.

While the unit testing frameworks described above are used to check specific cases
(for example that a function computes a value for some input) another approach is
property-based testing, which allows one to test model/program properties in general
using generated input. An example of a tool that supports this approach is QuickCheck
for Haskell [3]. Concretely, QuickCheck enables one to execute several tests cheaply,
while still allowing one to control the tests and input being generated. Inspired by
QuickCheck, property-based testing is available for several popular programming lan-
guages, including Java [15], .NET [11] and C++ [25]. Property-based testing is similar
to combinatorial testing [18], which is already available for VDM and supported by the
Overture tool [17, 4, 24]. In this paper we seek to improve unit and integration testing
for VDM, hence we focus mostly on VDMUnit [10] and extensions of this framework.

VDMUnit provides most of the features one would expect from a unit and integra-
tion testing framework (Section 2). However, as VDMUnit relies on VDM++/VDM-
RT’s [20] object-orientation and exception handling features, this library does not work
for testing VDM-SL models. To address this, we have extended VDMUnit to support
unit and integration testing of VDM-SL models (Section 3). Our extension provides
two VDM-SL modules that expose the features of VDMUnit in a VDM-SL context.
To further support this development process, we have extended Overture’s VDM-to-
Java code-generator [14] to support fully automated translation of VDM-SL unit tests
to equivalent JUnit tests that can be used to validate code-generated models (Section 4).
While this approach only re-uses the model tests, another way to perform validation is to
compare the output computed using the model to that produced using the corresponding
software implementation [8].

The new testing features have supported the development of an industrial harvest
planning system [5, 6] that enables farmers to calculate harvest plans based on different
optimisation strategies (Section 5). In this project, the master algorithm that computes
the harvest plans are modelled in VDM-SL and implemented via Java code-generation.
At the modelling level, this algorithm is validated using VDM-SL unit tests, while code-
generated tests are used to check for subtle errors introduced during the code-generation
process.

2 Background

In this section we highlight some of the existing features of VDMUnit for VDM++/VDM-
RT, and later explain how these have been supported in a VDM-SL setting. In addition,
we briefly describe Overture’s code-generation infrastructure, which we have used to
translate VDM-SL tests into equivalent JUnit tests.

2.1 VDMUnit architecture
The features of VDMUnit are exposed as VDM++ classes that use a Java component
to automatically identify and execute tests using Java’s reflection features. These VDM

PRELIM
IN

ARY P
ROCEEDIN

GS

Enhancing Testing of VDM-SL models

classes are connected to the Java component using Overture’s VDM-to-Java bridge,
which enables combined execution of VDM and Java [22] in order to

– improve execution performance in a VDM setting (as Java is executed as compiled
code, which generally performs better than VDM which is interpreted),

– use language/framework features that are not directly available in VDM (e.g. re-
flection or access to the underlying operating system), and

– share functionality between VDM dialects.

The architecture of VDMUnit is shown in Figure 1.

Fig. 1: VDMUnit architecture.

2.2 Testing VDM++ models using VDMUnit

In this paper, a test class is a modeller-defined subclass of VDMUnit’s TestCase
class, which defines test operations that validate functionality using assertions. The
name of a test operation must begin with “test”, and the operation itself is expected to
take zero input arguments – otherwise it will be recorded as an error, once executed by
VDMUnit. Listing 1.1 shows an example of a test class that contains a single test.

1 class MyTest is subclass of TestCase
2 operations
3 public testOne : () ==> ()
4 testOne () == Assert‘assertTrue("Expected ‘someFeature‘ to

generate an even number ", someFeature() mod 2 = 0);
5 end MyTest

Listing 1.1: Example of a modeller-defined TestCase.

The TestCase class defines setUp and tearDown operations to intercept and con-
trol the life-cycle of a test. The setUp operation is invoked by VDMUnit before any
test is executed in order to initialise test data whereas tearDown is invoked after a test
has been executed in order to free test resources.

Once a test has been executed, it is either recorded as a

– failure if a condition checked using an assertion is false, an

PRELIM
IN

ARY P
ROCEEDIN

GS

P. W. V.Tran-Jørgensen et al.

– error if the tests produces a runtime error, or a
– success otherwise.

In case an assertion is false, VDMUnit terminates the execution of the test and
records it as a test failure. Specifically, this is achieved by raising an exception inside
VDMUnit’s Assert class in order to signal a test failure to the framework.

VDMUnit offers different ways to execute tests. One way is to execute all tests
in a single run by evaluating the expression new TestRunner().run(). This opera-
tion call uses automated reflection to execute all tests. Another approach that is more
flexible is to execute tests selectively. An example of this approach is shown in List-
ing 1.2, which constructs and executes a TestSuite consisting of TestCase1 and
TestCase2.

1 let tests : set of Test = {new TestCase1(), new TestCase2()},
2 ts : TestSuite = new TestSuite(tests),
3 result : TestResult = new TestResult()
4 in
5 (
6 ts.run(result);
7 IO‘print(result.toString());
8);

Listing 1.2: Selective test execution using VDMUnit.

2.3 Overture’s code generation platform

Translation of VDM-SL unit tests to equivalent JUnit tests is implemented as an ex-
tension of Overture’s VDM-to-Java code-generator. This code-generator is developed
using Overture’s code generation platform [14, 26], which is a framework for building
code-generators for VDM. The workflow of the code-generation platform is as follows:
First, the platform constructs an intermediate representation (IR) of the generated code
that initially mirrors the structure of the VDM model subject to code-generation. The IR
is then subjected to a series of customised transformations in order to bring it to a form
that is easier to translate into target language code (e.g. Java). For example, by replacing
a node that is non-trivial to code-generate with other nodes that have a direct mapping
into the target language. As transformations operate directly on the IR, which is inde-
pendent of any target language, they can in principle be shared among code-generators.
Once the IR has reached its final form it is handed over to the backend, which is re-
sponsible for translating the individual IR nodes into target language code. This step
is enabled using the code-generation platform’s code-emission framework, which uses
the Apache Velocity template engine [1].

Generation of JUnit tests is achieved using a transformation that identifies VDM-SL
unit tests in the IR according to the naming conventions described above and converts
these tests into a form that eventually is translated to JUnit tests (Java code) using the
code-generation platform’s code emission framework. This process is described in more
detail in Section 4.

PRELIM
IN

ARY P
ROCEEDIN

GS

Enhancing Testing of VDM-SL models

3 Testing VDM-SL models

3.1 Defining VDM-SL tests

In VDM++/VDM-RT test cases can be created by subclassing VDMUnit’s TestCase
class. However, since VDM-SL does not support inheritance, tests must be defined in a
different way. Instead we have found the naming convention used by JUnit3 (version 3
of JUnit) to be suitable for defining VDM-SL tests. Following this approach, the name
of a test module must end with “Test”, and test operations must begin with “test”.

3.2 Framework overview

Our extension of VDMUnit consists of two VDM-SL modules named TestRunner

and Assert that expose VDMUnit’s testing features to the modeller. These mod-
ules are connected to a Java component that implements test execution by means of
Overture’s VDM-to-Javabridge (see Section 2). This is similar to how VDMUnit for
VDM++/VDM-RT is designed (see Figure 1). The implementation of VDMUnit for
VDM-SL as proposed in this paper is open-source and available via [27].

3.3 The VDM-SL interface

The Assert module is shown in Listing 1.3. This module defines four operations for
validating model functionality: the assertTrueMsg operation takes two arguments,
a message that describes the assertion (pmessage), and the condition to be checked
(pbool). If the condition does not hold the framework will mark the test as a failure
and store the description of the assertion. assertTrue is similar to assertTrueMsg

– except that the former only receives the condition to be checked. The correspond-
ing operations in VDM++ are defined by means of operation overloading, which is
not supported by VDM-SL, hence different names must be used for these operations.
assertFalseMsg and assertFalse in Listing 1.3, are similar to assertTrueMsg

and assertTrue except that they will mark the test under execution as a failure if the
condition being checked is true.

1 module Assert
2
3 imports from TestRunner all
4 exports all
5
6 definitions
7
8 operations
9 assertTrue: bool ==> ()

10 assertTrue (pbool) ==
11 if not pbool then
12 TestRunner‘markFail();
13
14 assertTrueMsg: seq of char * bool ==> ()

PRELIM
IN

ARY P
ROCEEDIN

GS

P. W. V.Tran-Jørgensen et al.

15 assertTrueMsg (pmessage, pbool) ==
16 if not pbool then
17 (
18 TestRunner‘markFail();
19 TestRunner‘setMsg(pmessage);
20);
21
22 assertFalse: bool ==> ()
23 assertFalse (pbool) ==
24 if pbool then
25 TestRunner‘markFail();
26
27 assertFalseMsg: seq of char * bool ==> ()
28 assertFalseMsg (pmessage, pbool) ==
29 if pbool then
30 (
31 TestRunner‘markFail();
32 TestRunner‘setMsg(pmessage);
33);
34
35 end Assert

Listing 1.3: Module used to validate model functionality.

To enable automated execution of tests, our library extension defines a TestRunner
module with three operations as shown in Listing 1.4. As indicated using the is not
yet specified statement all of these operations are implemented in Java using Over-
ture’s Java bridge (see Section 2). Once executed, the run operation executes all test
operations that conform to the naming convention described in Section 3.1. The identi-
fication of VDM-SL tests operations is implemented using reflection (which is similar
to how VDM++ tests are identified). In addition, the TestRunner module defines two
operations. The markFail operation is used by the test framework to mark the test op-
eration under execution as a failure. Similarly, the setMsg operation is used to pass a
message to the testing framework that describes a test failure. This message is used in
the final test report. The markFail and setMsg operations are used internally by the
framework and should not be invoked directly by the modeller.

1 module TestRunner
2 exports all
3
4 definitions
5
6 operations
7
8 run : ()==>()
9 run()== is not yet specified;

10
11 markFail : () ==> ()

PRELIM
IN

ARY P
ROCEEDIN

GS

Enhancing Testing of VDM-SL models

12 markFail () == is not yet specified;
13
14 setMsg : seq of char ==> ()
15 setMsg (msg) == is not yet specified;
16
17 end TestRunner

Listing 1.4: Module used to execute tests.

3.4 Limitations

Our extension of VDMUnit exposes all the existing framework features in a VDM-SL
context, with the only exception of selective test execution, shown in Listing 1.2. In
a VDM++ context selective test execution is achieved by passing a set of test cases
to the framework, e.g. {new TestCase1(), new TestCase2}. This approach has
the advantage that it provides a type-safe way to group tests. For example, if the class
definition for TestCase1 is removed or renamed then the type-checker will raise an
error reminding the modeller to update the test selection as well. When test cases are
grouped into modules, according to our approach, there is no type-safe way to select
test cases like in VDM++. The reason for this is that modules (i.e. the test cases) can-
not be instantiated or passed as values. One workaround is to pass the module names
as string literals at the price of loosing type-safety. Concretely, execution of the tests
defined in the modules TestCase1 and TestCase2 can then be achieved by passing
{"TestCase1", "TestCase2"} to the framework.

3.5 VDM-SL test example

An example of a test module, defined using our extension of VDMUnit, is shown in
Listing 1.5. This module defines a setUp operation to initialise state (before executing
each test), and a tearDown operation to execute some appropriate cleanup procedure
(e.g. removing temporary files). In addition, the test module defines three test opera-
tions, named testOdd, testInverse, and testPos.

1 module MyTest
2 imports from Assert all
3 exports all
4
5 definitions
6
7 state St of
8 x : int
9 end;

10
11 operations
12
13 setUp : () ==> ()

PRELIM
IN

ARY P
ROCEEDIN

GS

P. W. V.Tran-Jørgensen et al.

14 setUp () == initState();
15
16 tearDown : () ==> ()
17 tearDown () == cleanUp();
18
19 testOdd: ()==>()
20 testOdd()==
21 (
22 x := x + 1;
23 Assert‘assertFalseMsg("Expected x to be odd", x mod 2 = 0);
24);
25
26 testInverse: ()==>()
27 testInverse()==
28 Assert‘assertTrueMsg("Expected 1/x to be positive", 1/x > 0);
29
30 testPos: ()==>()
31 testPos()==
32 (
33 x := x - 1;
34 Assert‘assertTrueMsg("Expected x to be positive", x > 0);
35);
36
37 initState : () ==> ()
38 initState () == x := 0;
39
40 cleanUp : () ==> ()
41 cleanUp () == skip;
42
43 end MyTest

Listing 1.5: Test module example.

Once MyTest is executed, by evaluating TestRunner‘run(), the test report shown
in Listing 1.6 is generated by Overture. As shown in this output, three tests are executed
of which testOdd passes successfully, testInverse is recorded as an error (due to
an attempt to divide by zero), and testPos fails due to a wrong assertion.

1 **
2 ** Overture Console
3 **
4 Executing test: MyTest‘testOdd()
5 OK
6 Executing test: MyTest‘testInverse()
7 ERROR: Error 4134: Infinite or NaN trouble in ’MyTest’ (

A.vdmsl) at line 26:56
8 Executing test: MyTest‘testPos()
9 FAIL: Expected x to be positive

10 --
11 | TEST RESULTS |

PRELIM
IN

ARY P
ROCEEDIN

GS

Enhancing Testing of VDM-SL models

12 |--------------------------------------|
13 | Executed: 3 |
14 | Failures: 1 |
15 | Errors : 1 |
16 |______________________________________|
17 | FAILURE |
18 |______________________________________|
19
20
21 TestRunner‘run() = ()
22 Executed in 0.055 secs.

Listing 1.6: Output obtained by executing the tests in Listing 1.5.

3.6 Java implementation

Automatic execution of tests involves inspection of modules in order to identify the tests
that must be executed. As this is not possible to do solely using VDM-SL, the part of the
framework that handles test execution is implemented in Java, which achieves this using
Java’s reflection feature. In this way, one can inspect the individual test modules at the
abstract syntax level in order to identify and execute the individual test operations. The
combined execution of VDM-SL and Java is enabled using Overture’s VDM-to-Java
bridge.

3.7 Jenkins integration server

In addition to generating test reports such as that shown in Listing 1.6, our extension
of VDMUnit supports test report generation in a JUnit compatible XML format. Using
this approach, one can, for example, inspect and visualise the test reports using the
Jenkins [13] integration server. To generate XML test reports one simply has to pass
the property -Dvdm.unit.report to the Overture interpreter when executing tests.
An example of how this feature has been applied in the context of the harvest planning
project is given in Section 5.

4 Code-generating VDM-SL tests

Overture’s Java code-generator is exposed as a Maven plugin [21] in order to improve
build and test automation in a VDM setting [19]. This Maven plugin already supports
translation of VDMUnit tests, specified using VDM++, to equivalent JUnit tests.4 Es-
sentially, this feature enables one to reuse the model tests to validate the implemen-
tation of the model. This step helps ensure that the code-generator did not introduce
subtle bugs in the translation. As part of our work we have extended the code-generator

4 An online tutorial that demonstrates how to invoke the Java code-generator using Maven is
available via [7].

PRELIM
IN

ARY P
ROCEEDIN

GS

P. W. V.Tran-Jørgensen et al.

to also support code-generation of VDM-SL unit tests that use the naming convention
introduced in Section 3.1.

The output obtained by translating the VDM-SL tests in Listing 1.5 to JUnit4 tests
is shown in Listing 1.7. This is achieved by first translating the test module, including
the test operations, to Java using Overture’s VDM-to-Java code-generator. Secondly, the
generated test methods and life-cycle methods are annotated using appropriate JUnit an-
notations. This involves annotating the setUp and tearDown methods using @Before

and @After, respectively, as well as annotating all tests using @Test. Finally, the
VDM-SL assertions are translated to equivalent JUnit method calls, i.e. assertTrue
and assertFalse.

1 package dk.au.seng.cge.codegen;
2
3 import java.util.*;
4 import org.overture.codegen.runtime.*;
5 import org.junit.*;
6
7 @SuppressWarnings("all")
8 final public class MyTest {
9 private static St St = new St(null);

10
11 @Before
12 public void setUp() {
13 initState();
14 }
15
16 @After
17 public void tearDown() {
18 cleanUp();
19 }
20
21 @Test
22 public void testOdd() {
23 St.x = St.x.longValue() + 1L;
24 Assert.assertFalse("Expected x to be odd", Utils.equals(

Utils.mod(St.x.longValue(), 2L), 0L));
25 }
26
27 @Test
28 public void testInverse() {
29 Assert.assertTrue(
30 "Expected 1/x to be positive", Utils.divide((1.0 * 1L),

St.x.longValue()) > 0L);
31 }
32
33 @Test
34 public void testPos() {
35 St.x = St.x.longValue() - 1L;

PRELIM
IN

ARY P
ROCEEDIN

GS

Enhancing Testing of VDM-SL models

36 Assert.assertTrue("Expected x to be positive", St.x.
longValue() > 0L);

37 }
38
39 public void initState() {
40 St.x = 0L;
41 }
42
43 public void cleanUp() {
44 /* skip */
45 }
46
47 public String toString() {
48 return "MyTest{" + "St := " + Utils.toString(St) + "}";
49 }
50
51 public static class St implements Record {
52 public Number x;
53
54 public St(final Number _x) {
55 x = _x;
56 }
57
58 public boolean equals(final Object obj) {
59
60 if (!(obj instanceof St)) {
61 return false;
62 }
63
64 St other = ((St) obj);
65
66 return Utils.equals(x, other.x);
67 }
68
69 public int hashCode() {
70 return Utils.hashCode(x);
71 }
72
73 public St copy() {
74 return new St(x);
75 }
76
77 public String toString() {
78 return "mk_MyTest‘St" + Utils.formatFields(x);
79 }
80 }
81 }

Listing 1.7: Output obtained by translating the VDM-SL tests to Java.

PRELIM
IN

ARY P
ROCEEDIN

GS

P. W. V.Tran-Jørgensen et al.

Since Overture’s Java code-generator is exposed as a Maven plugin it can be invoked
using the Maven build system in order to code-generate VDM specifications and model
tests, as well as running the generated JUnit tests automatically. Once the Maven plugin
is configured [7], all of this can be achieved by invoking a single Maven command
such as mvn install. The output obtained by running the code-generated versions
of the VDM-SL tests in Listing 1.5 is shown in Listing 1.8. As expected, the output in
this listing shows that the test results are equivalent to those obtained by running the
VDM-SL tests.

1 Running MyTest
2 Tests run: 3, Failures: 1, Errors: 1, Skipped: 0, Time elapsed:

0.066 sec <<< FAILURE!
3 testPos(MyTest) Time elapsed: 0.005 sec <<< FAILURE!
4 java.lang.AssertionError: Expected x to be positive
5 ...
6 testInverse(MyTest) Time elapsed: 0.002 sec <<< ERROR!
7 java.lang.ArithmeticException: Division by zero is undefined
8 ...
9 Results :

10 Failed tests: testPos(MyTest): Expected x to be positive
11 Tests in error:
12 testInverse(dk.au.seng.cge.codegen.MyTest): Division by zero

is undefined
13 Tests run: 3, Failures: 1, Errors: 1, Skipped: 0

Listing 1.8: Output obtained by running the generated JUnit tests.

5 Assessment

The new VDM-SL testing features have supported the development of an industrial
harvest planning system, which enables farmers to optimise the logistics of harvest op-
erations. A typical harvest workflow starts with a combine harvester harvesting the crop.
The collected yield, which is contained in the harvester, is then unloaded into an in-field
grain cart that transports and unloads the yield into a larger on-road truck that finally
delivers the yield to a drying or storage facility. This concept is illustrated in Figure
2, where parts of the optimised route plans for each vehicle are shown. A centralised
master algorithm in the cloud initially generates route plans for each vehicle based on a
system configuration, including the field shape, number of vehicles, yield estimates, and
optimisation strategies. Once the harvest operation starts, the master algorithm moni-
tors the state of all vehicles as well as the overall harvest progress, and if necessary,
modifies the route plans for the individual vehicles to address potential deviations (e.g.
yield discrepancies).

The master algorithm is modelled in VDM-SL and implemented using Overture’s
VDM-to-Java code-generator. Figure 3 shows the structure of the model, including only
the most important modules. The model captures the state and behaviour of the different
vehicles, the overall harvest progress of the field, the route optimisation strategies, and
handling of deviations and unload coordination between vehicles. Totalling to 4200

PRELIM
IN

ARY P
ROCEEDIN

GS

Enhancing Testing of VDM-SL models

Fig. 2: Harvest logistics illustration.

lines of code5, whereof 1100 lines implement 134 tests. Running all tests through the
Overture interpreter takes approximately 7 hours, whereas the code-generated tests take
approximately 30 minutes. Essentially, the time difference is first of all caused by VDM
performing worse than compiled Java code. Secondly, the generated Java code does not
include pre- and postcondition, and invariant checks.

As mentioned in Section 3.7, the XML-based test results (obtained from both the
model tests and code-generated tests) can be inspected and visualised using the Jenkins
integration server . An example of how these results can be visualised using Jenkins is
shown in Figure 4. This figure provides an overview of the tests results, as well more
detailed information about the changes since last test run. Additionally, a complete list
of all failing tests is provided, and upon further inspection, detailed error messages and
stack traces.

6 Conclusion and future plans

Prior to starting this work, VDMUnit did not support unit testing of VDM-SL models
as it relied on language features only available in VDM++/VDM-RT. To address this,
we developed an extension of VDMUnit that exposes the features of this framework
using the TestRunner and Assert modules, which use a Java component to handle

5 Excluding documentation, comments and empty lines

PRELIM
IN

ARY P
ROCEEDIN

GS

P. W. V.Tran-Jørgensen et al.

GrainHarvest

«ExternalComponent»
FieldGraph

GrainCart
ContinuousFlow

Headland

OnTheGo

SinglePoint

TrackSeqStrategyUnloadStrategy

bridge_FieldGraph

Field

Storage

LogUnloadCoordinator

Harvester

Fig. 3: Simplified VDM-SL model structure.

Fig. 4: Visualization of VDM-SL test result in Jenkins.

PRELIM
IN

ARY P
ROCEEDIN

GS

Enhancing Testing of VDM-SL models

test execution. This Java component is connected to these modules using Overtue’s
VDM-to-Java bridge which is helpful when implementing VDM libraries as described
in Section 2.1. To further support this development process, we extended Overture’s
VDM-to-Java code-generator to support translation of VDM-SL unit tests into equiva-
lent JUnit tests. Our work has supported the development of a harvest planning system
for optimising the logistics of harvest operations. Currently, our work supports all of
the testing features available in VDM++/VDM-RT, except for selective test execution
as described in Section 3.4.

The Overture Language Board [2] has recently developed a workflow for library
submissions that enables any community member to submit library proposals. Accep-
tance of a library submission is expected to lead to the inclusion of the library in one or
more VDM tools. Looking ahead, we plan to submit our work as a library proposal to
hopefully get it included in future releases of Overture, thus making our work available
to others.

References

1. The Apache Maven Project website. https://maven.apache.org (2018)
2. Battle, N., Haxthausen, A., Hiroshi, S., Jørgensen, P.W.V., Plat, N., Sahara, S., Verhoef, M.:

The Overture Approach to VDM Language Evolution. In: Proceedings of the 11th Overture
workshop (Aug 2013)

3. Claessen, K., Hughes, J.: QuickCheck: A Lightweight Tool for Random Testing of Haskell
Programs. In: Proceedings of the Fifth ACM SIGPLAN International Conference on Func-
tional Programming. pp. 268–279. ICFP ’00, ACM, New York, NY, USA (2000), http:
//doi.acm.org/10.1145/351240.351266

4. Couto, L.D., Larsen, P.G., Hasanagic, M., Kanakis, G., Lausdahl, K., Tran-Jørgensen,
P.W.V.: Towards Enabling Overture as a Platform for Formal Notation IDEs. In: Proceed-
ings of the 2nd Workshop on Formal-IDE (F-IDE) (Jun 2015)

5. Couto, L.D., Tran-Jørgensen, P.W.V., Edwards, G.T.C.: Combining Harvesting Operations
Optimisation using Strategy-based Simulation. In: Proceedings of the 6th International Con-
ference on Simulation and Modeling Methodologies, Technologies and Applications (SI-
MULTECH) (Jul 2016)

6. Couto, L.D., Tran-Jørgensen, P.W.V., Edwards, G.T.C.: Model-Based Development of a
Multi-algorithm Harvest Planning System. In: Simulation and Modeling Methodologies,
Technologies and Applications: International Conference, SIMULTECH 2016 Lisbon, Por-
tugal, July 29-31, 2016, Revised Selected Papers. Springer International Publishing (2018),
https://doi.org/10.1007/978-3-319-69832-8_2

7. Delegate Tutorial. https://github.com/ldcouto/delegate-tutorial (2018)
8. Dutle, A.M., Muñoz, C.A., Narkawicz, A.J., Butler, R.W.: Software Validation via Model

Animation. In: Blanchette, J.C., Kosmatov, N. (eds.) Tests and Proofs. pp. 92–108. Springer
International Publishing, Cham (2015)

9. Fitzgerald, J.S., Larsen, P.G., Verhoef, M.: Vienna Development Method. Wiley Encyclope-
dia of Computer Science and Engineering (2008)

10. Fitzgerald, J., Larsen, P.G., Mukherjee, P., Plat, N., Verhoef, M.: Validated Designs for
Object–oriented Systems. Springer, New York (2005), http://overturetool.org/
publications/books/vdoos/

11. FsCheck website. https://github.com/fscheck/FsCheck (2018)
12. Google Test website. https://github.com/google/googletest (2018)

PRELIM
IN

ARY P
ROCEEDIN

GS

P. W. V.Tran-Jørgensen et al.

13. Jenkins website. https://jenkins.io (2018)
14. Jørgensen, P.W.V., Couto, L.D., Larsen, M.: A Code Generation Platform for VDM. In: Pro-

ceedings of the 12th Overture workshop (Jun 2014)
15. junit-quickcheck website. https://github.com/pholser/junit-quickcheck

(2018)
16. JUnit website. http://www.junit.org (2018)
17. Larsen, P.G., Battle, N., Ferreira, M., Fitzgerald, J., Lausdahl, K., Verhoef, M.: The Overture

Initiative – Integrating Tools for VDM. SIGSOFT Softw. Eng. Notes 35(1), 1–6 (Jan 2010),
http://doi.acm.org/10.1145/1668862.1668864

18. Larsen, P.G., Lausdahl, K., Battle, N.: Combinatorial Testing for VDM. In: Proceedings of
the 2010 8th IEEE International Conference on Software Engineering and Formal Meth-
ods. pp. 278–285. SEFM ’10, IEEE Computer Society, Washington, DC, USA (Sep 2010),
http://dx.doi.org/10.1109/SEFM.2010.32, ISBN 978-0-7695-4153-2

19. Larsen, P.G., Lausdahl, K., Tran-Jørgensen, P.W.V., Coleman, J., Wolff, S., Couto, L.D.,
Bandur, V., Battle, N.: Overture VDM-10 Tool Support: User Guide. Tech. Rep. TR-2010-
02, The Overture Initiative (May 2010)

20. Lausdahl, K., Larsen, P.G., Battle, N.: A Deterministic Interpreter Simulating A Distributed
real time system using VDM. In: Qin, S., Qiu, Z. (eds.) Proceedings of the 13th interna-
tional conference on Formal methods and software engineering. Lecture Notes in Computer
Science, vol. 6991, pp. 179–194. Springer-Verlag, Berlin, Heidelberg (Oct 2011), ISBN 978-
3-642-24558-9

21. The Maven Project website. https://maven.org (2018)
22. Nielsen, C.B., Lausdahl, K., Larsen, P.G.: Combining VDM with Executable Code. In: Der-

rick, J., Fitzgerald, J., Gnesi, S., Khurshid, S., Leuschel, M., Reeves, S., Riccobene, E. (eds.)
Abstract State Machines, Alloy, B, VDM, and Z. Lecture Notes in Computer Science, vol.
7316, pp. 266–279. Springer-Verlag, Berlin, Heidelberg (2012)

23. NUnit website. http://nunit.org/ (2018)
24. Overture tool website. http://overturetool.org/ (2018)
25. RapidCheck website. https://github.com/emil-e/rapidcheck (2018)
26. Tran-Jørgensen, P.W.V.: Enhancing System Realisation in Formal Model Development.

Ph.D. thesis, Aarhus University (Sep 2016)
27. VDMUnit for VDM-SL. https://github.com/overturetool/overture/

pull/671 (2018)

PRELIM
IN

ARY P
ROCEEDIN

GS

Overture FMU: Export VDM-RT Models as
Tool-Wrapper FMUs

Casper Thule1, Kenneth Lausdahl2, and Peter Gorm Larsen1

1 Aarhus University, Department of Engineering
Finlandsgade 22, 8200 Aarhus N, Denmark
{casper.thule,pgl}@eng.au.dk

2 Mjølner Informatics A/S
Finlandsgade 10, 8200 Aarhus N, Denmark

kgl@mjolner.dk

Abstract. The Functional Mock-up Interface is a standard for co-simulation,
which both defines and describes a set of C interfaces that a simulation unit, a
Functional Mock-up Unit (FMU), must adhere to in order to participate in such a
co-simulation. To avoid the effort of implementing the low level details of the C
interface when developing an FMU, one can use the Overture tool and the language
VDM-RT. VDM-RT is a VDM dialect used for modelling real-time and potentially
distributed systems. By using the Overture extension, called Overture FMU, the
VDM-RT dialect can be used to develop FMUs. This raises the abstraction level
of the implementation language and avoids implementation details of the FMI-
interface thereby supporting rapid prototyping of FMUs. Furthermore, it enables
precise time detection of changes in outputs, as every expression and statement in
VDM-RT is associated with a “timing cost”. The Overture FMU has been used
in several industrial case studies, and this paper describes how the Overture tool-
wrapper FMU engages in a co-simulation in terms of architecture, synchronisation
and execution. Furthermore, a small example is presented.

Keywords: Overture, Functional Mock-up Interface, VDM-RT, Co-Simulation, Real-
time, Discrete-Event

1 Introduction

In general, co-simulation enables different constituent models, which form a coupled
system, to be modelled in a distributed manner and then simulated in collaboration [5,6].
Hence, the modelling is carried out at the constituent model level without a detailed
understanding of the other constituent models. A challenge in co-simulation is to syn-
chronise the different simulating units ensuring that the timing of the overall simulation
is sufficiently close to how this would work in reality. In such co-simulations it is often
convenient to combine Discrete Event (DE) formalisms (typically describing cyber
control aspects) with Continuous-Time (CT) formalisms (usually describing physical
phenomena being controlled). Enabling such hybrid combinations generally require
some kind of coordination and in this paper the focus is on the Functional Mock-up
Interface (FMI) standard.

PRELIM
IN

ARY P
ROCEEDIN

GS

2 Casper Thule, Kenneth Lausdahl, and Peter Gorm Larsen

The contribution of this paper is to enable VDM-RT models to be exported as FMUs
such that these models can be incorporated in a setting where some of the constituent
models are made using Overture while others are made other other tools supporting FMI
version 2.0. In this way the extension described here extend the places where Overture
can be used in a CPS context for DE models. This provides a more abstract language for
modelling and developing FMUs as opposed to implementing them in a native language,
which can be beneficial in the systems engineering process [8].

In Sect. 2 we provide a short introduction to the background of this work. Next,
Sect. 3 demonstrates how Overture can be used to produce FMUs by means of a small
case study. Section 4 presents an overview of the architecture of this capability. Finally,
Sect. 5 gives a few concluding remarks.

2 Background

The VDM-RT dialect historically started off as a notation called “VDM In Constrained
Environments” (VICE) [18]. However, VICE performed poorly in the analysis of dis-
tributed systems [22]. Thus the notation was rethought, and extended with support for
distribution and called VDM-RT [24]. Initial work with co-simulation using VDM-RT
and 20-sim was carried out in Marcel Verhoef’s PhD thesis [23]. VDM-RT was then
further developed in a co-simulation context inside the DESTECS project [2]. The main
result here was the Crescendo tool [14] combining DE formalism VDM-RT [10] with
the CT formalism bond graphs using the 20-sim tool [9]. The co-simulation carried out
here was bespoke and worked in general between these two tools. However, it was also
demonstrated in DESTECS that it was possible to use Matlab/Simulink instead of 20-sim
via an XML-RPC interface (revisited in Sect. 4).

Subsequently the INTO-CPS project [4] took this further using the FMI standard to
achieve an open tool chain enabling any modelling and simulation tool able to produce
Functional Mock-up Units using version 2.0 of the standard to be co-simulated [12].
The coordination of this co-simulation is performed by the INTO-CPS Co-simulation
Orchestration Engine called Maestro [21]. FMI is a result of the MODELISAR project [7]
and it is a tool independent standard for model exchange and co-simulation, where we
only concern ourselves with the co-simulation part in this article. FMI defines a C
interface that simulation units must implement in order to participate in a co-simulation.
A simulation unit implementing the FMI interface is called a Functional Mock-up Unit
(FMU). Such an FMU is packaged as a Zip archive, which contains libraries for the
platforms that the executable part of the FMU has been compiled for, a model description
file describing the scalar variables and their causality (input, output, parameter etc.) of
the FMU, and a resources folder containing elements used internally by the libraries. The
iteration carried out by a co-simulation master is roughly equivalent to getting inputs,
setting outputs, and invoking the FMUs to progress for a determined step size. The
process is repeated until a predetermined end time is reached.

An extension to FMI that adds an additional function to the interface called GetMax-
StepSize has been proposed [3]. The purpose is that each FMU can be queried for the
maximum step it can perform, and then the chosen step size is the minimum of all the
reported step sizes, as an FMU always must be able to perform a smaller step than the

PRELIM
IN

ARY P
ROCEEDIN

GS

Overture FMU: Export VDM-RT Models as Tool-Wrapper FMUs 3

reported maximum step. This makes it possible to avoid rolling back FMUs by setting
a previous retrieved state, a feature not supported by VDM-RT FMUs. Furthermore,
it makes it possible to synchronise at the specific point in time where an output is
changed by a DE FMU. Besides detecting the point in time to synchronise it also makes
it unnecessary to execute the co-simulation with a small time step to ensure detection of
the changes in outputs, as the proper step size is reported by the FMU in question. The
querying for maximum step sizes by the co-simulation master would occur after setting
inputs and before invoking the FMUs to progress in the iteration described above.

3 Developing an FMU with Overture

In this section the FMI additions to a VDM-RT project required to export the project as
an FMU is presented. This presentation concerns the structure of a VDM-RT project in
order to be exported as an FMU and the template generated by the plugin. Afterwards,
an example of a co-simulation is demonstrated where one of the FMUs is generated
by using the plugin. Overture can generate both tool-wrapper FMUs and source code
FMUs [1]. In this paper we focus on tool-wrapper FMUs.

3.1 FMI Additions for VDM-RT using Overture FMU

The Overture FMU plugin contains functionality to automatically generate a project
template that complies with the required structure. This template and thereby the required
structure is the following:

– A VDM-RT system System containing the definition of a given system by describ-
ing how different parts are deployed to different Core Processing Units (CPUs) [13].
This is not a class, but a system. The syntax is similar to ordinary classes with some
differences, for example that it cannot be instantiated.

– A conventional [11] VDM-RT class World that provides an entry point into the
model.

– A VDM-RT class called HardwareInterface, which is exemplified below in
Sect. 3.3. This class contains the definition of the ports of the FMU. Its struc-
ture is enforced, and a self-documenting annotation scheme1 is used such that
the HardwareInterface class may be hand-written. The annotation format
is -- @ interface: type = [input/output/parameter/local],
name="..."; and must be located directly above a value or an instance
variable of one of the subclasses of the Port class described below. Ports of type
parameter must be values, and all other ports must be instance variables
of the class HardwareInterface. The reason for this approach is to capture
all assumptions about FMI in the VDM-RT model itself opposed to extending the
VDM-RT language or providing addition configuration files. This provides a solution
where the generic FMI interface can be defined in a library and any instantiation

1 The annotation scheme is documented on the INTO-CPS website http://into-cps-association.
GitHub.io under “Constituent Model Development → Overture → FMU Import/Export.

PRELIM
IN

ARY P
ROCEEDIN

GS

http://into-cps-association.GitHub.io
http://into-cps-association.GitHub.io

4 Casper Thule, Kenneth Lausdahl, and Peter Gorm Larsen

hereof can be type checked with the concrete specification. Annotations must be pro-
vided since the FMI causality cannot be deduced automatically. Furthermore, these
annotations convey the causality of the ports and has not resulted in any changes of
the VDM-RT language, since they are written in comments.

– The library file Fmi.vdmrt defines the hardware interface port types used in
HardwareInterface. This file contains an inheritance structure with a top-
level generic Port class that is subclassed by ports for each FMI type: Bool, Real,
Int and String. These subclasses are constructed with an initial value and contain
get and set methods. Part of the class is presented in Listing 1; it also contains
StringPort, RealPort and BoolPort implemented in a similar fashion to
IntPort. The getValue function is declared pure, which means it does not
update state (and other constraints described in [13].

�
class Port

types
public String = seq of char;
public FmiPortType = bool | real | int | String;

operations
public setValue : FmiPortType ==> ()
setValue(v) == is subclass responsibility;

public pure getValue : () ==> FmiPortType
getValue() == is subclass responsibility;

end Port

class IntPort is subclass of Port

instance variables
value: int:=0;

operations
public IntPort: int ==> IntPort
IntPort(v)==setValue(v);

public setValue : int ==> ()
setValue(v) ==value :=v;

public pure getValue : () ==> int
getValue() == return value;

end IntPort
� �
Listing 1: FMI library for VDM-RT containing Port class and subclasses for each FMI
type.

PRELIM
IN

ARY P
ROCEEDIN

GS

Overture FMU: Export VDM-RT Models as Tool-Wrapper FMUs 5

After this required project structure is set up, the behaviour of the FMU must be imple-
mented, which is demonstrated in the following section.

3.2 Overture FMU Example

In this section the controller of a water tank [17] shown in Fig. 1a is presented2. After-
wards, it is described in Sect. 3.4 how the FMI extension GetMaxStepSize maps to
a VDM-RT model. Finally, Sect. 3.5 presents the results of a co-simulation where the
VDM-RT model and Overture FMU is used.

The water tank is equipped with a source of water, two sensors, representing min-
imum and maximum water level, and a valve. When the valve is open, water pours
out of the tank, and when the valve is closed, the water level rises, as the water is still
flowing from the source. The water level is regulated by a controller expressed in a DE
model using Overture and VDM-RT, which models the actuator that opens the valve
when a maximum water level is reached and closes the valve when a minimum water
level is reached. The draining and filling of the water tank and thereby the water level
is expressed in a CT model described in [17]. The FMUs, their ports and dependencies
between them are shown in Fig. 1b.

(a) Water tank example [17]

Controller FMU
(Overture FMU)

Water tank FMU

valve

valve level

level

(b) Water tank FMUs

Fig. 1: Overview of the water tank

3.3 VDM-RT Model

The model realisation in VDM-RT is structured as presented in Fig. 2, which matches
the description of the template in Sect. 3.1. The realisation is described below.

2 The other FMU describing the CT part of the water tank is not described here; the interested
reader is referred to [17].

PRELIM
IN

ARY P
ROCEEDIN

GS

6 Casper Thule, Kenneth Lausdahl, and Peter Gorm Larsen

Fig. 2: Architecture of the VDM-RT model [17]

The HardwareInterface class is the interface of the DE model. In order to
determine this interface it is necessary to consider the entire water tank system. As the
state of the valve is operated by the DE model and has an impact on the calculation of
the water level performed by the CT model, it must be an output from the DE model to
an input on the CT model. The water level is calculated by the CT model and the DE
model requires this information to determine whether to open or close the valve, and
therefore it is an output from the CT model to an input on the DE model. Furthermore,
it is necessary with two parameters on the DE model describing the minimum and
maximum water level, as the DE model controls the state of the valve. The source of
water is embedded in the CT model and therefore not considered. This leads to the
interface presented in Listing 2, where the valve state has the type BoolPort, the water
level has the type RealPort, and the parameters have the type RealPort. The value
of the parameters can initially be changed by the co-simulation master based on the
co-simulation configuration.�
class HardwareInterface

values
-- @ interface: type = parameter, name="minlevel";
public minlevel : RealPort = new RealPort(1.0);
-- @ interface: type = parameter, name="maxlevel";
public maxlevel : RealPort = new RealPort(2.0);

instance variables
-- @ interface: type = input, name="level";
public level : RealPort := new RealPort(0.0);

-- @ interface: type = output, name="valve";
public valveState : BoolPort := new BoolPort(false);

end HardwareInterface
� �
Listing 2: The hardware interface of the water tank controller

PRELIM
IN

ARY P
ROCEEDIN

GS

Overture FMU: Export VDM-RT Models as Tool-Wrapper FMUs 7

The LevelSensor class in Listing 3 encapsulates the port representing the level
input. Notice that the set method is absent as level is an input, and therefore it is only
possible to read a value from the port.�
class LevelSensor
instance variables

port : RealPort;
operations

public LevelSensor: RealPort ==> LevelSensor
LevelSensor(p) == port := p;

public getLevel: () ==> real
getLevel()== return port.getValue();

end LevelSensor
� �
Listing 3: The encapsulation class for the water level sensor

The ValveActuator class in Listing 4 is similar in structure to the LevelSensor
described above, but it captures the valve output instead of an input. It follows that the
get method is absent, as valve is an output, and therefore it is only possible to write a
value to the port.�
class ValveActuator
instance variables

port : BoolPort;
operations

public ValveActuator: Port ==> ValveActuator
ValveActuator(p) == port := p;

public setValve: bool ==> ()
setValve(value)== port.setValue(value);

end ValveActuator
� �
Listing 4: The encapsulation class for the valve actuator

The Controller class in Listing 5 is the core logic of the DE model. It is instanti-
ated with the LevelSensor and ValveActuator instances described above. The
behaviour is contained in the loop operation, which takes 2 cycles3 and runs every 10

3 A cycles or duration statement at the top level of the loop operation as in this case can lead to
undesired behaviour. Everything within the body of the cycles statement is executed atomically
with the given cycle number, and thus prevents the scheduler from swapping out the current
atomic block. As a result, periodic threads will not have the next period thread swapped before
the current is completed. Therefore, no overlapping errors will be raised because the next period
threads are not yet executing, even though the period has elapsed. This can be seen by setting
the CPU frequency in Listing 6 to e.g. 20 Hz, thereby the cycles would take 50 milliseconds,
but the period is still 10 milliseconds but no error is reported.

PRELIM
IN

ARY P
ROCEEDIN

GS

8 Casper Thule, Kenneth Lausdahl, and Peter Gorm Larsen

milliseconds until the simulation terminates. 2 cycles in this case corresponds to exactly
10 milliseconds and is calculated as:

τ = cycles/freqCP U = 2/200Hz = 0.01seconds

where τ is time, cycles is the number of cycles from Listing 5, and freqCP U is the CPU
frequency from Listing 6.

The behaviour of the loop operation is first to read the level, check whether it is above
the maximum level or below the minimum level and open or close the valve respectively.�
class Controller

instance variables
levelSensor : LevelSensor;
valveActuator : ValveActuator;

values
open : bool = true;
close: bool = false;

operations
public Controller : LevelSensor * ValveActuator ==> Controller
Controller(l,v)==
(

levelSensor := l;
valveActuator := v;

);

private loop : () ==>()
loop()==

cycles(2)
(let level : real = levelSensor.getLevel() in

(if(level >= HardwareInterface‘maxlevel.getValue())
then valveActuator.setValve(open);

if(level <= HardwareInterface‘minlevel.getValue())
then valveActuator.setValve(close););

);

thread
periodic(10E6,0,0,0)(loop);

end Controller
� �
Listing 5: The Controller class with the core logic

The system entity System shown in Listing 6 is responsible for describing how
the controller class of the water tank controller is deployed to a CPU and how it

PRELIM
IN

ARY P
ROCEEDIN

GS

Overture FMU: Export VDM-RT Models as Tool-Wrapper FMUs 9

is connected to other parts in the model. Therefore System instantiates the hardware
interface, instantiates and initialises the hardware encapsulation classes and passes these
to the Controller, which is also instantiated and deployed on a CPU.�
system System

instance variables
-- Hardware interface variable required by FMU Import/Export
public static hwi: HardwareInterface:= new HardwareInterface();
public levelSensor : LevelSensor;
public valveActuator : ValveActuator;
public static controller : [Controller] := nil;
cpu1 : CPU := new CPU(<FP>, 200);

operations
public System : () ==> System

System () ==
(levelSensor := new LevelSensor(hwi.level);

valveActuator := new ValveActuator(hwi.valveState);
controller := new Controller(levelSensor, valveActuator);
cpu1.deploy(controller,"Controller");

);

end System
� �
Listing 6: System class of the DE model

The World class launches the simulation by invoking the start statement in the
Controller class instance, which is contained in System described above. This
leads to the thread contained within the Controller class described above to be
started. The implementation of the World class is presented below in Listing 7.�
class World
operations

public run : () ==> ()
run() ==
(start(System‘controller);

block(););

private block : () ==>()
block() == skip;

sync
per block => false;

end World
� �
Listing 7: World class of the DE model

PRELIM
IN

ARY P
ROCEEDIN

GS

10 Casper Thule, Kenneth Lausdahl, and Peter Gorm Larsen

3.4 Synchronisation

Synchronisation in terms of FMI is when outputs are exchanged. From an Overture
FMU perspective, the synchronisation should ideally occur just before reading a value
from a port and after writing to a port. This ensures synchronisation exactly when
an output has changed or allows for retrieving updated inputs just before an input
is read. Listing 8 shows an implementation of the loop operation, where the cycles
statement is removed and thereby expressions and statements takes 2 cycles. This allows
synchronisation at the desired synchronisation points, which GetMaxStepSize will
return. The VDM-RT interpreter makes use of transactions [16], in the sense that it
calculates the behaviour until the next synchronisation point, but does not commit it and
thereby it is not exposed until the correct point in time. Thereby it is possible to calculate
the value that GetMaxStepSize as the minimum time of all transactions as:

min({τ |(Σ, τ) ∈ T}) − τnow

where (Σ, τ) is a transaction pair of state Σ to expose at time τ , T is a set of all
transactions across CPUs, and τnow is the global current time of the co-simulation.�
private loop : () ==>()
loop()==

-- SYNCHRONISATION
let level : real = levelSensor.getLevel() in
(if(level >= HardwareInterface‘maxlevel.getValue())

then valveActuator.setValve(open);
-- SYNCHRONISATION if condition yields true

if(level <= HardwareInterface‘minlevel.getValue())
then valveActuator.setValve(close);
-- SYNCHRONISATION if condition yields true

);
� �
Listing 8: Control loop the DE model with desired synchronisations.

3.5 Co-simulation Result

The result of a co-simulation of the water tank using the VDM-RT model is presented in
Fig. 3. It shows that when the water level exceeds the maximum water level of two the
valve opens, represented by the value 1. It remains open until the water level is below
the minimum water level of one, at which point the valve is closed represented by the
value 0. The step size of the co-simulation is 0.1 seconds. The small step delay is a result
of the Jacobian master algorithm [19] used by the employed co-simulation orchestration
engine. Instead one could use the Gauss-Seidel [19] master algorithm. This particular
issue is addressed in [20].

PRELIM
IN

ARY P
ROCEEDIN

GS

Overture FMU: Export VDM-RT Models as Tool-Wrapper FMUs 11

Fig. 3: Result of a co-simulation of the water tank

4 Architecture of Overture FMU

The architecture of the Overture FMU and the flow of messages is shown in Fig. 44. The
Overture FMU product is split into three parts that communicate via shared memory and
protobuf messages. The first part, FMU, defines the FMU library that is invoked by the
co-simulation master. The next part, Shared Memory (SHM), are the libraries involved
in converting the data to Protobuf messages and using shared memory to pass data from
the co-simulation Master to the last part, Model Execution, and back. The third and
last part, Model Execution, describes the functionality that carries out the simulation
of the model, where the Java application Overture-FMU5 essentially is a Crescendo
implementation [15] with a different protocol. The reason for this structuring is, that the
SHM part is implemented in such a way, that it could easily be adapted to contain other
messages, that are not FMI-specific. The three parts are described below along with the
loading process of an Overture FMU and transferring of messages between the different
parts.

In order to understand this section, some terminology must be known:

Protobuf: Protobuf6 is the short name for Protocol Buffers, which is a language and
platform-neutral extensible mechanism for serialising structured data developed by
Google. It supports Java and C++ among others, which is used in the development
of the Overture FMU described in Sect. 4.

Java Native Interface (JNI): JNI is a framework that makes it possible for Java ap-
plications to communicate with native libraries. This is also used in the Overture
FMU.

4 The libraries mentioned in the figure is part of the contribution of the work presented in this
paper, unless explicitly stated otherwise.

5 Notice the hyphen, which differentiates the application (Overture-FMU) from the name of the
product (Overture FMU).

6 Available at https://developers.google.com/protocol-buffers/

PRELIM
IN

ARY P
ROCEEDIN

GS

https://developers.google.com/protocol-buffers/

12 Casper Thule, Kenneth Lausdahl, and Peter Gorm Larsen

Fig. 4: Architecture of Overture FMU split in three parts parts: FMU, Shared Memory
(SHM), and Model Execution.

4.1 FMU

The overall responsibility of the FMU block7 is to provide a C implementation of
the FMI interface allowing it to serve as an FMU. libshmfmu is therefore the FMU
implementation adhering to the FMI interface that is loaded when Maestro loads the
library inside the FMU. It initialises the communication flow, instantiates the SHM
libraries libshmfmi and libshmipc, and launches Overture-FMU, which is described in
Sect. 4.3. When a function of FMU is invoked, the function invocation information is
passed to the libshmfmi within SHM. The master key mentioned in the figure is a session
key ensuring that multiple Overture tool-wrapper FMUs can coexist without interfering
with each other.

4.2 Shared Memory (SHM)

The SHM part is responsible for passing messages between Model Execution and FMU
using shared memory. This involves mapping each FMI function invocation to protobuf
messages and the other way around. These messages are sent through a fixed-size
shared memory space with read/write access being controlled by several semaphores.
This native part had to be developed almost without any frameworks, as most of the
frameworks suitable for the task could not be cross compiled with a reasonable effort. It
was challenging to ensure cross compilation, which is an important feature. Concretely,
the implementation is split into three libraries that are described below:

libshmfmi: This library does the mapping of FMI function invocations to protobuf
messages, which is stored in the shared memory. Furthermore, it maps the response
from protobuf messages to FMI.

libshmipc: This library embeds the shared memory required for communication and
two semaphores to control access.

shmfmi-server: The shmfmi-server contains the bridge between Java and native code
required to extract bytes from the shared memory, convert them to protobuf messages

7 The source code is available at https://github.com/overturetool/shm-fmi.

PRELIM
IN

ARY P
ROCEEDIN

GS

https://github.com/overturetool/shm-fmi

Overture FMU: Export VDM-RT Models as Tool-Wrapper FMUs 13

and invoke the relevant functions in Overture-FMU described below. It invokes
the relevant functions by exposing a Java interface, which defines the FMI calls
with protobuf data types, that is implemented by CrescendoFMU, which is part of
Overture-FMU. This Java Interface defines the FMI calls with protobuf data types.
Furthermore, it also performs the mapping the other way with replies. Note, that this
also operates in reverse, as there are callbacks in FMI e.g. for logging. Conceptually
this is simple, but the implementation at the low level is not trivial. Concretely,
shmfmi-server extracts bytes from the shared memory and embeds the JNI interface,
which enables access from Java. It is instantiated by Overture-FMU in the Model
Execution part.

As mentioned in Sect. 2 Crescendo features an XML-RPC interface, which is an
alternative to this shared memory approach. The reason for choosing to use shared mem-
ory is that XML-RPC uses XML and a socket, which is slower in terms of performance
than Java or native C calls. Furthermore, Crescendo did not feature GetMaxStepSize,
so the Crescendo protocol would have to be changed in order to achieve the same func-
tionality. Additionally, Crescendo was co-simulation between two instances and not N
instances, so the slow down per simulator would be significant. Knowing that the shared
memory approach is faster, it is a better solution in this case. It was also envisioned that
the SHM functionality can be reused for other projects and for the C code generator
described in [1], which it was not unfortunately.

4.3 Model Execution

This represents the left-hand side of Fig. 4 and thus the actual execution of the VDM-RT
model. It contains the Java application Overture-FMU8 that is launched by libshmfmu
and acts as an interface to the Crescendo implementation. As mentioned in Sect. 2 VDM-
RT was used in a co-simulation context in the DESTECS project, and therefore the main
functionality of participating in a co-simulation was already present. It was therefore of
interest to preserve most of the main functionality, but it was necessary to make changes
to the interface in order to support FMI. The extension was realised by exposing the
simulation driver of Crescendo, thereby enabling overriding. Thus Overture-FMU is an
application that interprets FMI messages and utilises Crescendo to execute the model,
and then adapts the Crescendo response to FMI. A low level detail is, that the VDM-RT
interpreter [16] is packaged inside the resources folder of an FMU, mentioned in Sect. 2.
The significant development additions in order to perform this adaption consist of the
elements described below:

New Entry Point (main): This receives the master key to the shared memory as an
argument and connects to the existing SHM via shmfmi-server described above.
Afterwards, it instantiates the CrescendoFMU described below.

Mediation Between FMI and Crescendo (CrescendoFMU): This invokes the FMI-
SimulationManager to perform a given task based on the protobuf message converted
to Java by shmfmi-server. Afterwards, it creates an FMI Protobuf reply, which is
returned to shmfmi-server. It implements the interface described in shmfmi-server
above.

8 The source code is available at https://github.com/overturetool/overture-fmu.

PRELIM
IN

ARY P
ROCEEDIN

GS

https://github.com/overturetool/overture-fmu

14 Casper Thule, Kenneth Lausdahl, and Peter Gorm Larsen

Extension of the SimulationManager (FMISimulationManager): In Crescendo the
controlling entity was inherent in the VDM-RT resource scheduler, but this is not
the case when using FMI, where Maestro is the controlling entity, and therefore ad-
ditional changes had to be carried out. Furthermore, the synchronisation is different.
The FMISimulationManager ensures that the interpreter only calculates to a certain
time. It will calculate until just before it needs to read an input and right after an
output, as this is where the synchronisation should occur. This way the interpreter is
“ahead” of the global co-simulation time, as described in Sect. 3.4, but capable of
calculating a value for GetMaxStepSize presented in Sect. 2.

Handling State (StateCache): The StateCache is necessary because of the way Cre-
scendo operates, where the execution of a step takes all inputs and returns all
outputs. However, FMI operates differently where the setinput, dostep, and
getoutput calls are separated. Therefore this cache was added in order to support
FMI.

5 Concluding Remarks

An advantage of a tool-wrapper FMU as opposed to source code / native FMUs is that the
model is interpreted exactly as the language describes and modifications to the VDM-RT
language are available out of the box. Furthermore, it allowed reuse of the existing
tooling without changes to the interpreter. A disadvantage is, that it requires prerequisites
to execute a tool-wrapper FMU, e.g. that Java is installed and available, and it is most
likely slower in terms of performance compared to a native FMU. Future work on the
Overture FMU tool-wrapper is to test with multiple FMI engines and publish the results
on the FMI tools website 9. Additionally, it would be interesting to perform benchmarks
and comparisons with other FMUs. A new version of the FMI Standard is also under
development, and Overture FMU should be updated to support this.

In this article it has been shown how one can use VDM-RT and Overture to develop
a tool-wrapper FMU that can participate in an FMI co-simulation. This has been exem-
plified by realising a DE controller of a water tank system using Overture FMU and
co-simulating it. Additionally, the architecture of a tool-wrapper Overture FMU has been
described in depth. It contains native libraries, as an FMU must expose a C interface,
that communicates with other shared native libraries over shared memory protected by
semaphores. Furthermore, this also involves launching a Java application that reuses
functionality from the Crescendo tool [2]. Emphasis has also been placed on describing
how calculation of step sizes and synchronisation is carried out, as Overture FMU is
unique in this field. Overture FMU has been successfully used in several industrial case
studies as part of the INTO-CPS project [4].

Acknowledgments The work presented here is partially supported by the INTO-CPS
project funded by the European Commission’s Horizon 2020 programme under grant
agreement number 664047. We would like to thank all the participants of those projects
for their efforts making this a reality. Furthermore, we would like to thank the anonymous
reviewers for their comments, which helped to improve the paper.

9 Available at http://fmi-standard.org/tools/

PRELIM
IN

ARY P
ROCEEDIN

GS

http://fmi-standard.org/tools/

Overture FMU: Export VDM-RT Models as Tool-Wrapper FMUs 15

References

1. Bandur, V., Tran-Jørgensen, P.W.V., Hasanagic, M., Lausdahl, K.: Code-generating VDM for
Embedded Devices. In: Fitzgerald, J., Tran-Jørgensen, P.W.V., Oda, T. (eds.) Proceedings of
the 15th Overture Workshop. pp. 1–15. Newcastle University, Computing Science. Technical
Report Series. CS-TR- 1513 (September 2017)

2. Broenink, J.F., Larsen, P.G., Verhoef, M., Kleijn, C., Jovanovic, D., Pierce, K., Wouters, F.:
Design Support and Tooling for Dependable Embedded Control Software. In: Proceedings
of Serene 2010 International Workshop on Software Engineering for Resilient Systems. pp.
77–82. ACM (April 2010)

3. Broman, D., Brooks, C., Greenberg, L., Lee, E., Masin, M., Tripakis, S., Wetter, M.: Deter-
minate composition of FMUs for co-simulation. In: Embedded Software (EMSOFT), 2013
Proceedings of the International Conference on. pp. 1–12 (2013)

4. Fitzgerald, J., Gamble, C., Larsen, P.G., Pierce, K., Woodcock, J.: Cyber-Physical Systems
design: Formal Foundations, Methods and Integrated Tool Chains. In: FormaliSE: FME
Workshop on Formal Methods in Software Engineering. ICSE 2015, Florence, Italy (May
2015)

5. Gomes, C., Thule, C., Broman, D., Larsen, P.G., Vangheluwe, H.: Co-simulation: a Survey.
ACM Comput. Surv. Accepted on January 11, 2018 for publication in ACM Computing
Surveys

6. Gomes, C., Thule, C., Broman, D., Larsen, P.G., Vangheluwe, H.: Co-simulation: State of the
art. Tech. rep. (feb 2017), http://arxiv.org/abs/1702.00686

7. ITEA Office Association: Itea 3 project, 07006 modelisar. https://itea3.org/project/modelisar.
html (December 2015)

8. Jackson, D.: Software Abstractions: Logic, Language, and Analysis. MIT Press, Heyward
Street, Cambridge, MA02142, USA (April 2006), iSBN-10: 0-262-10114-9

9. Kleijn, C.: Modelling and Simulation of Fluid Power Systems with 20-sim. Intl. Journal of
Fluid Power 7(3) (November 2006)

10. Larsen, P.G., Battle, N., Ferreira, M., Fitzgerald, J., Lausdahl, K., Verhoef, M.: The Overture
Initiative – Integrating Tools for VDM. SIGSOFT Softw. Eng. Notes 35(1), 1–6 (January
2010), http://doi.acm.org/10.1145/1668862.1668864

11. Larsen, P.G., Fitzgerald, J., Wolff, S.: Methods for the Development of Distributed Real-Time
Embedded Systems using VDM. Intl. Journal of Software and Informatics 3(2-3) (October
2009)

12. Larsen, P.G., Fitzgerald, J., Woodcock, J., Fritzson, P., Brauer, J., Kleijn, C., Lecomte, T.,
Pfeil, M., Green, O., Basagiannis, S., Sadovykh, A.: Integrated Tool Chain for Model-based
Design of Cyber-Physical Systems: The INTO-CPS Project. In: CPS Data Workshop. Vienna,
Austria (April 2016)

13. Larsen, P.G., Lausdahl, K., Battle, N., Fitzgerald, J., Wolff, S., Sahara, S., Verhoef, M., Tran-
Jørgensen, P.W.V., Oda, T.: The VDM-10 Language Manual. Tech. Rep. TR-2010-06, The
Overture Open Source Initiative (April 2010)

14. Larsen, P.G., Lausdahl, K., Coleman, J., Wolff, S., Kleijn, C., Groen, F.: Crescendo Tool
Support: User Manual. Tech. Rep. TR-001, The Crescendo Initiative, www.crescendotool.org
(November 2013)

15. Lausdahl, K., Coleman, J.W., Larsen, P.G.: Towards a co-simulation semantics of VDM-
RT/Overture and 20-sim. In: Plat, N., Nielsen, C.B., Riddle, S. (eds.) Proceedings of the 10th
Overture Workshop. pp. 30–37. No. CS-TR-1345 in Technical Report Series, Computing
Science, Newcastle University (August 2012), http://www.cs.ncl.ac.uk/publications/trs/papers/
1345.pdf

PRELIM
IN

ARY P
ROCEEDIN

GS

http://arxiv.org/abs/1702.00686
https://itea3.org/project/modelisar.html
https://itea3.org/project/modelisar.html
http://doi.acm.org/10.1145/1668862.1668864
http://www.cs.ncl.ac.uk/publications/trs/papers/1345.pdf
http://www.cs.ncl.ac.uk/publications/trs/papers/1345.pdf

16 Casper Thule, Kenneth Lausdahl, and Peter Gorm Larsen

16. Lausdahl, K., Coleman, J.W., Larsen, P.G.: Semantics of the VDM Real-Time Dialect. Tech.
Rep. ECE-TR-13, Aarhus University (April 2013)

17. Mansfield, M., Gamble, C., Pierce, K., Fitzgerald, J., Foster, S., Thule, C., Nilsson, R.:
Examples Compendium 3. Tech. rep., INTO-CPS Deliverable, D3.6 (December 2017)

18. Mukherjee, P., Bousquet, F., Delabre, J., Paynter, S., Larsen, P.G.: Exploring Timing Properties
Using VDM++ on an Industrial Application. In: Bicarregui, J., Fitzgerald, J. (eds.) Proceedings
of the Second VDM Workshop (September 2000)

19. Petridis, K., Clauß;, C.: Test of Basic Co-Simulation Algorithms Using FMI. In: Proceedings
of the 11th International Modelica Conference, Versailles, France, September 21-23, 2015.
pp. 865–872. No. 118, Fraunhofer IIS EAS, Zeunerstrasse 38, 01069 Dresden, Germany,
Linköping University Electronic Press, Linköpings universitet (2015)

20. Thule, C., Gomes, C., Deantoni, J., Larsen, P.G., Brauer, J., Vangheluwe, H.: Towards the
Verification of Hybrid Co-simulation Algorithms (2018), accepted for publication at CoSim-
CPS-18

21. Thule, C., Lausdahl, K., Larsen, P.G., Meisl, G.: Maestro: The INTO-CPS Co-Simulation
Orchestration Engine (2018), submitted to Simulation Modelling Practice and Theory

22. Verhoef, M.: On the Use of VDM++ for Specifying Real-Time Systems. Proc. First Overture
workshop (November 2005)

23. Verhoef, M.: Modeling and Validating Distributed Embedded Real-Time Control Systems.
Ph.D. thesis, Radboud University Nijmegen (2009)

24. Verhoef, M., Larsen, P.G., Hooman, J.: Modeling and Validating Distributed Embedded
Real-Time Systems with VDM++. In: Misra, J., Nipkow, T., Sekerinski, E. (eds.) FM 2006:
Formal Methods. pp. 147–162. Lecture Notes in Computer Science 4085, Springer-Verlag
(2006)

All links were last followed on May 24rd, 2018.

PRELIM
IN

ARY P
ROCEEDIN

GS

ViennaVM: a Virtual Machine for VDM-SL
development

Tomohiro Oda1, Keijiro Araki2, and Peter Gorm Larsen3

1 Software Research Associates, Inc. (tomohiro@sra.co.jp)
2 National Institute of Technology, Kumamoto College (araki@kyudai.jp)

3 Aarhus University, Department of Engineering, (pgl@eng.au.dk)

Abstract. The executable subset of VDM allows code generators to automati-
cally produce program code. A lot of research have been conducted on automated
code generators. Virtual machines are common platforms of executing program
code. Those virtual machines demand rigorous implementation and in return give
portability among different operating systems and CPUs. This paper introduces a
virtual machine called ViennaVM which is formally defined in VDM-SL and still
under development. The objective of ViennaVM is to serve as a target platform
of code generators from VDM specifications.

1 Introduction

Quality of software systems is important in many cases. Model-based development with
automated code generation techniques is a promising approach to develop software sys-
tems with affordable quality and productivity. Many automated code generators from
different VDM dialects [6] have been studied and developed as strong tools to reduce
cost of the implementation phase [3,1,7,10]. Those automated code generators emit
source code for general programming languages such as C++, C, Java and Smalltalk.
However, there are still challenges with applying code generators. The first challenge
is the availability of compiler and runtime environments for various target hardware.
General programming language systems often provide rich language with build-in func-
tions and libraries. Thus, it is often costly to port the compiler and full set of libraries
to brand-new hardware platforms. The second challenge is the portability of the com-
piler and runtime environment. In some programming languages that provide low-level
programming functionality, such as C and C++, does not provide the source level com-
patibility among different platforms.

This paper proposes and introduces the development of a Virtual Machine (VM)
named ViennaVM that is designed as a common target platform for automated code
generators from VDM dialects. A VM is an abstracted computer platform targeting
efficient execution of code represented in an Intermediate Representation (IR) [9]. IR
code is typically designed specific to a particular guest programming language. For
example, the Java VM executes Java byte-code of which instruction set efficiently im-
plements the language features of Java, such as primitive operations, boxing/unboxing
and method invocations. ViennaVM will have an instruction set suitable to model-based
developments with VDM.

PRELIM
IN

ARY P
ROCEEDIN

GS

One significant advantage of VMs is portability. For example, the VM for Squeak
Smalltalk is auto-generated from Squeak Smalltalk itself with the exception of several
platform dependent interface to the host operating system. Having a small fraction of
hand-written code, the VM of Squeak Smalltalk was ported to various platforms includ-
ing Windows, Unix and PDAs [2].

Application
VDM spec

Rust platformC platform

C Code Generator Rust Code Generator

C source Rust source

Application
VDM spec

IR Code Generator

C Compiler Rust Compiler
IR code

ViennaVM
C source

ViennaVM
Rust source

ViennaVM for
automotive system

ViennaVM for
note PC

Conventional development
with code generators
for different languages

The proposed development
with virtual machines
as a common target platform

executable for
automotive system

executable for
note PC

ViennaVM
VDM spec

Rust platform

IR code

ViennaVM for
automotive system

C platform

IR code

ViennaVM for
note PC

C Compiler Rust Compiler

Fig. 1. Code generator-based development and VMs as a common platform

Figure 1 shows how ViennaVM will serve as a common target platform for code
generators. Assuming that platform A provides only a C compiler and platform B of-
fers Rust as its standard programming language, two source code, one for C and another
for Rust would be generated. Each source would need modification to work with exter-
nal libraries, such as networks and user interfaces. Using a VM as a common target
platform, it is possible to implement one ViennaVM in C and another in Rust to run
the same IR code. ViennaVM’s IR code is binary compatible among versions of VMs
in different programming languages on various target platforms. Each instance of Vi-
ennaVM can also be reused in later developments of other applications on the same
device.

The rest of this paper starts of with an overview of the objective of ViennaVM
in Section 2. Afterwards an overview of the formal specification of ViennaVM using
VDM-SL is provided in Section 3. Then the preliminary implementation of a Vien-
naVM as well as initial benchmarks are provided in Section 4. This is followed by
Section 5 about the planned further development. Finally, Section 6 provides a few
concluding remarks about the possibilities for this work.

PRELIM
IN

ARY P
ROCEEDIN

GS

2 Objectives and Non-functional requirements of ViennaVM

The objective of ViennaVM is to provide a common target platform for software de-
velopment with VDM dialects. To achieve the objective, it is desirable that the VM is
reliable, portable, productive and adaptable to the host platform. This section explains
why these non-functional qualities are required to VMs for smart devices.

In order to make ViennaVM dependable it will itself be developed using VDM-
SL. We split the specification process into two phases: an exploratory specification
phase that we use ViennaTalk [8] as a development platform, and rigorous specifica-
tion phase that we use the Overture tool [4] to gain and ensure the quality of the spec-
ification. ViennaTalk is a Smalltalk-based IDE with live specification animations for
interactive specification authoring in an exploratory manner. ViennaTalk also provides
a pretty printer and automated execution of unit tests to enhance agility-related qual-
ities of specification against frequent modifications. ViennaVM will be tested using a
unit testing framework on ViennaTalk, called ViennaUnit. ViennaUnit is a simple unit
testing framework for VDM-SL that automatically collect test modules whose names
end with Test and automatically run all test operations whose name start with test.
After developing a valid specification of ViennaVM, the Overture tool will be used
as a development platform. The Overture tool is full-fledged IDE based on the Eclipse
platform. The Overture tool’s functionality includes combinatory testing and automated
generation of proof obligations that enhance rigour qualities of specification as the final
product of the specification phase. Combinatory testing will be used to rigorously test
a large number of combinations of IR code [5].

ViennaVM needs to be portable. The term portable has two sides; one is the porta-
bility of ViennaVM, and the second is the portability of IR code. The portability of
the both sides is required to software systems distributed among various platforms. The
term productivity also has two sides; the productivity of ViennaVM and the productivity
of the target software on ViennaVM. For the productivity of the VM, the combined use
of ViennaTalk and Overture as a tool chain will be a significant factor. For the produc-
tivity of the target software, ViennaVM will be ported to Smalltalk so that the target
system can be seamlessly developed on ViennaTalk and ViennaVM as a tool chain.

ViennaVM needs to be adaptable to different host platforms. Considering diverse
constraints on hardware such as user interfaces and computational resources, Vien-
naVM needs to be implemented differently according to those constraints, yet satis-
fying its formal specification. One smart device may be equipped with voice cognition
and speech synthesis while another smart device may have small touch screen in a few
square centimetres and a physical push button. It is desirable that one program in IR
code works on every smart device without having redundant UI code because those
devices typically have limited computational resources. Conventional VMs provides
low-level interface to UI devices and standard libraries written in the IR code of VMs
provide UI frameworks. For example, the Java VM provides the awt and swing frame-
works in Java byte-code. Application developers implements UI code for different UI
devices and choose either to create different deployment file for each host platform or
to provide one deployment file that has all UI code. ViennaVM is planned to provide
an abstraction of interactions with the user to make its applications adaptable to various
smart devices with different physical user interfaces.

PRELIM
IN

ARY P
ROCEEDIN

GS

3 Specification of ViennaVM

This section explains the specification of ViennaVM. Although the formal definition
is not complete yet, the current snapshot of the formal definition of ViennaVM can
execute a simple numeric computation.

3.1 Definition layers

The current snapshot ViennaVM is specified in a moduled form of VDM-SL. Figure 2
shows modules in layers of definition.

Data

ActivationRecord

MemoryRegister

CodeRecord

Instruction IR code, fetch,
decode, execution

call graphs, dynamic
info of routines

allocation, garbage
collection, slot access

tagged word, int, float,
character, reference,
true, false, nil, bool,...

code, static info of
routines

read/write access to
registers

Fig. 2. Layers of the VDM-SL definition of ViennaVM

The bottom layer is the Data module that defines the data model of ViennaVM
including data type definitions and constant values. Based upon the Data module, the
Register module and the Memory module are defined. The Register module
specifies the internal structure of each register, and the Memory module provides a
memory model including data layout in a heap object and a garbage collector. Vien-
naVM is a register machine, which has large number of registers and passes arguments
and return values via registers, while Java VM is a stack machine which handles tem-
porary values in a data stack and passes arguments and return values via the data stack.
CodeRecord and ActivationRecords are modules that defines heap objects that
represents static and dynamic properties of routines. Then, the Instruction module
defines IR code instructions and its execution mechanisms such as code fetch and a
decoder. The sections below explains each module.

3.2 Data definitions

The Datamodule specifies the data types internally used in ViennaVM and also VDM’s
basic types. ViennaVM uses 64 bits tagged word as an atomic data entity in IR code.
Tagged words are fixed sized data packed with runtime type informations so that the
VM can uniformly handle values of different types. A tagged word can either be an
integer, a floating point number, a character or a pointer with flags that identify its run-
time type. A pointer is not a raw address of a heap object, but it is a reference which

PRELIM
IN

ARY P
ROCEEDIN

GS

tagged word vector 64 bits unsigned int b63, ..., b4 b3 b2 b1 b0
(b0: int flag, b1: non-heap flag, b2: type flag, b3: option flag)

int 63bit signed int 1
pointer to value 56 bit unsigned int 0 0 0 0 0 0 0 0
float 8 bits dummy IEEE 754 float32 0 0 0 1 0 0 1 0
unicode character 8 bits dummy 32 bits unicode 0 0 0 1 1 0 1 0
nil 56 bits dummy 0 0 1 0 0 0 1 0
true 56 bits dummy 0 0 1 0 1 0 1 0
false 56 bits dummy 0 0 1 1 0 0 1 0
unit type 56 bits dummy 0 0 0 0 0 1 1 0
bool type 56 bits dummy 0 0 0 0 0 1 1 0

: :
pointer to type 56 bit unsigned int 0 0 0 0 0 1 0 0
invalid word 0 0 0 0 1 0 1 0

int 1 bit dummy 63 bit signed int
float 32bit dummy IEEE 754 float32
char 32bit dummy 32bit unsigned int
pointer 8 bits dummy 56 bits unsigned int

Fig. 3. Data format of primitive values inside ViennaVM

consists of the heap page index and offset of the heap object. The basic types and values
of VDM are also defined in the Data module. Figure 3 lists the data definitions.

If the Least Significant Bit (LSB) of a tagged word is 1, the remaining 63 bits
represents a signed integer. The second least significant bit of a tagged word is the non-
heap flag that indicates whether the tagged word carries a pointer or not. If the second
least significant bit is 0, the tagged word has a pointer. The third least significant bit is
the type flag that indicates whether the data is a VDM’s value or a VDM’s type. For
example, the bool type is encoded as 0x06 in the tagged word format, and the true
value is encoded as 0x2a.

The Data module also provides functions that converts values between a tagged
word and a primitive value namely integer, float, character or a pointer. Figure 4 is
an excerpt from the Data module. Because VDM-SL does not have bit manipulation
operators, arithmetic operators on integers are used instead.

3.3 Registers

ViennaVM has 216 data registers. Each data register has five statically typed fields,
namely oid (tagged word), i (integer), f (floating point number), c (character) and p
(pointer). Figure 5 is an excerpt from the definition of ViennaVM’s registers in VDM-
SL. The read int operation accepts a 16 bits register ID and look for a cached value
in the i field of the specified register. If the cache is invalid, it yields a 63 bits signed
integer value. Because fields in a register and tagged words in memory slots are strongly
typed, IR code has strongly typed semantics. Type safety at IR code level will contribute
to reliability of applications.

One major overhead of tagged words is the cost of tagging and untagging. Some
VMs provide explicit tagging and untagging instructions to convert values. The explicit

PRELIM
IN

ARY P
ROCEEDIN

GS

�
functions

oid2int : OID -> Int
oid2int(oid) ==

if oid mod 2 = 1
then

(if oid <= 0x8000000000000000
then oid div 2
else oid div 2 - 0x8000000000000000)

else
invalidIntValue;

int2oid : Int -> OID
int2oid(i) ==

if i <> invalidIntValue
then

(if i >= 0
then i * 2 + 1
else (0x8000000000000000 + i) * 2 + smallIntegerTag)

else
invalidOidValue;
� �

Fig. 4. Data conversion functions defined in VDM-SL

tagging/untagging naturally requires those tagging and untagging instructions in the IR
code which makes the IR code larger. Also, erroneous IR code may possibly mix up
values of wrong types, e.g. use an integer value as a pointer. Other VMs handles only
first class objects in the form of tagged words. This approach brings an overhead of
massive tagging and untagging operations. For example, when evaluating (1 + 2) *
3, the VM should untag to obtain the values 1 and 2, compute 1 + 2, tag the resulting
value 3 to computer the 1+2 part. Then, the VM untag it, then untag to obtain the value
3, compute 3 * 3 and then tag the resulting value 9. This approach is costly in return
of type safety.

The basic idea of ViennaVM’s five statically typed fields per register is to cache the
tagged and untagged data to avoid unnecessary tagging/untagging operations. When
evaluating (1 + 2) * 3, ViennaVM stores the tagged value of 1 and 2 into the
oid field of each register. Then, ADD instruction will read the integer values from the
registers, which will implicitly untag and cache the integer values into the i fields,
and then stores the resulting value 3 into the i field of another register. Then MUL
instruction will read the integer value, which need untagging operation and stores the
resulting value into the i field of a register. Instructions that read those registers can later
read the integer values cached in the i fields. Wrong conversions, e.g. read a float value
from a register that has integer value, can be detected at runtime. This approach using
statically typed fields in a register can provide reduced cost of tagging and untagging
while keeping type safety of the IR code.

PRELIM
IN

ARY P
ROCEEDIN

GS

�
types

Reg ::
oid : Data‘OID
i : Data‘Int
f : Data‘Float
c : Data‘Char
p : Data‘Pointer;

Register = nat inv r == r < 65536;
operations

read_int : Register ==> Data‘Int
read_int(r) ==

let reg : Reg = registers(r), i : [Data‘Int] = reg.i
in

if i = Data‘invalidIntValue
then

let i2 : Data‘Int = Data‘oid2int(reg.oid)
in

(if i2 <> Data‘invalidIntValue
then registers(r) .i := i2;
return i2)

else return i;

write_int : Register * Data‘Int ==> ()
write_int(r, i) ==

(let p = registers(r).p
in

if p <> Data‘invalidPointerValue
then Memory‘decrement_reference_count(p);

registers(r)
:= mk_Reg(

Data‘invalidTag,
i,
Data‘invalidFloatValue,
Data‘invalidCharValue,
Data‘invalidPointerValue));
� �

Fig. 5. The definition of ViennaVM’s registers in VDM-SLPRELIM
IN

ARY P
ROCEEDIN

GS

Another benefit of this approach is that garbage collectors (GCs) can accurately
count references from registers. Because the pointers in registers are stored in the p
field, a GC can detect whether or not the value in a register is a pointer or not. Runtime
type information at IR code level enables simple and reliable implementation of GC
that does not rely on the correctness of the application code.

3.4 Memory model

The Memory module defines the memory model of ViennaVM. An object allocated in
a heap space has slots that store tagged words and headers for memory management.
Figure 6 shows the format of objects allocated in the heap space. Because all data other
than the object headers are tagged word, a GC can retrieve type information from the
binary data. Unlike most other VMs, ViennaVM’s instructions and immediate values in
the IR code page are also tagged words and thus subject to garbage collection.

offset field name type description
0 SIZE OFFSET 32 bits unsigned int size of this object aligned by 64 bytes
4 FLAGS OFFSET 32 bits unsigned int flags for memory management
8 REFERENCE COUNT 64 bits unsigned int reference count for garbage collection

OFFSET
16 FORWARDER OFFSET 64 bits unsigned int link to the updated object
24 SLOTS SIZE OFFSET 64 bits unsigned int number of slots in this object
32 SLOT1 64 bits tagged word the first element of this object
40 SLOT2 64 bits tagged word the second element of this object

:

Fig. 6. Data format of object in a heap space

The heap allocator gives 64 bytes alignment to the required size of an object. Vi-
ennaVM uses reference counters to collect unreferenced objects in the heap space. Al-
though GCs based on reference counts have difficulty in detecting objects with cyclic
references, ViennaVM assumes tree structured data from specifications in VDM-SL
and therefore there will be no cyclic references. ViennaVM manages reference coun-
ters from tagged pointers not only in heap objects but also in registers. At every write
access to a register or a memory slot, the contents of the old tagged word and the new
tagged word are checked, and if a tagged word has a pointer, the reference counter will
be increased and/or decreased.

3.5 Code Record and Activation Record

In ViennaVM, VDM functions and operations are implemented as routines. A code
record is an object that represents a routine that consist of a series of IR code, type
signature, precondition, postcondition, measure function and declaration of registers
used in the IR code. An activation record, also known as a stack frame, is an object that
represents an execution contexts that holds the caller activation record (the dynamic

PRELIM
IN

ARY P
ROCEEDIN

GS

link), the caller code record, the caller’s instruction pointer, measure value, old state,
register id to pass a return value and slots to save registers.

Code records and activation records are also stored as objects. Like other heap ob-
jects, code records and activation records are subject to garbage collection.

3.6 Instructions

ViennaVM’s IR instruction set has basic instructions for memory allocation, data trans-
fer, primitive operators, control structures (error, jump, conditional jump, call, recursive
call, return and conditional return). Table 1 lists the basic instructions. Since tagged
words in heap objects and registers have type information, data transfer instructions
and primitive operator instructions perform runtime type checking by default. Vien-
naVM needs to be adaptive to different target platforms, so each implementation of
ViennaVM may or may not perform such runtime checking to manage the balance be-
tween safety and computational costs.

Figure 7 is the definition of the SUB instruction in VDM-SL. The SUB instruction
takes three operands each of which specifies a register ID. This instruction computes the
second operand minus the third operand and stores the result into the first operand. The
VM first checks the operands are specified. If any operand is omitted, the VM issues an
error. The definitions part of the let statement defines data retrieval from the registers.
The VM tries to read an integer value from the register specified by the second operand.
If failed, it tries to read a float value from the same register. The VM does the same to
the third operand. Then, the “in” clause of the let statement defines the computation and
data transfer to the register specified by the first operand. If both values are successfully
retrieved, the VM computes num1 - num2 and stores it to the integer field of the
destination register if the both arguments are integer values. Otherwise, it stores the
resulting value to the float field of the destination register.

4 Example IR code and Preliminary Performance Evaluation

ViennaVM is still under development. We have created a prototypical implementation
from the current snapshot of its specification in VDM-SL for a preliminary performance
check. Although performance is not specifically pointed as a requirement to ViennaVM
in Section 2, we conducted a preliminary performance test to check feasibility of the
design of ViennaVM. The C version for now implements a subset of the full instruction
set of ViennaVM.

4.1 Performance of Fibonacci

Figure 8 shows the specification of the benchmark function fib, the fibonacci sequence
function. One call to the fib function with an argument larger than 1 will make two
recursive calls, and therefore costs exponential time.

The fibonacci series function is implemented by C and also IR code of ViennaVM
along with the executable VDM-SL specification. Figure 9 shows the IR code. Informal

PRELIM
IN

ARY P
ROCEEDIN

GS

Table 1. Basic instruction set of ViennaVM

opcode operand1 operand2 operand3 description
ERR Triggers error handler
NOP Do nothing
ALLOC r1 Allocate an object with the slot size given by r1
RESET Restart with the latest image file
DUMP Dump an image file
MOVE r1 r2 copy r2 to r1
MOVEI r1 copy the given immediate value to r1
LOAD r1 r2 r3 copy the r3-th slot of the object pointed by r2 to r1
LOAD1 r1 r2 r3 copy the (r3+1)-th slot of the object pointed by r2 to r1

:
LOAD7 r1 r2 r3 copy the (r3+7)-th slot of the object pointed by r2 to r1
STORE r1 r2 r3 copy r3 to the r2-th slot of the object pointed by r1
STORE1 r1 r2 r3 copy r3 to the (r2+1)-th slot of the object pointed by r1

:
STORE7 r1 r2 r3 copy r3 to the (r2+2)-th slot of the object pointed by r1
ADD r1 r2 r3 set r1 to r2 + r3
SUB r1 r2 r3 set r1 to r2 - r3
MUL r1 r2 r3 set r1 to r2 * r3
IDIV r1 r2 r3 set r1 to r2 div r3
IMOD r1 r2 r3 set r1 to r2 mod r3

: ?3
EQUAL r1 r2 r3 set r1 to r2 = r3
NOTEQ r1 r2 r3 set r1 to r2 <> r3
LESSTHAN r1 r2 r3 set r1 to r2 < r3
LESSEQ r1 r2 r3 set r1 to r2 <= r3
GREATER r1 r2 r3 set r1 to r2 > r3
GREATEREQ r1 r2 r3 set r1 to r2 >= r3
NOT r1 r2 set r1 to not r2
JUMP r1 set ip to r1
JUMPTRUE r1 r2 if r1 is true, set ip to r2
JUMPFALSE r1 r2 if r1 is false, set ip to r2
CALL r1 r2 call the code record pointed by r2, save registers and set

the return value to r1
CALLREC r1 call the current, save registers and set the return value to

r1
RET r1 return to the caller, restore registers and pass r1 as the

return value
RETTRUE r1 r2 if r1 is true, return to the caller, restore registers and

pass r2 as the return value
RETFALSE r1 r2 if r1 is false, return to the caller, restore registers and

pass r2 as the return value

?1 other VDM-SL built-in operators on numbers and booleans

PRELIM
IN

ARY P
ROCEEDIN

GS

�
operations

sub : Register‘Register * Register‘Register

* Register‘Register ==> ()
sub(dst, src1, src2) ==

if (dst > 0 and src1 > 0) and src2 > 0
then

let
int1 = Register‘read_int(src1),
num1 : [real] =

if int1 <> Data‘invalidIntValue
then int1
else

(let float1 = Register‘read_float(src1)
in

(if float1 <> Data‘invalidFloatValue
then Data‘float2real(float1)
else nil)),

int2 = Register‘read_int(src2),
num2 : [real] =

if int2 <> Data‘invalidIntValue
then int2
else

(let float2 = Register‘read_float(src2)
in

(if float2 <> Data‘invalidFloatValue
then Data‘float2real(float2)
else nil))

in
if num1 <> nil and num2 <> nil
then

let num3 : real = num1 - num2
in

if
int1 <> Data‘invalidIntValue and
int2 <> Data‘invalidIntValue

then
Register‘write_int(dst, num3)

else
Register‘write_float(dst, Data‘real2float(num3))

else
err("sub instruction error: operands not integer")

else
err("sub instruction error: operands not specified");
� �

Fig. 7. The formal definition of the SUB instruction

PRELIM
IN

ARY P
ROCEEDIN

GS

�
functions

fib : nat -> nat
fib(x) == if x < 2 then x else fib(x-1) + fib(x-2);
� �

Fig. 8. The specification of fibonacci sequence function

explanation of each instruction is shown as a comment led by semicolons. As Vien-
naVM is a register machine, arguments passed to a routine is stored in r1, r2 and so on
in order. In this case, the argument x is stored in r1. The first instruction, MOVEI set the
immediate value to the specified register. In this case, this instruction sets the tagged
word of 1 to r2. The LESSTHAN instruction is a three-operanded opcode that com-
pares the second and the third operands and stores the result to the first operand. The
RETFALSE instruction is a conditional return. In this case, if r3 is false, then return
r1. Then, two sets of SUB and CALLREC instructions follows that computes fib(x-1)
and fib(x-2). The ADD instruction will add the two return values from the CALLREC
instruction and stores the result to r1. Finally, the RET instruction returns the r1.

; x is passed to r1
MOVEI 2, int(1) ; r2 <- 1
LESSTHAN 3, 2, 1 ; r3 <- r2 < r3
RETFALSE 3, 1 ; if r3 is false then return r1
SUB 1, 1, 2 ; r1 <- r1 - r2
CALLREC 3 ; r3 <- fib(r1)
SUB 1, 1, 2 ; r1 <- r1 - r2
CALLREC 1 ; r1 <- fib(r1)
ADD 1, 1, 3 ; r1 <- r1 + r3
RET 1 ; return r1

Fig. 9. The IR code for fibonacci series function

Table 2 shows the result of performance test. The IR code shown in Figure 9 was
executed on ViennaVM in C. The fibonacci series function in Figure 8 was imple-
mented in C as an ideal performance target. The fibonacci series function in VDM-SL
was also animated by VDMJ as a baseline performance. VDMJ is a standalone inter-
preter implemented in Java. VDMJ is used as a baseline in this benchmark because its
implementation is mature and has less overhead than GUI-based IDEs.

The ViennaVM was also implemented in Smalltalk using automated code generator
and a hand tuning was done to five methods. The Smalltalk version also executed the
IR code to check the feasibility of ViennaVM used in ViennaTalk for debugging. The
specification of ViennaVM was also animated by VDMJ as a baseline performance
against the Smalltalk version.

PRELIM
IN

ARY P
ROCEEDIN

GS

Two expressions fib(5) and fib(30) were executed. The prototypical Vien-
naVM in C performed better than VDMJ and slower than the C version. Although the
ViennaVM in C is a naive IR code interpreter without just-in-time or runtime optimisa-
tion, it performed reasonably well. ViennaVM in Smalltalk took almost 50 minutes to
compute fib(30). The result mentions that the use of ViennaVM on Smalltalk will
be limited to debug by step execution. One possible way to debug a computationally
demanding application is to use two versions of ViennaVM, in C and in Smalltalk, and
combine them by image files. The ViennaVM in C will execute the IR code and dump
an image file at a break point. The ViennaVM in Smalltalk will resume the image file
to interactively debug by step execution.

Table 2. Performance comparison by fibonacci numbers

fib(5) (ms) fib(30) (ms)
C 0.0 11.0
ViennaVM (C) 1.8 410.2
VDMJ 1.8 3,335.4 ?2
ViennaVM (Smalltalk ?1) 18.4 2,870,079.0
ViennaVM (VDM-SL) 351.6 NA ?3

?1 automated code generator + hand tuning
?2 measured after 10 warm-up runs
?3 computation did not finish in 4 hours

4.2 Discussions about perspectives

VMs are commonly used architecture of runtime systems of various programming lan-
guages. While most language VMs are designed for programming languages, Vien-
naVM is specially dedicated for VDM languages. To take VDM’s advantage in pro-
ductivity of developing embedded software, ViennaVM should support not only in the
final product, but the prototypical development of smart devices. The most VMs for
high level programming languages can assume that the compiler generates valid IR
code. ViennaVM, on the other hand, should provide rich runtime checking mechanism
for types, states, precondition, postconditions and metrics. Another interesting feature
of ViennaVM is that it is specified in VDM-SL. The development of VMs requires
high skills of system programming and long development time to debug. We expect the
utilisation of formal specification language would improve reliability, productivity and
portability of the VMs.

The preliminary performance evaluation in Section 4 shows that the prototypical C
implementation of ViennaVM can perform better than the VDMJ interpreter. Although
there are still a big performance gap between ViennaVM and native C code, it can be
possibly narrowed down by runtime optimisations and just-in-time compilation.

PRELIM
IN

ARY P
ROCEEDIN

GS

5 Planned Further Development

5.1 User Interfaces

We are planning to define UI instructions in ViennaVM. Smart devices have various
user interfaces. While many VMs provide low level functions and let user programs to
implement UI frameworks, we will provide high level instructions to absorb the dif-
ference of physical user interfaces. Figure 10 illustrates how ViennaVM will provide
portability of its application code among different smart devices. inform a text mes-
sage to the user instruction that will play a voice on ViennaVM for automotive smart
speakers and display a small notifier on ViennaVM for smartphones. UI instructions
of ViennaVM provide hooks to invoke and accept interactions with the user, and each
implementation of ViennaVM will supply UI functions available in the target platform.

Fig. 10. The same IR code will adapt to different UI devices

5.2 Code Generators and Runtime Support for Formal Methods

We will develop an automated code generator that generates IR code of ViennaVM,
and extend ViennaTalk to run an external ViennaVM implemented in C and also an
internal ViennaVM implemented in Smalltalk. The internal ViennaVM will be better
integrated with ViennaTalk and gives more flexible debugging feature while the external
ViennaVM will execute the specification in closer environment to the target platform.

We also plan for extending ViennaVM by instructions that support assertions. A
state invariant will be checked at every update to the state variable by setting it as a
watch variable. Precondition and postcondition of a function or an operation will be
held in a code record, and measure function of a recursive function will be also stored.

6 Conclusions

The development of ViennaVM is still at an early stage. Its objective is to provide a
common target platform of automated code generators from VDM. It can also be seen

PRELIM
IN

ARY P
ROCEEDIN

GS

as a case project of VDM in VM developments. We will investigate how VDM can
improve the development of language VMs as well as how a dedicated VM may change
the process of the model-based development using VDM.

Acknowledgments

The authors would thank Christoph Reichenbach, Kumiyo Nakakoji and Yasuhiro Ya-
mamoto for their inspiring comments on the initial idea of this research. A part of this
research was supported by JSPS KAKENHI Grant Number JP 18K18033. We would
also like to pay special thanks to the anonymous reviewers who have helped improving
the quality of the paper.

References

1. Diswal, S.P., Tran-Jørgensen, P.W., Larsen, P.G.: Automated Generation of C# and .NET
Code Contracts from VDM-SL Models. In: Larsen, P.G., Plat, N., Battle, N. (eds.) The 14th
Overture Workshop: Towards Analytical Tool Chains. pp. 32–47. Aarhus University, Depart-
ment of Engineering, Cyprus (November 2016), ECE-TR-28

2. Ingalls, D., Kaehler, T., Maloney, J., Wallace, S., Kay, A.: Back to the future - the story
of squeak, a practical smalltalk written in itself. ACM SIGPLAN Notices 32(10), 318–326
(1997)

3. Jørgensen, P.W.V., Larsen, M., Couto, L.D.: A Code Generation Platform for VDM. In: Bat-
tle, N., Fitzgerald, J. (eds.) Proceedings of the 12th Overture Workshop. School of Comput-
ing Science, Newcastle University, UK, Technical Report CS-TR-1446 (January 2015)

4. Larsen, P.G., Battle, N., Ferreira, M., Fitzgerald, J., Lausdahl, K., Verhoef, M.: The Overture
Initiative – Integrating Tools for VDM. SIGSOFT Softw. Eng. Notes 35(1), 1–6 (January
2010), http://doi.acm.org/10.1145/1668862.1668864

5. Larsen, P.G., Lausdahl, K., Battle, N.: Combinatorial Testing for VDM. In: Proceedings of
the 2010 8th IEEE International Conference on Software Engineering and Formal Methods.
pp. 278–285. SEFM ’10, IEEE Computer Society, Washington, DC, USA (September 2010),
http://dx.doi.org/10.1109/SEFM.2010.32, ISBN 978-0-7695-4153-2

6. Larsen, P.G., Lausdahl, K., Battle, N., Fitzgerald, J., Wolff, S., Sahara, S., Verhoef, M., Tran-
Jørgensen, P.W.V., Oda, T.: VDM-10 Language Manual. Tech. Rep. TR-001, The Overture
Initiative, www.overturetool.org (April 2013)

7. Oda, T., Araki, K., Larsen, P.G.: Automated VDM-SL to Smalltalk Code Generators for Ex-
ploratory Modeling. In: Larsen, P.G., Plat, N., Battle, N. (eds.) The 14th Overture Workshop:
Towards Analytical Tool Chains. pp. 48–62. Aarhus University, Department of Engineering,
Aarhus University, Department of Engineering, Cyprus (November 2016), ECE-TR-28

8. Oda, T., Araki, K., Larsen, P.G.: ViennaTalk and Assertch: Building Lightweight For-
mal Methods Environments on Pharo 4. In: Proceedings of the International Workshop on
Smalltalk Technologies. pp. 4:1–4:7. Prague, Czech Republic (Aug 2016)

9. Smith, J.E., Nair, R.: The architecture of virtual machines. Computer 38(5), 32–38 (May
2005)

10. Tran-Jørgensen, P.W.V., Larsen, P.G., Leavens, G.T.: Automated translation of VDM to JML-
annotated Java. International Journal on Software Tools for Technology Transfer pp. 1–25
(2017), http://dx.doi.org/10.1007/s10009-017-0448-3

PRELIM
IN

ARY P
ROCEEDIN

GS

http://doi.acm.org/10.1145/1668862.1668864
http://dx.doi.org/10.1109/SEFM.2010.32
http://dx.doi.org/10.1007/s10009-017-0448-3

Transforming an industrial case study from VDM++ to
VDM-SL

René S. Nilsson1,2, Kenneth Lausdahl3, Hugo D. Macedo1, and Peter G. Larsen1

1 Department of Engineering, Aarhus University, 8200 Aarhus N, Denmark
2 AGCO A/S, Dronningborg Allé 2, 8930 Randers NØ, Denmark

3 Mjølner Informatics A/S, Finlandsgade 10, 8200 Aarhus N, Denmark

Abstract. Normally transitions between different VDM dialects go from VDM-
SL towards VDM++ or VDM-RT. In this paper we would like to demonstrate
that it actually can make sense to move in the opposite direction. We present a
case study where a requirement change late in the project deemed the need for
distribution and concurrency aspects unnecessary. Consequently, the developed
VDM-RT model was transformed to VDM++ and later to VDM-SL. The advan-
tage of this transformation is to reduce complexity and prepare the model for a
combined commercial and research setting.

Keywords: VDM, industrial application, model transformations

1 Introduction

The Vienna Development Method (VDM) is one of the most mature formal methods [2].
The method have been extended with multiple dialects over time, including the ISO
standardised VDM Specification Language (VDM-SL) [3], VDM for object-oriented
modelling (VDM++) [4] and VDM Real Time (VDM-RT) [12]. The choice of dialect
highly depends upon the type of system or behaviour that must be modelled.

In this paper we present an industrial project involving optimization of the logis-
tics in harvest operations. Such an operation is inherently distributed, as it involves
a number of independent vehicles that need to coordinate and interact. Development
guidelines for distributed real-time systems [7] were initially followed, resulting in a
rather complex VDM-RT model [1].

A significant requirement change was introduced late in the project. Concretely, a
specific communication protocol between vehicles as well as a specific hardware plat-
form on each vehicle were imposed. Consequently the system architecture was changed
to comprise a single centralised control algorithm and thin data-acquisition applications
on each vehicle. The change of architecture diminished the need for distribution in the
model, as the core functionality now only consisted of a single control algorithm and
not a distributed control. In order to keep the model consistent with the modelled system
and to reduce model complexity, distribution was removed from the model and thereby
transformed to VDM++.

In this paper we will focus on a further transformation to VDM-SL, which was con-
ducted to reduce model complexity and prepare the model for a combined commercial
and research setting.

PRELIM
IN

ARY P
ROCEEDIN

GS

René S. Nilsson, Kenneth Lausdahl, Hugo D. Macedo, and Peter G. Larsen

The evolution of the project is further described in Section 2. Afterwards Sec-
tion 3 continues with concrete transformation examples and guidelines on transforming
a VDM++ model to VDM-SL. Next, Section 4 presents an overview of the structural
changes between the VDM++ and the VDM-SL models from the case study, while Sec-
tion 5 provides an evaluation on the results obtained herein. Finally, Section 6 concludes
on the findings of this work.

2 Case Study Project Evolution

The industrial case study presented in this paper originates from a research project
named Off-line and on-line logistics planning of harvesting processes, involving Aarhus
University and AGCO A/S.4 Logistics optimisation in this setting includes both static
and dynamic route planning of all involved vehicles. Specifically two tools were de-
veloped, 1) an off-line simulation tool, where a harvest operation can be optimized and
simulated under the assumptions that no deviations occur, and 2) a real-time guidance
system, that provides guidance to all drivers in the different vehicles involved and con-
tinuously monitors and reacts to possible deviations.

A common workflow in a harvest starts with a combine harvester harvesting the
crop. The collected yield is unloaded into an in-field grain cart, which again unloads
to an on-road truck, which delivers the yield to a drying or storage facility. This is
illustrated in Figure 1, where parts of the optimized routes for each vehicle are shown.

Fig. 1: Harvest logistics illustration.

4 https://goo.gl/6tT8tK

PRELIM
IN

ARY P
ROCEEDIN

GS

https://goo.gl/6tT8tK

Transforming an industrial case study from VDM++ to VDM-SL

During the four year span of the research project, the underlying VDM model has
evolved and changed dialect a number of times, as depicted in Figure 2. The arrows
and numbering illustrate how the model evolved over time. The arrows 2 and 4 high-
lights that substantial modifications were made to the VDM++ and VDM-RT model
during the research project. These modifications are one of the main reason why the fi-
nal VDM-SL model is different from the initial SL model. Note that the initial SL model
was not kept up to date with the changes introduced into the VDM++ nor the VDM-RT
model. Additionally, change in personnel had the side effect that knowledge of the ini-
tial SL model was lost. The following subsections further describe the motivation and
reasoning behind each change of dialect.

Final
VDM-SL Model

VDM-RT model

Initial
VDM-SL Model

VDM++ model

42

56

3
1

Fig. 2: Model evolution over time

2.1 Initial VDM modelling

The initial requirements for the project were defined based on the domain knowledge
about the problem at hand. The system was considered a complex distributed system
with embedded devices deployed in each vehicle. Therefore the development guideline
for distributed real-time systems proposed by [7] was mostly followed. It involves a
step-wise transition starting with a VDM-SL model, which is transformed to VDM++
and finally to VDM-RT, where more details of the system is included in each transition.
The initial VDM-SL model captures the specification or the core functionality of the
system. The transition to VDM++ adds concurrency and object-orientation, and the
final transition to VDM-RT adds real time and deployment aspects.

For performance reasons, the Java bridge technology, offered by the Overture Tool,
was leveraged [9]. This allowed the VDM model to invoke external Java components,
such as existing Java graph libraries and proprietary performance optimized Java code [10,
section 3.4]. Code-generation of the VDM model to Java further improved the perfor-
mance [6], while easing the deployment process. Figure 3 shows how the VDM model
and tests were connected to external components through a Bridge and how the same
external components were integrated with the code-generated system through a corre-
sponding Delegate class.

PRELIM
IN

ARY P
ROCEEDIN

GS

René S. Nilsson, Kenneth Lausdahl, Hugo D. Macedo, and Peter G. Larsen

Fig. 3: Code generation and external components integration from [1].

2.2 Requirement changes

Late in the project a major requirement change was introduced. Initially the communi-
cation between vehicles had not been restricted in any way, and the hardware platforms
were not constrained either. This allowed for an easy implementation of a distributed
control algorithm. The requirement change meant that the system should work with ex-
isting hardware platforms and backend systems. All communication should now use a
Publish/Subscribe (P/S) service, and the possibility to deploy software to the vehicles
were highly constrained, as it should fit within an existing platform. As a consequence,
it was decided to implement a centralized control algorithm in the cloud, and each vehi-
cle should now only be responsible for real-time data acquisition and providing a user
interface to the driver. This change towards centralized control diminished the purpose
of including distribution in the model. Therefore, distribution was removed and replaced
with a P/S interface and thereby transforming the VDM-RT model to a VDM++ model
again.

2.3 Generalisation and commercialisation

At the end of the research project the model architecture was revised with the purpose of
preparing the model for commercialisation. Additionally, a generalisation of the system
towards other farming operations was envisioned. During the revision, focus was on the
core functionality. One conclusion was that communication should be separated from
the core model, hence removing the need for concurrency. This is enabled by the use of
the Java bridge as described above.

Ideally the core optimisation and control algorithm could be achieved in a purely
functional manner, taking the current state and incoming P/S events as input, and out-
putting a new state, including route plans for all vehicles.

In order to reduce complexity and best model the system, VDM-SL was chosen as
the most appropriate dialect. From a research standpoint, the use of VDM-SL and a
functional style should also allow new students to easily work on delimited parts of the

PRELIM
IN

ARY P
ROCEEDIN

GS

Transforming an industrial case study from VDM++ to VDM-SL

model. Additionally it should enable formal proofs of certain model properties, which is
not easily done in a VDM++ model. This led to the final transformation from VDM++
to VDM-SL, which is further described in the following sections.

3 Transformation guidelines

Transformation of a VDM-RT model to VDM++ is relatively simple since both dialects
are object-oriented and we had limited use of VDM-RT specific constructs. However,
transformation from VDM++ to VDM-SL is not straight forward, because the two lan-
guages does not share the same feature set, nor semantics [8]. Some of the main trans-
formation challenges include concurrency, objects, hierarchy, operation overloading,
and visibility.

In an attempt to create a systematic approach to transforming VDM++ models to
VDM-SL a number of guidelines and concrete transformation rules are defined as de-
scribed below.

3.1 Guideline 1: Concurrency

The VDM-SL dialect is a single threaded model and thus does not have any support
for multiple threads nor coordination thereof. Therefore models cannot in general be
converted into the VDM-SL dialect unless the nature of the problem is such that the
multi-threaded behaviour can be moved out into an external Java component. This is in
particular the case if the multi-threaded behaviour is present in order to facilitate com-
munication where the data stream instead can be converted into a sequence of events,
which can be consumed by the VDM-SL model sequentially.

3.2 Guideline 2: Visibility

In VDM++ the visibility of operations is declared using the access modifiers public,
private, protected and static. In VDM-SL all definitions are static and the
visibility is declared using the export and import constructs. Hence, if an operation
should be visible in another module, the declaring module should export the operation
including any internal referenced types, and the other module should import it.

State in VDM-SL is only visible within the module it is declared in. If the visibility
needs to be extended, getters and setters can be implemented, which follows best OO
practices.

3.3 Guideline 3: Operation overloading

Operation overloading is not supported in VDM-SL. All operations must be unique
based on their name and any calls that relied on the overload behaviour must be guarded
by an if statement to determine which operation to call.

3.4 Guideline 4: Objects and state

All object instances must be transformed into state components. This is described in
the following transformation rule, and the accompanying example in Figure 3.

PRELIM
IN

ARY P
ROCEEDIN

GS

René S. Nilsson, Kenneth Lausdahl, Hugo D. Macedo, and Peter G. Larsen

�
class A

types
Data : seq of char;

instance variables
data : Data;

operations
opX : () ==> ()
opX () == data := "ok";
� �

�
class B

instance variables
objA : A;
data : real;

operations
opY : () ==> ()
opY () == (

objA.opX();
);
� �

(a) VDM++ classes�
module A

types
ID = token;
S = seq of char;
InstanceMap = map ID to S;

state AST of
a_m : InstanceMap
init s == s = mk_AST({|->})

end

operations
opX : ID ==> ()
opX (id) == a_m(id) := "ok";

...
� �

�
module B

types
ID = token;
S ::

objA : [A‘ID]
data : real;

InstanceMap = map ID to S;

state BST of
b_m : InstanceMap
init s == s = mk_BST({|->})

end

operations
opY : ID ==> ()
opY (id) == (

A‘opX(b_m(id).objA);
);
� �

(b) VDM-SL modules

Fig. 4: Transformation example: VDM++ classes translated to VDM-SL using guideline
4: Objects and state.PRELIM

IN
ARY P

ROCEEDIN
GS

Transforming an industrial case study from VDM++ to VDM-SL

Transformation rule 1: Object instances map to state A class is transformed into a
module that exports all functions and operations according to guideline 2. The class
instance variables are translated into a module state. This is done by first defining
a type that encapsulates all class instance variables e.g. S, where all objects are repre-
sented with an object id rather than an object reference. Secondly, a type ID for the
object instances of the class itself is defined. The module state shall then comprise a
mapping from instance id to state: map ID to S, where S could be a record. Finally,
define an operation newId : () ==> ID, which creates a unique id and a new in-
stance record of type S and add it to the instance map, while returning the id. In this
way, duplication of IDs is avoided.

Once the transformation is completed, all modules now reference state "objects" by
an ID, rather than having a direct object reference, which is the case in an OO setting.
Rather than invoking operations directly on the object, modules now need to invoke
operations on the "objects" module, passing the ID along.

3.5 Guideline 5: Inheritance

Inheritance in a VDM++ setting includes a number of features, such as inheriting in-
stance variables and operations, overriding operations, and extending a class with new
instance variables and operations. All of which are features that are not directly sup-
ported in VDM-SL. Possibly, a complex transformation might be able to support all
inheritance features, but the resulting VDM-SL model will be very complex and not
easily understood or maintained. Our general guideline is therefore to avoid constructs
that mimic inheritance in VDM-SL if possible. However, if only a few features are used
for a specific purpose, simpler transformations can be used, with reasonable results.
Specifically, we present two transformations related to inheritance, which have been
used in the case study.

Strategy design pattern: A strategy design pattern consist of two types of classes, a
strategy interface class and concrete strategy classes [5]. In an OO setting, a strategy
pattern will be used, by having an object reference defined by the interface class and
invoking operations on the object. The strategy can be changed easily, by replacing the
object reference with another object reference that implements the same interface. In
VDM++ the strategy interface class would be implemented as a base class, and the
concrete strategies would be subclasses hereof. This is not possible in VDM-SL, but
a strategy design pattern can be transformed to VDM-SL using union types and cases
expressions, as described in Transformation rule 2 and the accompanying example in
Figure 5.

Transformation rule 2: Strategy patterns map to a union type and cases expressions
Each concrete strategy class is transformed to VDM-SL, following all necessary pre-
viously defined guidelines. The strategy interface class must define a union type Type
with a type for each concrete strategy module. A parameter of type Typemust be added
to each operation defined in the interface class. Additionally, a cases expression on
the type parameter must be added, with an entry for each concrete strategy type, which
delegates the call to the concrete strategy module.

PRELIM
IN

ARY P
ROCEEDIN

GS

René S. Nilsson, Kenneth Lausdahl, Hugo D. Macedo, and Peter G. Larsen

�
class X

operations
opX : nat ==> nat
opX (x) ==

is subclass responsibility;
end X
� �

�
class A is subclass of X

operations
opX : nat ==> nat
opX (x) == return x + 1;
...
end A
� �

(a) VDM++ classes�
module X

types
Type = <A> | ;

operations
opX : Type * nat ==> nat
opX (t, x) ==

cases t:
<A> -> return A‘opX(x),
 -> return B‘opX(x),
...
others -> exit "Unknown Type"

end;
end X
� �

�
module A

operations
opX : nat ==> nat
opX (x) == return x + 1;
end A

module B

operations
opX : nat ==> nat
opX (x) == return x * 2;
end B
� �

(b) VDM-SL modules

Fig. 5: Transformation example: VDM++ classes translated to VDM-SL using guideline
5: Inheritance and strategy pattern.

PRELIM
IN

ARY P
ROCEEDIN

GS

Transforming an industrial case study from VDM++ to VDM-SL

Basic inheritance: Transformation rule 3 along with the example in Figure 6 describes
how some of the basic inheritance features can be transformed in a simple manner, if
type information is available whenever operations are invoked on the instances. In an
OO setting this information is known through the object reference, but in VDM-SL it
must be handled explicitly. Embedding this information in the inheritance modules in
VDM-SL greatly complicates the model, which is not desirable. Therefore, we suggest
this reduced transformation, which can be used to extend a module with a relatively
small effort. Specifically, this reduced transformation will mimic the following inheri-
tance features: Extending a class with more instance variable and operations, operation
overriding, and allow calls to a super class.

Transformation rule 3: Basic inheritance used for extendibility/reusability In each
module define a type S that encapsulates all the instance variables of that class and
its superclass. Additionally, in the base module, add a union type S_UNION that holds
the S type from all the modules and add an instance map from a type ID to S_UNION,
similar to Guideline 4. Note that all "object instances" of all the subclasses will be kept
as state in the base module. Next, add getters and setters for state in the base module,
such that all sub-modules can access the necessary state. Finally, add a newId opera-
tion as described in Guideline 4.

4 Structural changes to the VDM models

4.1 Existing VDM++ model

The VDM++ model supports both off-line simulation and real-time guidance of harvest
operations, but the model presented here is simplified to ease the understanding and
only includes the core functionality. As VDM++ is an OO language, the model contains
common OO constructs, such as design patterns including the strategy and the template
pattern [5]. This also means that many of the individual instances of classes have state
information about themselves so references to these are frequently passed around. Fig-
ure 7 shows a simplified class diagram of the model, where Harvi is the top-level class
of the control algorithm. The strategy pattern is used both for UnloadStrategy and
TrackSeqStrategy, whereas the template pattern is used for the Resource class
and its subclasses.

The core of the model is single-threaded, but the integration with the P/S framework
introduces more threads and asynchronous callbacks. In the presence of concurrency
this means that permission predicates on certain instance variables and operations are
included in the model, and it seems that this can have a negative impact on the per-
formance, since every time an operation is called the permission predicates must be
analysed.

4.2 VDM-SL model

Given the transformations defined in Section 3, the VDM++ model was transformed to
VDM-SL. In addition, the VDM-SL model was made more general in the sense that

PRELIM
IN

ARY P
ROCEEDIN

GS

René S. Nilsson, Kenneth Lausdahl, Hugo D. Macedo, and Peter G. Larsen

�
class A

instance variables
x : nat;

operations
opX : () ==> nat
opX () == return x + 1;
end A
� �

�
class B is subclass of A

instance variables
y : real;

operations
opY : () ==> real
opY () == return y + 1.5;
end B
� �

(a) VDM++ classes�
module A

types
ID = token;
S :: x : nat;
S_UNION = S | B‘S;
InstanceMap = map ID to S_UNION;

state AST of
a_m : InstanceMap
init s == s = mk_AST({|->})

end

operations
opX : ID ==> nat
opX (id) ==

return a_m(id).x + 1;

getState : ID ==> S_UNION
getState (id) ==

return a_m(id);
end A
� �

�
module B

types
S :: x : nat

y : real;

operations

opY : A‘ID ==> real
opY (id) ==

return A‘getState(id).y + 1.5;
end B

...
� �
(b) VDM-SL modules

Fig. 6: Transformation example: VDM++ classes translated to VDM-SL using guideline
5: Basic inheritance.

PRELIM
IN

ARY P
ROCEEDIN

GS

Transforming an industrial case study from VDM++ to VDM-SL

«ExternalComponent»
FieldGraph

Graph

VertexEdge

GrainCart

ContinuousFlow
Headland

OnTheGo

SinglePoint

TrackSeqStrategyUnloadStrategy

bridge_FieldGraph

Field

Harvi

Storage

LogUnloadCoordinator

Harvester

Vehicle

Resource 2

1 1

0..n0..n

0..n 112..n

Fig. 7: Simplified class diagram of VDM++ model.

the VDM++ model was only able to cope with one plan, whereas the VDM-SL model
has been prepared to be able co cope with multiple plans. A simplified overview of the
most important modules in the VDM-SL model can be found at Figure 8. Note how the
level of plans simply is added as a layer above the other modules. The GrainHarvest
module is similar to the Harvi class from the VDM++ model. The four modules below
that, all include state information organised as mappings from identifiers to data about
them. In this way the state information is centered at specific places and the MQTT
module represent all the P/S communication with the centralised cloud service. This is
realised in Java using the bridge technology explained in Section 2. This has its own
thread of control but since this is outside the actual VDM model the model complexity
is significantly reduced.

TrackSeqStrategy

UnloadStrategy

Field LogStorageVehicle

MQTT GrainHarvest

Plan

Fig. 8: Simplified overview of the VDM-SL modules.

5 Evaluation

Although most of the listings presented above indicate that the VDM-SL version is
larger than the corresponsing VDM++ model, the transformation from VDM-RT to
VDM-SL resulted in a new smaller model as shown in Table 1. However, the trans-
formation process led to the discovery of cases where the responsibilities of modules
were mixed. This discovery was made because of the explicit imports added in the pro-
cess. The many dependencies between the modules is likely an artefact of the initial

PRELIM
IN

ARY P
ROCEEDIN

GS

René S. Nilsson, Kenneth Lausdahl, Hugo D. Macedo, and Peter G. Larsen

distributed system where each vehicle had more control over its own behaviour oppose
to the current approach where a more “functional” approach is taken. The new model
aims to provide an operation which can perform all required computation to consume
events received from the vehicles and in turn produce new or updated routes. All com-
munication have been removed from inside the planning operation and converted into
a sequence of events that is then consumed as part of the plan generation. The ideal
function would have looked like illustrated in Listing 1.1, but due to the caching of the
large graphs, used to represent the field, it had to be modelled as an operation and thus
keeping state in many modules.

VDM++ VDM-SL
Lines Of Model 3701 3041

Table 1: Lines of model in VDM++ and VDM-SL implementations, excluding libraries
and tests.

�
planRoutes : FieldPartition *

seq of Route *
FieldProgress *
seq of Event -> seq of Route
� �

Listing 1.1: Ideal route planning function.

The model transformation was carried out manually partly using the transformation
principles from Section 3 that in itself can be quite error prone due to human factors. To
make this even worse the testing framework VDMUnit only provided support for OO
based models and thus could not be used for the new SL model. To overcome this issue
and provide some validation against the source model a new extension to VDMUnit was
developed to mimic the unit test behaviour for SL models as described in [11]. The test
validation did provide the required basis for comparison with the source model but also
showed a limitation of a VDM module based approach where all modules have mutable
state. The primary issue is that all operations are directly imported and since VDM does
not have operation values there is no way to provide true module based testing of each
module in isolation using stubs that respect the pre-, post-conditions of the imported
operations.

To assess if the newly created VDM-SL model performs similarly to the VDM-RT
model the execution time of the full test suite for both models are compared in Table 3
and for one of the test scenarios in Table 25. It shows that some of the improvements
done during the transformations likely had a positive impact on the performance. Dur-
ing the transformation multiple places in the model were identified that constructed

5 All experiments were performed on a server hosting a 64 bit VM configured with 6 x Intel
Core Processor @ 2.0 GHz and 15 GB RAM.

PRELIM
IN

ARY P
ROCEEDIN

GS

Transforming an industrial case study from VDM++ to VDM-SL

route sequences in a way that grew exponentially in time in relation to the route length.
One example was looping over a route to check relevant sequence elements, by using
hd and tl expressions, rather than an index. By using the tl expression, the route
was internally cloned for every loop iteration, causing poor performance both in the
interpreter and in the generated code.

The comparison in Table 2 clearly shows that the original model had scalability
issues.6 As a result it was not possible to determine the full execution time of the full
test suite for the interpreted model as shown in Table 3, where the experiment was
turned off after 7 days execution running at 100% CPU load.

VDM++ VDM-SL Difference
Interpreted 2246.65 s 358.16 s -84%
Code generated 40.36 s 19.46 s -52%

Table 2: Performance comparison between VDM++ and VDM-SL implementations for
one big scenario test.

VDM++ VDM-SL Difference
Interpreted > 7 days 150 min > -98%
Code generated 91 min 7 min -92%

Table 3: Performance comparison between VDM++ and VDM-SL implementations for
all tests.

It should be noted that the generated code does not perform any pre-, post-condition,
or invariant checks. This is one of the primary reasons to why the test framework was
upgraded to support VDM-SL. The usage of the VDMUnit for the OO model have re-
vealed especially pre-condition errors that were not revealed by the tests at the generated
code level.

6 Concluding remarks

In the new VDM-SL model the main focus is on the calculation of routes for the differ-
ent vehicles. Compared to the VDM++ model there is also a cleaner separation between
the planning aspects and the event-based communication carried out via the Publish/-
Subscribe server connection to the cloud. Actually it was a positive surprise for us that
transforming the model from an imperative style to a more functional style had the
side effect of increasing the performance. However, it also turned out that the transition

6 The difference is calculated as: Difference = a−b
b

∗ 100%, where a = VDM-SL performance
and b = VDM++ performance

PRELIM
IN

ARY P
ROCEEDIN

GS

René S. Nilsson, Kenneth Lausdahl, Hugo D. Macedo, and Peter G. Larsen

rules suggested were not sufficient to take care of all refactorings. In particular in re-
lation to inheritance there is a tendency that there is an overhead of what needs to be
written in a VDM-SL setting. Therefore, we do not see a possibility for automating the
transformation from a VDM++ model to VDM-SL.

Initial work targeting the use of this VDM-SL model in a combined commercial and
research context have started and this looks promising, but no conclusion can be drawn
from this yet. Finally, it is worth noting that it is possible to use traditional unit testing
in a VDM-SL model with the use of a newly extended VDMUnit testing framework.

Future Plans Transitions from VDM++ to VDM-SL are not something one would
embed in a methodology like the one proposed by [7], as it is not a desired transition.
Ideally one would not end up in a situation where such a transformation is necessary.
However, requirement changes are a common phenomena and might lead one into such
a situation. We see the transformation guidelines proposed in this papers as a help or
inspiration for others who might face the same needs as we did.

Theoretically it might be possible to include all features of VDM++ into similar
guidelines, but it is our belief that this would be at the expense of model complexity
and readability. Therefore we do not propose to go this way, and we do not suggest au-
tomating the transformation either, as especially the inheritance transformations might
be somewhat use case specific.

Acknowledgments We would like to thank the Danish Innovation Foundation for fund-
ing this project and to our colleagues that have worked with us in this project. We would
also like to pay special thanks to the anonymous reviewers who have helped improving
the quality of the paper.

References

1. Couto, L.D., Tran-Jørgensen, P.W.V., Larsen, P.G.: Enabling continuous integration in a for-
mal methods setting. In: Submitted for publication (2018)

2. Fitzgerald, J.S., Larsen, P.G., Verhoef, M.: Vienna Development Method. Wiley Encyclope-
dia of Computer Science and Engineering (2008), edited by Benjamin Wah, John Wiley &
Sons, Inc.

3. Fitzgerald, J., Larsen, P.G.: Modelling Systems – Practical Tools and Techniques in Software
Development. Cambridge University Press, The Edinburgh Building, Cambridge CB2 2RU,
UK, Second edn. (2009), ISBN 0-521-62348-0

4. Fitzgerald, J., Larsen, P.G., Mukherjee, P., Plat, N., Verhoef, M.: Validated Designs for
Object–oriented Systems. Springer, New York (2005), http://overturetool.org/
publications/books/vdoos/

5. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable
Object-oriented Software. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA (1995)

6. Jørgensen, P.W.V., Larsen, M., Couto, L.D.: A Code Generation Platform for VDM. In: Bat-
tle, N., Fitzgerald, J. (eds.) Proceedings of the 12th Overture Workshop. School of Comput-
ing Science, Newcastle University, UK, Technical Report CS-TR-1446 (January 2015)

PRELIM
IN

ARY P
ROCEEDIN

GS

http://overturetool.org/publications/books/vdoos/
http://overturetool.org/publications/books/vdoos/

Transforming an industrial case study from VDM++ to VDM-SL

7. Larsen, P.G., Fitzgerald, J., Wolff, S.: Methods for the Development of Distributed Real-
Time Embedded Systems using VDM. Intl. Journal of Software and Informatics 3(2-3) (Oc-
tober 2009)

8. Larsen, P.G., Lausdahl, K., Battle, N., Fitzgerald, J., Wolff, S., Sahara, S., Verhoef, M., Tran-
Jørgensen, P.W.V., Oda, T.: The VDM-10 Language Manual. Tech. Rep. TR-2010-06, The
Overture Open Source Initiative (April 2010)

9. Nielsen, C.B., Lausdahl, K., Larsen, P.G.: Combining VDM with Executable Code. In: Der-
rick, J., Fitzgerald, J., Gnesi, S., Khurshid, S., Leuschel, M., Reeves, S., Riccobene, E. (eds.)
Abstract State Machines, Alloy, B, VDM, and Z. Lecture Notes in Computer Science, vol.
7316, pp. 266–279. Springer-Verlag, Berlin, Heidelberg (2012), http://dx.doi.org/
10.1007/978-3-642-30885-7_19, ISBN 978-3-642-30884-0

10. Tran-Jørgensen, P.W.V.: Enhancing System Realisation in Formal Model Development.
Ph.D. thesis, Aarhus University (Sep 2016)

11. Tran-Jørgensen, P.W.V., Nilsson, R.S., Lausdahl, K.: Enhancing Testing of VDM-SL models.
In: Proceedings of the 16th Overture Workshop (July 2018)

12. Verhoef, M., Larsen, P.G., Hooman, J.: Modeling and Validating Distributed Embedded Real-
Time Systems with VDM++. In: Misra, J., Nipkow, T., Sekerinski, E. (eds.) FM 2006: Formal
Methods. pp. 147–162. Lecture Notes in Computer Science 4085, Springer-Verlag (2006)

PRELIM
IN

ARY P
ROCEEDIN

GS

http://dx.doi.org/10.1007/978-3-642-30885-7_19
http://dx.doi.org/10.1007/978-3-642-30885-7_19

VDM at large:
Modelling the EMV R©2nd Generation Kernel

Leo Freitas (leo.freitas@newcastle.ac.uk)

School of Computing, Newcastle University, UK

Abstract. The EMV R©1consortium protocols facilitate worldwide interoperabil-
ity of secure electronic payments. In this paper, we describe our experience in
using VDM to model EMV R©2nd Generation Kernel.

1 Introduction

EMVCo is a technical body that publishes and manages the EMV R©specifications to
facilitate worldwide interoperability and acceptance of secure payment transactions.
Their protocols have been around since the late nineties and are used by major payment
services provides (i.e. American Express, Discover, JCB, MasterCard, UnionPay, and
Visa). In practice, relevant attacks on EMV1 were discovered [2, 4, 6, 5], with financial
fraud related to payment systems rising in the last few years both in volume and type: for
example, in the UK, there has been a 80% percent increase in value between 2011 and
2016, when the fraud losses were £618 million [10].

In this paper we describe our experience in using VDMSL as a tool for under-
standing a complex (2000 page) requirements specification of the upcoming EMV R©2nd

Generation Acceptance System Specifications (EMV2) [8]. They include the familiar
Chip&Pin and contactless protocols, as well as a number of new operational modes and
security verification types (including biometric).

We use VDMSL to formally specify the EMV 2nd Generation kernel to enable
specific protocol runs. The results have been productive and substantialTo date, we
have modelled about 80% of the EMV2 kernel, and hope to complete it before public
release. It comprises 135 VDM-SL modules and about 50 KLOC in VDMSL, some
(20%) of which is automatically generated from an XSD/XML data dictionary, which
describe the data structures used by the kernel APIs.

Elegance, which academics have in high-regard and can be useful for clarity and
maintainability, often needs to be compromised in order to ensure stakeholders no-
tice/accept the formal results: they ought to see the formal model built as something they
recognise, as their artefact, rather than a nicer (more elegant) abstraction. Moreover, the
complexities involved are quite substantial. The system needs to run seamlessly for
long periods of time in different countries, currencies, financial services, policies and
banking institutions; quite a task.

The work unravelled many technical issues in VDM, the identification of VDM tool
bugs, as well as the limits of Overture as a tool. We hope these issues are interesting
and that the VDM community finds tool suggestions useful.

1 EMV R©is a registered trademark or trademark of EMVCo, LLC in the US and other countries.

PRELIM
IN

ARY P
ROCEEDIN

GS

2 EMV protocols and EMV2

The most common payment protocols are Chip&Pin and contactless (NFC), but a num-
ber of variations is technically possible. Analysis of EMV protocols is non-trivial due to
the complexity of its requirements [7, 9]. They have to incorporate competing (and con-
flicting) interests from multiple user needs, banks and from financial regulators world-
wide.

A key differentiating feature of EMV2 is the fact its many (14) modules are com-
pletely distributed and may run concurrently (see Figure 1), as opposed to the mono-
lithic sequential world of EMV1.

Fig. 1. EMV2 modules architecture

PRELIM
IN

ARY P
ROCEEDIN

GS

EMV protocols have many similarities. They constitute a series of steps encom-
passing a number of players, stages and features. The most common players are the so-
called “point of interaction” (POI) terminals used by merchants (e.g. ATM machines,
supermarket fuel pumps, card payment machines, etc.) and a card-profile used by cus-
tomers (e.g. plastic cards, electronic tokens like smartphones/watches, etc.), as well as
the issuer (e.g. banks and payment clearing systems). The main stages are:

1. Application Selection establishes the functionality of interest (e.g. credit card pay-
ment, or cash withdrawal from a specific account, etc.) with any additional extras
(e.g. loyalty points, air miles, cash back, etc.), as well as the kind of transaction
to engage with (e.g. acceptable challenge mechanisms, risk levels, information re-
quired by all parties, etc.);

2. Transaction Processing performs the necessary checks around agreed challenge
mechanisms (e.g. pin-number, signature, biometric readers, etc.) and information
required to make a decision about whether payment is to be approved, which may
involve the issuer’s approval;

3. Other (kernel administrative) stages exist for transaction restarting, rescuing,
configuring, etc.

The core functionality comprises most kernel modules managing various protocol stages
and features. The acceptance system comprises the POI and card communication layers.
The former includes terminal management and card holder verification entry devices
(e.g. pin pad, biometric scanners, etc.); whereas the latter implements a communication
abstraction layer with the card-profile. This enables varying communication protocols
to be instantiated outside the kernels core functionality.

3 Socio-technical challenges in modelling EMV2

We have prior experience with formal verification of protocols in Mondex [13], and in
discovering attacks in EMV1 [5]. We are developing a methodology for the modelling
and analysis of payment protocols. Details about this methodology are beyond the scope
of this paper. It involves a number of specification languages and tools used to capture
different aspects of the process. Crucially, these languages serve to shield payment-
system engineers from formalism details, as well as to increase levels of automation as
much as possible.

Given the size of EMV2, we followed a set of principles advocated by Praxis2: clear
separation of concerns, consistent and well-defined “modelling hygiene” (e.g. naming
conventions, indentation/documentation practices, dependency management, etc.).

4 VDM and its tools

We used Z (CZT and Z/Eves)3 to analyse EMV1 [12] and uncover some relevant at-
tacks [5]. This approach worked well because we had a combination of empirical

2 I know of these principles for having worked with people from Praxis.
3 See http://czt.sourceforge.net

PRELIM
IN

ARY P
ROCEEDIN

GS

knowledge of EMV1 through understanding of its specification in implemented sim-
ulators (thanks to our collaborator Dr. Martin Emms). This meant our abstractions for
how to represent the relevant parts of EMV1 were suitable to the practical realities of
its protocols. Proof (or rather their failures) was used as the mechanism to identify and
prevent theoretical threats, which we next tested for in practice with simulators using
mobile-devices to perform attacks. This enabled us to practically demonstrate the sever-
ity, as well as the ease/difficulty, in enacting such attacks.

For EMV2, on the other hand, we believed a similar approach might not get us
far. That is mostly because EMV2’s considerably higher complexity and distinction in
comparison to EMV1, in our view. We decided to use VDM and its formal simulation
capabilities with Overture and VDMJ 4 instead. This enabled a quicker prototyping of
the kernel from its requirement specifications in order to provide us with the necessary
knowledge about EMV2, and to start the discussion about its design decisions, as well
as to enable the discovery of potential issues. We also envisaged the use of VDM’s
combinatorial testing [14] in order to exercise the number of protocol scenarios of most
interest.

Moreover, we needed libraries for binary blobs and matrix manipulations. For the
former, we used the nice VDM “DLL” style link with natively implemented libraries
following the examples of IO and VDMUtil; whereas for the latter we used a combina-
tion of available and our own libraries from years of working with VDM’s mathematical
toolkit. For the most crucial libraries of binary blob transformers used for interfacing
EMV1 legacy transactions within EMV2, and for matrix calculations used for transac-
tion processing decision making, we used Isabelle/HOL5 to formally verify that proof
obligations generated by the library definitions were correct. For example, in the binary
library with varied word-size precision:�
bv2nat: BitVector -> nat nat2bv: nat -> BitVector

byte2bin: Byte -> BinByte bin2byte: BinByte -> Byte

byte2bin(n) == binPad(nat2bv(n)) bin2byte(bv) == bv2nat(bv);
� �
It transforms a bit vector into a nat and vice-versa, as well as their word-bounded
variations with adequate padding. Beyond proving satisfiability of proof obligations in
Isabelle/HOL, we also proved by induction interesting theorems like

bin2byte(byte2bin(bp− 1)), bp− 1)

where bp = 2wsize. This library also contains various operations over bit vectors like
and, or, not, xor, etc.

4.1 VDM language issues

Our strategy to tackle design decisions led to interesting choices within the VDM lan-
guage. In the process, a number of corner cases and interesting situations about lan-

4 See http://overturetool.org and https://github.com/nickbattle/vdmj.
5 See http://isabelle.in.tum.de

PRELIM
IN

ARY P
ROCEEDIN

GS

guage semantics arose. This led to a number of fruitful discussions with the VDM com-
munity, as well as tool extensions and corrections. Abstracting away all involved details
in order to get to a minimal example was often time consuming and hard to tolerate. For
example, lambda-expressions mistakenly allowed access to mutable state, which when
used as a function-parameter or on-the-fly, led to unexpected behaviours.�
op(x: nat) r: nat == is not yet specified ext wr c
post (lambda v: nat & v > c˜)(c˜+1);
� �
Here Overture would not give an error, whereas VDMJ complains. In practice these
lambda expressions were part of parameters to functions participating in the postcon-
dition. The other example was about mistaken access to explicit-operation definition’s
return values within the operation’s body or its precondition, again not accepted by
VDMJ.�
f(n: nat) r: nat == is not yet specified
pre some_condition_over(n, r);
� �
Another interesting example had to do with type-invariant cascading/checks that were
not quite right, and despite being very common, have not been uncovered before. All
three print statements ought to flag a type invariant violation.�
types
Dot = nat inv d == d < 4;
Bag = set of Dot inv b == card b > 2;

functions
test: Bag -> Bag

test(b) == b;

> print inv_Dot(-1) > print inv_Bag({2,3,4})

true true

>print test({2,3,4})

Error 4060: Type invariant violated for Bag
� �
VDM does not seem to handle cross product type parameters uniformly. For in-

stance, it treats (T * T) -> T as a single tuple-input, whereas T * T -> T as a two
parameter input. In itself, this is okay. Yet when developing libraries that involved poly-
morphic parameters and high-level functions (i.e. lambda-expressions as parameters)
this distinction creates unnecessary confusion and difficult-to-debug/understand situ-
ations in the development of our generic libraries for binary numbers and matrixes. It
took a number of iterations (and a lot of time) to get to the bottom of it with this minimal
example of the larger-scale scenario involving matrix calculations.

PRELIM
IN

ARY P
ROCEEDIN

GS

�
functions
f[@T]: @T -> @T * @T

f(a) == g[@T * @T](lambda x : @T * @T & x, mk_(a, a));

g[@T]: (@T -> @T) * @T -> @T

g(a, b) == a(b);

> p f[nat](1)
Error 4087: Cannot convert 1 (nat1) to (nat * nat) ...
6: g(a, b) == a(b);
� �
Certain calls to f fail with a cryptic error message, which did not help to figure out
the underlying problem. It was about the same name of parameter @T was being used
by f and g, but with @T referring to a different type in each case. When more than
one polymorphic function is used in a call chain, the type parameter @T was not being
uniformly passed. This, in combination with the function call non-uniformity, explained
the reason why error messages were cryptic, and figuring out what was happening took
far too long.

In Overture, export and import clauses are not treated properly. In imports, one
can mix names of operation and functions without error or warnings, whereas VDMJ
complaints. More seriously, struct export in Overture is not properly implemented
at all, and works partially in what is quite confusing. Again VDMJ’s stricter choices
means if it is happy, so will Overture be. In a large specification where exports all
is not adequate, the mishandling of (struct-)exports by Overture was a surprise with
some cost as it was only discovered late. Finally, another quirk is VDM’s “possible
semantics”, which in complex scenarios again led to a considerable amount of time to
figure out what was going on. For example:�
Type2 = bool | int;
Type3 = <A> | |<C>;

Type4 = Type3 inv t4 == t4 in set {<A>, };

functions
f1: Type2 -> bool g1: Type4 -> bool
f1(y) == is not yet specified; g1(y) == f1(y);

f2: [Type2] -> bool g2: [Type4] -> bool
f2(y) == is not yet specified; g2(y) == f2(y);
� �
As expected, the definition of g1 gives an error about an inappropriate type for the
argument. Nevertheless, g2 only gives a type-error at run time thanks to the possibility
of a nil input. A nicer/stronger warning in such cases would be welcome.�
> print g2(<A>)

Error 4087: Cannot convert <A> (<A>) to (bool | int) ...

PRELIM
IN

ARY P
ROCEEDIN

GS

35: g2(y) == f2(y)

> print g2(0)

Error 3061: Inappropriate type for argument 1 ...
Expect: [Type4] Actual: nat
� �
In all, all these scenarios served to highlight relatively simple issues that have been fixed
in recent versions of both Overture and VDMJ. This brings up some interesting question
to ask. How much do we trust our own tools to do work in safety and reliability? What
evidence do we have that the tools themselves are sound? Having two independent
tools can be practically useful, yet theoretically also increase this soundness concern.
Interesting examples of how this has been mitigated for some tools exist, such as the
Circus model checker [11], the CakeML compiler (https://cakeml.org), and the seL4
verified system (https://sel4.systems).

4.2 VDM language patterns

We had to come up with a number of ingenious VDM constructs in order to capture
specific design decisions. In some cases, an alternative (more elegant) solution would
be possible in theory, but we could not afford to take it in practice. Yet, in other cases,
we could not think of a nicer solution at all.

Payment protocols by nature involve a considerable amounts of data. from both the
kernel to the card and vice versa For example, different cards/terminals might require
different information in order to setup a transaction and enable variability. Effectively,
they entail a sort of reflective request over internal kernel/card state. For example, if the
kernel might need the card for its long number and its expiry date in some transactions,
or its public signature keys in others.

One solution to this kind of query would be to have the kernel state defined as a map
from a somewhat structured string into whatever the target type was. Unfortunately,
there are hundreds of type (and invariant) definitions, some of which are grouped as
records with invariants between constituent fields. That means a kernel module state
map would require an extraordinarily complex (and pretty much unreadable) invariant.
Thus, we kept (often simple) invariants very close to where they were defined, and the
various composition needs imposed the overall compound invariant of interest.

Our solution to enable reflective access was to take the XSD-schemas used to de-
fine EMV’s type dictionary in order to automatically generate (6, 528 LOC over 52
VDMSL modules) various data types of interest, as well as map transformers needed
for reflective access. Maps were defined from ID (structured strings) into the so-called
VDM wildcard (“?”) type6. This enabled both reflective access and update, where we
transformed records into maps and vice-versa.

For this we wrote a Java program (4, 058 LOC) that processed XSD and XML
files and transformed them in to VDMSL based on a template VDMSL file of about
90 LOC. This is used to produce the actual VDMSL files populated with XML/XSD
information, where XSD files has a corresponding VDMSL files representing data types

6 An example of its use can be seen in the VDMUtil library definition.

PRELIM
IN

ARY P
ROCEEDIN

GS

and constraints. These VDMSL files varied from 80 to 500 LOC depending on the
underlying record type size and complexity. The VDMSL template key functionality is
defined by four exported functions.�
types
emv_[P]_[M]_map = map ID to ?
inv map_ == dom map_ = { ‘‘IDs of interest’’ };

functions
default_emv_[P]_[M]: () -> emv_[P]_[M]

[P]_[M]2map: emv_[P]_[M] -> emv_[P]_[M]_map
[P]_[M]_map2rec: emv_[P]_[M]_map -> emv_[P]_[M]

[P]_[M]_map_update[@T]: emv_[P]_[M]_map * ID * @T ->

emv_[P]_[M]_map
� �
The ‘‘IDs of interest’’, as well as the actual implementation of these functions,
are populated through the data structures defined in the XSDs. The [P] stands for dif-
ferent packages, whereas [M] stand for different modules. Not all modules have pack-
ages and some packages have no modulesAPI signatures for each kernel module and
a few global configuration options are also defined by XSDs, which again we used to
automatically generate top-level and internal operation signatures.

The use of “?” effectively enables a unbounded union type, something that arguably
could have serious semantical consequences: that is why we do not struct export the
map type. Even though this is arguably semantically dangerous, we are left with no
alternative choice we could think of for specifying reflective (string based) access/up-
date for records. The functions provide a default initialiser for the underlying record
type (i.e. emv [P] [M]), conversion from the record to the corresponding map type
(i.e. emv [P] [M] map), conversion from the map type back to the record type, and
finally a map update function for a given ID. The use of polymorphic type @T is im-
portant in order to ensure external users of the function satisfy the record type invariant
not imposed within its corresponding map type. The update function has a precondition
about the ID belonging to the domain of the map type as the invariant requires: this
ensures only fields known within the record type can be “reflected” over the map type.
With this setup, it is possible to write expressions like�
x := x_map2rec(x_map_update[Type](x2map(x), id, value))
� �

which projects a record (x) of corresponding record type (emv [P] [M]) into its map
type (emv [P] [M] map), updates it at the specific id name with a specific value of the
right Type, and then transforms it back to the original record type. Thus, this provide
reflective access/update to records represented as maps with type invariants implicitly
guaranteed.

This way, we managed to have both strong type invariants across multiple fields
and records, and yet still allow for reflective (string-based) access to kernel state via

PRELIM
IN

ARY P
ROCEEDIN

GS

our automatically generated map transformers. In practice, this worked quite well: we
anticipate changes to the kernel over time will most often come from data structure
variations, rather than new API or protocol stages. When such changes happen, all we
have to do is regenerate the mapping specification, and mostly all is automatically up to
date with internal version updates prior to release. This process has proved invaluable
for productivity: that is because considerable amount of (tedious and error prone) work
is completely (and correctly/safely) automated.

Another pattern of interest was in the use of data structures for data exchange be-
tween the kernel and the external world (of the card and thePOI). As with reflective state
access, the data structures have to fetch kernel state data for a given list of IDs requested.
That entails different (if often predictable under various conditions) data structures with
invariants depending on the ids requested. In order to define such dynamic invariants,
which are often only knowable once the specific request has been assembled, we defined
records with structures like�
types
IDList = seq of ID
ContainerData = seq of ?;
Container ::

dil : IDList

data : ContainerData

invariant : IDList * ContainerData +> bool
inv mk_Container(list,data,invariant) ==
--@doc all IDs have corresponding data

len list = len data
and
---@doc IDList within container must respect ID allowances

respect_boundaries(list)

and
--@doc extra invariant to ensure further module specific needs

invariant(list,data);
� �
A concrete example of such dynamic invariants could be given by a mk Container
expression with a lambda-expression or invariant function with known conditions; or
when in less unpredictable circumstances, an extended record where the actual known
invariant per module can be checked:�
KernelDirectorContainer = Container

inv mk_Container(list,data,invariant) ==
invariant(list,data) <=> some_inv_function(<kd>,list,data);
� �

4.3 Pushing language boundaries

Use of VDM wildcard type.
In discussion with the VDM community about these issues, a number of language ex-

PRELIM
IN

ARY P
ROCEEDIN

GS

tensions were discussed. For instance, what roles (if any) should the wildcard (“?”) type
play? I first came across it within VDMUtil library, and when I looked at the VDMSL
manual, it was not in the Lexer’s token vocabulary! Yet, once I understood what it
achieved, I started playing with its possibilities. Perhaps types involving “?” cannot
ever be struct-exported. It was incredibly useful in a few places, yet it can also be in-
credibly dangerous to have around untamed. Without it, however, we would struggle to
provide a sensible/scalable solution to state reflective-access and other problems. It can
be quite dangerous to use, though: for the reflective maps above, our initial type was
map ID to [?], given some values could be nil. The combination of wildcard that
can be nil leads to a situation where both Overture and VDMJ get in quite some trouble
without any sensible error message. The solution was to realise that nil was already
part of “?”, hence no need to define it twice!

Another interesting example was inspired by SPARK/Ada modules. We defined a
Stack type as an abstract data type, which in SPARK terms means a opaque type with
public APIs to manipulate it (e.g. push, pop, peek, etc.). In VDM, that would mean
having a non-struct exported Stack type so that its internal implementation can never
be exploited by its users, and only its public APIs are usable. This worked well in
VDM with VDMJ checking for struct exports properly, but up to a point. Like with C++
template-class or Java Generics, what if we wanted a stack (however it is implemented),
but of a specific type (e.g. Stack<nat>)? Because VDM does not allow polymorphic
type declarations to participate in type definitions, this was quite hard/convoluted to
impose/define. Again, we used the wildcard type for such module parametric types.
Perhaps allowing polymorphic type variables in type definitions, or even have module
type parameters might be an interesting language extension.

Framing conditions.
Coming from the Z world, I found the lack of linguistic support for complex state
framing conditions an issue. VDM explicit-extended operation definitions allow the
specifier to define framing conditions in terms of what can be read/written, which also
define access conditions in pre/post specifications. This is quite useful, yet also quite
limited. Assuming complex state, say with a number of fields, each as records with
other fields, totalling 10 to 50 fields. What happens when an operation touches only one
or two fields of one of these records? For example:�
Some_API() ==

(... x.a := y.b + 1; ...)

ext rd y wr x
post some_api_frame(x˜,x) and ...;
� �
It writes on one of the state fields (x), and uses information from another (y). The only
state update involved is to change one field, and everything else remains constant. The
VDM frame condition does not allow changes to y, but it does allow changes to any of
the other fields in x that must remain constant. That entails the definition of a framing
postcondition as:�

PRELIM
IN

ARY P
ROCEEDIN

GS

some_api_frame: X_Type * X_Type -> bool
some_api_frame(bx,ax) ==

--bx.a == ax.a and

bx.b == ax.b and bx.c == ax.c and ...;
� �
These framing postconditions may also be conditional on possible paths taken within
the API. The lack of a linguistic mechanism in VDM to tackle such complex-state sim-
ple framing-conditions became quite a drag within the many API implementations. In
Z, this is easily done with a combination of schema calculus (e.g. Ξ and hiding) opera-
tors. An anecdotal summary was given by a collaborator within the VDM community:
“you’ve touched on a couple of really interesting points: one about how the tools work,
and one about the best way to write a specification!”.

4.4 Overture and VDMJ

As a tool, Overture offers all the modern-day IDE “bells and whistles” most users ex-
pect, such as asynchronous specification checking (i.e. type check as you type), various
useful dialogs and keyboard shortcuts for common tasks, integrated execution/build-
ing/debugging, and so on. VDMJ, on the other hand, works like a Linux command-line
killer app, which includes all the functionalities Overture provides, as well as debugging
and other facilities. So, users may wonder: why have both? Well, they are independent
implementations from different sources. Yet, given their different interpretation of the
language semantics, they effectively “speak” different VDM “dialects”.

As far as I know, internally they are quite different in the sense that VDM ASTs
were reengineered for various reasons [1]. In practice, the experience was that Overture
cannot cope with the scale of a model of this size. From very early on, Overture started
to lag considerably, and parsing/typechecking would take too long (5 to 20 sec.) to
be productive. The debugger also stopped working without any warning/error: it sim-
ply freezes for reasons yet unknown. It was often more lax with language construct
issues/errors, which entailed hours wasted chasing complicated red herrings of no in-
terest.

VDMJ, on the other hand, has always been quite reliable. Most important, it is
fast. All debugging and simulation since at least half way through the project has been
done through it. Debugging in VDMJ is not as smooth as in the Overture Eclipse-like
environment, but it works quite well and is more stable. Complex breakpoint conditions
in Overture often led to connection errors and tool freezes, whereas in VDMJ they work
reliably and were invaluable.

In practice, I work with a combination of both, where I use Overture for typeset-
ting and project management chasing top-level (quick to parse and feedback) errors,
and VDMJ for guaranteeing all is well, and for simulation, testing and debugging. It
often happens that Overture will say a specification is okay, when VDMJ will throw
you a number of residual errors; this is yet to happen the other way round. In early
2018, we experienced a quite severe lag in Overture, which led to some profiling with
VisualVM (https://visualvm.github.io), and provided evidence there is a serious (deter-
ministic) memory leak somewhere. In an industrial setting, this kind of complication,

PRELIM
IN

ARY P
ROCEEDIN

GS

Kernel Module Book APIs % LOC
Kernel Director 2 100 3,950
Selection Manager 3 95 3,647
Transaction Manager 4 95 3,423
Cardholder Verification Manager 5 100 3,613
Terminal Risk Manager 6 100 1,691
Additional Services Manager 7 10 1,081
Payment Related Data 8 0 0
Issuer Authorisation Manager 9 100 2,272
Data Communication Manager 10 95 2,633
Secure Channel Manager 11 0 0
Communication Abstraction Layer 12 20 1,006
Point of Interaction Terminal 13 90 1,944
Card profile and Detection Service 14 20 690
Data Dictionary XSDs 15 100 9,537
Support
Module Data Store - 100 8,591
EMV Database Link - 80 593
VDM support libraries - 100 1,242
Total 80 45913

Table 1. EMV2 VDM specification

alongside the already alien nature of formal reasoning, can sadly become the excuse for
non-adoption.

5 Evaluation and Discussion

Overall, the exercise has been quite worthwhile, and VDM and its tools have worked
well. To give a clearer sense of scale, Table 1 gives a specification breakdown per mod-
ule, where we point to the relative completion of each module, and its size in VDM
lines7. Some modules have a large number of public APIs like the “Point of Interac-
tion”, but they are simple; whereas others like the “Cardholder Verification Manager”
is small in API numbers but is way more complex. We are yet to work on the payment
data and secure channel modules, as they are not crucial for the overall kernel function-
ality, but rather its additional services and secure communication features. The module
data store comprises reflective access to state information via string-based named, data
container types used for exchange between modules and external entities. We have an
initial Java emulator implementation that is also development and is informed by our
VDM model. At first, we considered using the Overture automatic code generator for
Java with its translation of VDMSL into Java specifications in JML. Unfortunately, it

7 Numbers were calculated with a mixture of string search, and Linux tools like find and wc.

PRELIM
IN

ARY P
ROCEEDIN

GS

quickly became clear the code generator’s breath over VDMSL was not good enough
for our needs. Simple constructs like constant value declarations could not be trans-
lated, even though constant functions with no input parameters (i.e. an alternative way
to define constant values) did work. It would be a valuable exercise to extend the code
generator for the future.

The lack of a mechanism for a VDM mathematical library/repository is a prob-
lem, and entails many people using VDM have to reinvent the wheel with respect
to commonly used specification constructs. Perhaps something like the Maven-central
(https://search.maven.org) repository in style, where all the necessary due diligence can
be done by the repository manager would encourage more people to submit libraries
themselves.

The distinction in error handling between Overture and VDMJ can be quite dan-
gerous: it might completely knock of the confidence of users leaving them uncertain
whether their choice for VDM was the right one. This, together with more targeted er-
ror messages to help developers fix the problems is quite important. The inability to
debug/run EMV2 in Overture due to its freezing caused quite some concern at the time
because it created a sense of time wasted and wrong choice of language made; this issue
is still pending.

5.1 Tools wish list

Throughout this work, there were a number of tool extension ideas. Some of them are
EMV2-specific, yet a number can be of wider use, and we list them here as a suggestion
to the VDM community in our perceived order of relevance.

1. VDM profiler. For larger modules, identifying where resources (time/memory)
are being consumed is quite important in order to fine-tune modelling decisions.
In CZT, users can instrument the tools to have counters for various specification
constructs (i.e. number of names, or predicate parts, etc.), as well as detailed infor-
mation about load times at what stages (e.g. parsing, typechecking).

2. Direct separation between dialects. In the current exercise, we had to cope with
asynchronous API calls and a concurrent programming paradigm that we wanted
to specify. VDM-RT already has asynch and thread concepts, but it imposes on
the user the extras of VDM++. That is, the VDM dialects (SL, ++, RT) are some-
what (unnecessarily) interwoven. In CZT, developers can pick and choose (sub-
)dialects (e.g. Circus composes Z and CSP; TCOZ composes Object Z, CSP and
Time; OhCircus comprises Z, CSP and an object oriented extension) and compose
them according to need without having to have unwanted (sub-)dialects. It would
be nice to have say SL with real time constructs and/or asynchronous calls and
threads without VDM++ extensions.

3. Dependencies-graph generator for imports xand operation call-graphs. One
way we found that minimised load time (from 57s to 20s in VDMJ) was to minimise
dependencies, particularly circular dependencies. I presume Eclipse-based plugins
already exists (in C and Java) for such dependency and call graph management.

4. Heap images / serialisation to speed processing/execution. For large specifica-
tions, reload time is costly. Once a specification stabilises and simulation time will

PRELIM
IN

ARY P
ROCEEDIN

GS

be spent running/adjusting minor issues, avoiding total (lengthy) reloads would be
useful. In CZT, that is viable through the use of ZML: an XML-encoding of ISO-
Z that is lightening fast to process. Isabelle/HOL use Poly-ML heap images to
store “compiled” proofs of larger libraries. Both these solutions serve to improve
scalability and usability of tools and would greatly benefit users of larger VDM
specifications.

5. Test case generation from specification based on something like Eisenbach pat-
terns. Combinatorial testing in VDM is great, and enables productive specification
validation. Yet, identifying what to test is sometimes difficult. A tool can create test
cases of interest based on the shape of specifications involved and user instrumenta-
tion. For example, a disjunctive precondition A or B might need specific tests per
disjunct; earlier work on VDM for this exist [3]. Predicate pattern-languages like
Isabelle/HOL’s Eisbach [15] could be used to determine what shapes tests should
come from.

6. Quickcheck/nitpick style test case generator for simulations. QuickCheck is
a test case generator written for Haskell programs8, and now ported to a num-
ber of different situations. Nitpick identify counter examples to conjectures in Is-
abelle/HOL. A combination of these tools in Isabelle/HOL considerably improves
proof effort. Something similar in VDM could help create test cases of interest and
root out specification errors quickly.

7. Record form filler for long record initialisers. When modelling complex records,
mk expressions can be quite awkward. Having an automatically generated GUI to
construct such values from declared type information would be quite useful.

8. XSD/XML/Swagger VDM integration. XSD/XML and JSON-based languages
like Swagger are used in industry to provide a semi-formal/rigorous type/API-
signature definitions. A translator to/from VDM would be valuable: translating to
VDM increases productivity, whereas translating from VDM keeps requirement
specification documents accurate and up to date.

9. “Fix imports” + “quick-format” refactoring on imports and indentation. Im-
ports in VDM are a bit awkward. Explicit module imports (i.e. Module‘Type)
make it difficult to identify module dependencies, whereas complete import list-
ing with renaming is quite tedious to do. Something like Eclipse’s fix-imports and
quick-formatting for indentation would be quite useful.

6 Conclusions

The work presented in this paper demonstrates it is possible to use VDM for a large
scale (50 KLOC VDMSL) specification, despite various tool problems and practical
challenges involved. The availability of a formal simulator for EMV2 and the careful
documentation of its assumptions/commitments will hopefully pave the way for the
influence of formal modelling within payment systems industry.

Acknowledgements. This work is associated with a long term collaboration with Dr.
Martin Emms, an expert in EMV protocols, simulators, and hardware. We are grate-
ful for EMV R©’s support and technical discussions, specifically by Mike Ward and

8 See https://hackage.haskell.org/package/QuickCheck

PRELIM
IN

ARY P
ROCEEDIN

GS

John Beric from the EMV R©Security Working Group, and by Carlos Silvestre from
the EMV R©2nd Generation Task Force. Finally, I am grateful for my department sup-
port, and Nick Battle and the VDM community for many interesting discussions, and
patience in handling a number of issues.

References

1. N. Battle. Analysis separation without visitors. In 15th Overture Workshop. Newcastle
University, 2017.

2. M. Bond, O. Choudary, S. J. Murdoch, S. Skorobogatov, and R. Anderson. Chip and skim:
cloning emv cards with the pre-play attack. In S&P, pages 49–64. IEEE, 2014.

3. J. Dick and A. Faivre. Automating the generation and sequencing of test cases from model-
based specifications. In FME ’93: Industrial-Strength Formal Methods, First International
Symposium of Formal Methods Europe, Odense, Denmark, April 19-23, 1993, Proceedings,
pages 268–284, 1993.

4. S. Drimer, S. J. Murdoch, et al. Keep your enemies close: Distance bounding against smart-
card relay attacks. In USENIX security symposium, volume 312, 2007.

5. M. Emms, B. Arief, L. Freitas, J. Hannon, and A. van Moorsel. Harvesting high value
foreign currency transactions from emv contactless credit cards without the pin. In CCS,
pages 716–726. ACM, 2014.

6. M. Emms, B. Arief, N. Little, and A. Van Moorsel. Risks of offline verify pin on contactless
cards. In Financial Cryptography and Data Security, pages 313–321. Springer, 2013.

7. EMVCo. Emv integrated circuit card specifications for payment systems [books 1 to 4],
November 2011. https://www.emvco.com/emv-technologies/contact/.

8. EMVCo. Next generation kernel system architecture overview. Technical report, EMVCo,
2014.

9. EMVCo. Emv contactless specifications for payment systems [books a,b,c-1,c-2,c-3,c-4,c-
5,c- 6,c-7 and d], February 2016. https://www.emvco.com/emv-technologies/contactless/.

10. Financial Fraud Action. Fraud the fact. the definitive overview of payment industry fraud
and measures to prevent it, 2017. https://www.financialfraudaction.org.uk/fraudfacts17/.

11. L. Freitas, A. Cavalcanti, and J. Woodcock. Taking our own medicine: Applying the refine-
ment calculus to state-rich refinement model checking. In Z. Liu and J. He, editors, For-
mal Methods and Software Engineering, pages 697–716, Berlin, Heidelberg, 2006. Springer
Berlin Heidelberg.

12. L. Freitas and M. Emms. Formal specification of emv protocol. Technical report, Newcastle
University, 2014.

13. L. Freitas and J. Woodcock. Mechanising mondex with z/eves. Formal Aspects of Comput-
ing, 20(1):117, Jan. 2008.

14. P. G. Larsen, K. Lausdahl, and N. Battle. Combinatorial testing for vdm. In SEFM, pages
278–285. IEEE, 2010.

15. D. Matichuck, M. Wenzel, and T. Murray. Eisbach User Manual. Technical University of
Munich, Oct. 2017.PRELIM

IN
ARY P

ROCEEDIN
GS

Design Space Exploration for
Secure Building Control

Martin Mansfield, Charles Morisset, Carl Gamble, John C. Mace, Ken Pierce, and
John Fitzgerald

School of Computing, Newcastle University, UK
martin.mansfield@ncl.ac.uk

Abstract. By automation of their critical systems, modern buildings are becom-
ing increasingly intelligent, but also increasingly vulnerable to both cyber and
physical attacks. We propose that multi-models can be used not only to assess the
security weaknesses of smart buildings, but also to optimise their control to be
resilient to malicious use. The proposed approach makes use of the INTO-CPS
toolchain to model both building systems and the behaviour of adversaries, and
utilises design space exploration to analyse the impact of security on usability. By
separation of standard control and security monitoring, the approach is suitable
for both the design of new controllers and the improvement of legacy systems.
A case study of a fan coil unit demonstrates how a controller can be augmented
to be more secure, and how the trade-off between security and usability can be
explored to find an optimal design. We propose that the suggested use of multi-
models can aid building managers and security engineers to build systems which
are both secure and user friendly.

Keywords: Security · Smart Buildings · Multi-Modelling · Design Space Explo-
ration · Optimisation

1 Introduction

The critical services required to operate many existing buildings, such as Heating, Ven-
tilation, Air-Conditioning (HVAC), lighting, access control and fire detection are au-
tomatically managed by building control systems. Reduced energy usage, improved
efficiency, maintenance, comfort and safety are just a few of the many potential bene-
fits automated building control can bring. In today’s information age, these standalone
building control systems are being connected to the Internet and other data networks
to further improve operational efficiency and occupant safety by offering smart interac-
tions, centralised and remote control, monitoring and maintenance. In doing so, smart
buildings are becoming vulnerable to disruptive, damaging and life-threatening cyber-
attacks (e.g. [1–3]). Furthermore, the increasing rate of connection to realise the poten-
tial operational benefits has exposed a lack of practical processes and mechanisms for
securing existing building control systems.

Likely adversaries behind smart building cyber-attacks are varied: corporations,
cyber-criminals, traditional criminals, occupants, nation states, hacktivists, and terror-
ists [4]. The different motivations, capabilities, resources and objectives these adver-
saries bring highlights the potential for building control systems to be attacked in many

PRELIM
IN

ARY P
ROCEEDIN

GS

different ways, some of which may not yet be evident. The best one can do is to identify
a set of known feasible threats and defend against them by designing and implementing
effective security mechanisms. A starting point is to consider building control systems
as Cyber-Physical Systems (CPSs) due to their constituent cyber elements (e.g. con-
trollers, adversaries) and physical elements (e.g. sensors, actuators, environment, users).
Traditionally, cyber and physical security are treated as separate concerns, however the
need to understand attacks and their impacts requires a holistic view incorporating both
the cyber and the physical domains. Importantly, once secured, building control sys-
tems must still provide a required level of service which makes it necessary to also
understand the impact security mechanisms would have on building operations before
implementation (i.e. the security/usability trade-off).

In this paper we build on our multi-modelling approach introduced in [5], and show
how practical security monitors for building control systems can be designed. We make
use of the INTO-CPS open toolchain [6] to model building control systems and the
attacking behaviour of potential adversaries towards those systems. We then utilise the
Design Space Exploration (DSE) functionality of INTO-CPS to design practical secu-
rity monitors by establishing the security/usability trade-off. The contributions of this
paper are therefore as follows:

1. a security monitor model for a building control system cyber controller.
2. guidance for using DSE to explore the monitor’s security/usability trade-off.
3. the extension of an existing case-study by including the security monitor.

To illustrate our modelling approach we consider the design of a security monitor
for a single Fan Coil Unit (FCU), a common building control system found in build-
ings for managing room temperature. We explore just one aspect of the FCU’s security
by analysing a specific Man-in-the-Middle style attack launched against it. The attack
illegitimately modifies sensor readings to maximise fan usage while minimising the de-
viation of temperature from the required set-point. An attack of this type could cause
overheating and even fire, increase energy usage, wear and tear, routine maintenance
and other financial costs. Building control systems including lighting accounts for 70%
of a building’s energy usage. If operated incorrectly (e.g. as a result of attack) a 20%
increase in energy use can be expected in general [7].

Section 2 provides an overview of smart buildings and the INTO-CPS toolchain,
as well as a summary of the existing use of multi-models to describe building con-
trol systems and security concepts. Section 3 introduces how controllers can be more
resilient to attack by adding security monitors, and how DSE can be employed to estab-
lish a balance between secure and usable control. Section 4 demonstrates our approach
by modification of a previous FCU case study, and Section 5 describes possible future
directions for this work. Finally, concluding remarks are included in Section 6.

2 Background

This section introduces typical characteristics of smart buildings alongside their vul-
nerabilities. Additionally, it includes an introduction to multi-modelling and associated
technologies, and how these technologies have been employed in the description of
smart buildings and their potential attackers.

PRELIM
IN

ARY P
ROCEEDIN

GS

2.1 Smart Building Security

Building Control Systems Today’s buildings take advantage of automated systems to
control crucial operational services such as HVAC, lighting, water supplies, mobility,
access control, and security, among others. The motivations for automating building
control systems are improved operational efficiency, productivity, environmental sus-
tainability, occupant health and safety, and reduced energy consumption. To achieve
these potential advantages, building control systems integrate sensors to measure and
collect environmental data from within a building (e.g. air temperature, humidity and
occupancy). This data is transmitted to digital controllers which process it and calcu-
late control instructions, which are then transmitted to actuators capable of altering the
state of a building’s environment. Lights may be turned on or off, air-vents opened or
closed, a room’s temperature raised or lowered, doors locked or unlocked, and so on.
The integration of software-based cyber controllers and physical sensing and actuating
devices means that most building control systems can be considered CPSs.

Security Concerns Traditionally, building control systems were standalone entities
with no external connectivity. The security of these systems was provided largely by
obscurity. Now, these once siloed systems are being retro-fitted with technologies con-
necting them to the Internet and other data networks to facilitate greater operational
efficiency and safety. For instance, centralised monitoring and control, historical data
storage, and remote maintenance (e.g. uploading software updates) can be supported.
Consequently, the rapid hyper-connectivity of building control systems has opened up a
large and complex cyber-attack surface and exposed the security provision for building
control systems as being way behind the times.

One key reason for this is existing building control systems were built solely to
work. Their designs typically came purely from civil engineering fields resulting in
specifications that rarely stated the need for security. As a result, many of today’s build-
ing control networks incorporate pre-existing legacy systems to which current security
mechanisms cannot simply be ‘bolted on’ [2]. Also, memory, power and processing
constraints of communicating devices (e.g. sensors) means security mechanisms such
as data encryption are often too costly to implement. The use of common open proto-
cols (e.g. BACnet [8] and KNX [9]) by disparate devices to facilitate communication
exposes data traversing a network to varied cyber-attacks such as injecting fake sensor
readings [3]. Furthermore, a lack of authentication processes enables attackers to use
electronic devices (e.g. laptops, tablets and smart phones) to easily infiltrate and take
control of systems on the network without detection.

The inherently insecure nature of building control systems exposes them to novel
cyber-attacks such as disabling critical systems until a ransom is paid, or controlling
systems to cause damage and disruption to the physical environment [1]. In the latter
case, destructive commands could be transmitted over the building control network to
place a system into a dangerous state for which it has not been designed. For instance,
heating, air or water supplies can be disabled; rooms caused to overheat and damage
sensitive data stores (e.g. patient records) or material (e.g. forensic evidence); systems
overloaded to cause fires or floods while locking fire doors to trap occupants; or elec-
tronic doors unlocked to rooms holding sensitive information. Attackers have already

PRELIM
IN

ARY P
ROCEEDIN

GS

demonstrated they can launch highly damaging attacks on industrial control systems
(e.g. explosions at a steel works [10] and nuclear power plant [11]). Attackers are now
beginning to demonstrate they can exploit similar vulnerabilities in building control sys-
tems and gain control over them remotely [12, 13]. The inadequacies in building control
network security means smart buildings are becoming an attractive target as they enable
disruptive, damaging and life-threatening attacks with minimal effort.

2.2 Multi-modelling and Co-Simulation

Here, we give a brief introduction to the techniques used for modelling the case study,
specifically a foundation of heterogeneous multi-modelling and design space explo-
ration (DSE) techniques built on top of this.

INTO-CPS The INTO-CPS technologies1 comprise a tool chain and supporting meth-
ods for model-based engineering of cyber-physical systems (CPSs) [14]. The core of
INTO-CPS is support for definition and analysis heterogeneous system models, called
multi-models, which combine individual models of the CPS’ components and a de-
scription of their connections. The primary analysis technique for such multi-models is
co-simulation, in which the individual component models are simulated together. The
Co-simulation Orchestration E[ngine (COE) of INTO-CPS is called Maestro2, which
fully implements the emerging Functional Mock-up Interface (FMI) standard3 for co-
simulation. In FMI, component models are packaged into a standard format called a
as Function Mock-up Unit (FMU). Maestro acts as a so-called master algorithm or-
chestrates the co-simulation, managing the passage of time and data exchange between
FMUs. The INTO-CPS COE implements both a standard, fixed time-step algorithm
and a variable time-step algorithm, which can speed up co-simulations and improve
the fidelity of results for certain classes of FMUs. An INTO-CPS Association has been
formed to continue work on the INTO-CPS technologies based around a community
of industrial users. In addition to co-simulation, INTO-CPS provides support for auto-
mated testing, model checking, code generation, and hardware-in-loop (HiL) testing.
Of relevance to the work in this paper are design space exploration (DSE), as described
in the next section; and configuration of multi-model architectures through SysML, as
described in Section 4.

The use of the FMI standard provides for an open tool chain that lowers the barriers
to entry for model-based engineering, and allows for different paradigms of model to
be connected together. This means that the most appropriate modelling formalism can
be selected for each component of the system. Over 30 tools can produce FMUs, with
more than 100 having partial or upcoming support4. At the time of writing (Q2 2018),
Maestro is the most widely supported FMI engine, available on Windows, Linux, Ma-
cOS and ARM (Raspberry Pi). The case study described in Section 4 uses continuous-
time (CT) model of the physical phenomena of the building system, combined with a

1 http://into-cps.org/
2 https://github.com/INTO-CPS-Association/maestro
3 http://fmi-standard.org/
4 http://fmi-standard.org/tools/

PRELIM
IN

ARY P
ROCEEDIN

GS

discrete-event (DE) model of the controller and security components. CT models repre-
sent systems as a set of differential equations which are solved numerically to provide
high-fidelity simulations of physical phenomena, whereas DE models primarily repre-
sent data, state and events which alter these, and are best-suited for describing comput-
ing components. In this paper we use 20-sim for CT modelling, which describes mod-
els using graphs of connected blocks or icons [15], and VDM-RT for DE modelling.
VDM-RT is an extension of the well-established notation VDM (Vienna Development
Method) [16] that includes features required for description of real-time controllers in-
cluding as classes, object orientation and native support for a model of computation
time and distribution of functionality between compute units [17].

Design Space Exploration It is likely that there are many choices to be made when
designing a CPS and these choices will affect the resulting performance of the CPS.
Choices could include physical properties of the CPS, such as the thickness of walls in
a building or the number or placement of sensors within a room, or they could regard
cyber properties such as the choice of algorithm controlling heating or the frequency
at which sensors are sampled. These choices along with the options for each define
the design space for the CPS. One use for a multi-model then is to allow the engineer
to explore the design space to find design options that are optimised with respect to
one or more performance measures. Many of the design choices can be left open by
the domain experts that produced the original models by exposing them as parameters
of the resulting FMUs, in which case the user has the option to make use of the DSE
facilities included in INTO-CPS to automatically explore the design space [18].

As a minimum, a DSE requires the definition of three aspects. The first aspect,
parameters, is where we describe which parameters the DSE search may change and
also gives a list of values each parameter may take. These parameters define the design
space that is to be searched.

The second and third aspects relate to how we measure performance of a system
and how we compare different designs using those measures. INTO-CPS simulations
produce results in three forms, live graph plots of variables during a simulation, logs
of monitored variables in CSV format and also 3D visualisations of the models if the
user has created one. Since DSE is likely to run a great many simulations it is not prac-
tical for a user to observe all the live plots or 3D visualisations and so DSE makes use
of Objective scripts that process the CSV simulation logs to produce objective values
that characterise the performance of a CPS during simulation. Such objective functions
might compute the total energy consumed by a system or the maximum deviation of
a variable from an acceptable value. Once the objective values are computed for each
design, they may then be used to compare different designs. If there is only a single
performance measure then results may simply be placed in an list, ordered by that mea-
sure, to find the best, however, if there are multiple measures then a different means for
comparison must be used. In the latter case, INTO-CPS makes uses the Pareto method
to present the user with a non-dominated set of best designs [19].

PRELIM
IN

ARY P
ROCEEDIN

GS

room

fan

*

heat
pump

X

water flow
valve

coil

⊗outside air
mixing damper

outside air
supply

exhaust

recirculation

Fig. 1. Overview of the fan coil unit (FCU) example.

2.3 Modelling Building Control Systems

One cyber-physical building control system common to smart buildings is the Heating,
Ventilation, and Air-Conditioning (HVAC) system. An HVAC system is responsible for
controlling the air temperature and quality of a building, and does so using one or more
Fan Coil Units (FCUs). Each FCU is comprised of several (physical) components for
sensing and controlling temperature, and a (cyber) controller, implemented in software
and responsible for the coordination of actuators based on sensed data. With a typical
FCU able to service up to 150m2, it is typical for a single building to include many
FCUs.

An abstracted overview of an FCU is given in [20], and illustrated in Figure 1. The
FCU uses a fan, to intake air and pass it across a cooling/heating coil and into a room. A
bidirectional heat pump uses water to control the temperature of the coil, where the rate
of temperature change is determined by the rate of water flow from the heat pump to
the coil, controlled by a water flow valve. Both the fan speed and valve position are set
by a digital controller. An outside air supply ensures adequate ventilation, and is mixed
with recycled air recirculated from the room by a outside air mixing damper, with any
excess leaving the system via an exhaust.

An initial FCU model proposed in [20] is transformed into a multi-model in [21].
The FCU multi-model contains 3 constituent models:

External A continuous-time model implemented in 20-Sim which specifies external
stimuli, including a room air temperature set-point and the outside air temperature.

RoomHeating A continuous-time model implemented in 20-Sim comprised of two
sub-models: Room and Wall. The Room model calculates the current room air
temperature based on the fan speed, the water flow rate, and the wall surface tem-
perature. The temperature of the wall surface is calculated by the WallC model
and is based on the outside air temperature and the room air temperature.

Controller A discrete-event model implemented in VDM-RT, this model calculates the
fan speed and the aperture of the water flow valve based on the room air temperature
and room air temperature set-point.

PRELIM
IN

ARY P
ROCEEDIN

GS

The model presented in this paper builds upon that presented in [21] by adding
an explicit cyber-attacker model, an updated controller model that aims to address this
attack, and modified objective scripts to capture the usage of the fan.

Modelling Adversaries The FCU multi-model is extended in [5] to demonstrate the
use of multi-models in assessing the security of building control systems. The multi-
model is extended by introducing an Adversary model which intercepts and poten-
tially modifies the room air temperature set-point being communicated between the
Environment and the Controller. The Adversary model is a discrete-event
model implemented in VDM-RT.

By modifying the room air temperature set-point, the adversary executes a basic
attack on the system by manipulating the controller in order to expedite wear and
tear on the FCU by maximising fan usage. The implementation of this Man-in-the-
Middle type attack continually increases and decreases the room air temperature set-
point at a given frequency, causing the FCU fan speed to oscillate. Listing 1.1 outlines
the control loop of the adversary model, which includes parameters for the frequency
of room air temperature set-point modification (attackFrequency), and the upper
(upperModificationLimit) and lower (lowerModificationLimit) limits
of the modified room air temperature set-point.

�
instance variables
ACSP : real := 0.0 -- Attack Current Set-Point

operations
public setAttack: () ==> ()
setAttack()==
(

let SP = RATSP_IN.getReading() in
if SP > 0.0 then

if ACSP < SP then ACSP = SP + upperModificationLimit
else ACSP = SP - lowerModificationLimit;

)
else ACSP = SP;

RATSP_OUT.setState(ACSP)
);

thread periodic(attackFrequency)(setAttack);
� �
Listing 1.1. FCU Man-in-the-Middle attack where RATSP IN is the intercepted room air tem-
perature set-point and RATSP OUT is the (potentially) modified room air temperature set-point
sent to the controller.

PRELIM
IN

ARY P
ROCEEDIN

GS

3 Secure Controller Design

In this section we propose an approach to using INTO-CPS multi-models for the design
of controller augmentations intended to make the control of smart building systems
more secure. Furthermore, we introduce how DSE can be used to explore the trade-off
between security and usability inherent in the design of such a controller, and inform
the design of an optimised solution.

3.1 Security Conscious Control

In an attempt to negate the impact of harmful or malicious use of a smart building and
its constituent systems, we propose the addition of a security monitor, which observes
any input parameters and intercepts usage patterns which might cause damage. In mon-
itoring inputs, the system might utilise a range of metrics to assess system use, such as
the frequency of instructions sent to the controller, the rate of change of inputs, or the
calculated ware on equipment.

It is important that a security monitor can be included in a diverse set of control
systems, so its design should be modular and independent of any particular controller.
By designing the controller to be added to a generic input stream, it can be made suitable
for inclusion in a range of applications, including integration with legacy systems and
those with which limited information about their operation is available.

By employing a multi-model based approach in the design of such a monitor, we
can constrain its implementation to an independent model to effectively demonstrate
how security monitoring can be added to existing systems without their modification,
and that any necessary computation can be executed on separate hardware.

3.2 Controller Optimisation

As described previously, there are multiple system metrics that may be evaluated when
modelling the FCU CPS, though perhaps not all are critical for the design of the con-
troller and security modules. It is important then that the stakeholders of the system are
consulted and the appropriate metrics are highlighted. As Avizienis et al.[22] tell us,
security is

“...a composite of the attributes of confidentiality, integrity and availability...”

thus we should pick metrics that speak to these and in this way we can observe the
trade-off of these antagonistic concerns.

We consider the trade-off between integrity (security) and availability (usability) of
a system. In designing the security monitor, a more restrictive approach to security is
likely to restrict the usability of the system in some way. By employing DSE in the
design in such a monitor, we are able to explore the impact of each design on both
of these considerations, enabling the selection of a design which falls within a desired
threshold for some metrics of both security and usability.

PRELIM
IN

ARY P
ROCEEDIN

GS

Fig. 2. Architectural Structure Diagram of secure FCU with adversary example.

4 Fan Coil Unit Case Study

In this section we illustrate our approach using a case study of an FCU. We describe
an augmentation of the FCU multi-model provided in [5], which includes an additional
model to undertake security monitoring. The multi-model is created using INTO-CPS
technologies, and its simulation is used to determine fan usage in both the presence and
absence of an attack. DSE is used to explore the trade-off between security and usability
which results from varying the severity of response by the security monitor.

4.1 Security Controller Specification

We extend the FCU multi-model described in [5] by the addition of an additional
SecurityModule model. The INTO-CPS SysML profile [23] is used to define the
multi-model and its constituents in an Architectural Structure Diagram (ASD), illus-
trated in Figure 2.

The multi-model comprises 5 FMUs: External, RoomHeating, Controller
and Adversarymodels are included from [5], and a complementary SecurityMod-
ule implements the behaviour of the security monitor. The SecurityModulemodel
is a discrete-event model implemented in VDM-RT.

Each model is encapsulated in an independent FMU, and each FMU is defined using
the Encapsulating Component (<<EComponent>>) stereotype. Additional parame-
ters specify the model type (continuous/discrete) and a platform (in this case, VDM-RT
and 20-Sim) for each FMU. The INTO-CPS SysML profile facilitates logical grouping
of independent models by use of the Collections Component (<<CComponent>>)
stereotype. This mechanism is used to indicate a relationship between External and
RoomHeating, described as Environment, and similarly a relationship between
SecurityModule and Controller described as Control.

The ASD is also used to define an interface for each FMU, specified as a series of
ports which either input or output data to or from the model. Each port is labelled to
describe the nature of the data it communicates, and an arrow specifies the direction
of data flow. Data exchanged in the model includes the temperature of air both inside
and outside of the room (Room Air Temperature (RAT), and Outside Air Temperature

PRELIM
IN

ARY P
ROCEEDIN

GS

Fig. 3. Connections Diagram of secure FCU with adversary example.

(OAT)), the current desired temperature (Room Air Temperature Set Point (RATSP)),
as well instructions for actuating temperature change (Fan Speen (FS) and Flow Rate
(FR)). Data transfer between constituent models is defined using Connections Diagram
(CD), illustrated in Figure 3, which makes connections between ports explicit.

The attack executed by the Adversary model accelerates wear on the FCU fan by
instructing frequent temperature set-point changes to the system. To provide a counter-
measure to this attack, the proposed security monitor filters fluctuating inputs using a
moving average. By taking the average input over a sample of some period, the impact
of input fluctuations can be significantly dampened, however this can introduce some
delay in the FCU actuating the desired change in temperature. Listing 1.2 outlines the
control loop of the security monitor model, which includes a parameter for specifying
the length of the sample period (sample period).

4.2 Controller Optimisation

To perform a DSE for optimisation, we need to detail both the range of the search and
how results are to be computed. In the case of the FCU example we start by defining
a range of values for the security module sampling period, here the range has a lower
bound of one sample and an upper bound of 500 samples. The sample rate is one per
minute and so the upper bound essentially averages the temperature set-points over an
entire working day.

The metrics selected reflect two of the three security properties described by Avizie-
nis et al.[22]. Specifically we evaluate the usage of the fan as an indicator of integrity,
here the designer of the FCU has specified an acceptable fan usage limit of 25 and an
attacker may attempt to push the usage beyond this limit. The second metric, tempera-
ture deviation, relates to the availability of the FCU for proper operation, i.e. achieving
the desired room temperature. The acceptable range for temperature deviation is 3◦c
The best designs would minimise both of these metrics.

The DSE was performed under two sets of conditions (scenarios), the first is a nor-
mal working day, starting at 08:30 and finishing at 17:00, with the heating being off
before 08:30, set to 21◦c during the working hours and then off again after 17:00, this

PRELIM
IN

ARY P
ROCEEDIN

GS

�
instance variables
samples : seq of real;

operations
private monitorInput:()==>()
monitorInput()==
(

if len samples = sample_period then samples := tl samples;
samples := samples ˆ [RATSP_IN.getReading()];
RATSP_OUT.setState(sum(samples) / len samples);

);

functions
sum: seq of real -> real
sum(s) == if len s = 1 then hd s else hd s + sum(tl s);

thread periodic(monitorFrequency)(monitorInput);
� �
Listing 1.2. Security monitor where RATSP IN is the desired room air temperature set-point and
RATSP OUT is the filtered value sent to the controller.

is named ’without attacker’ in the results. The second scenario uses the same working
times and temperature set-points, but this time the cyber attacker is active and is able to
intercept and change the room set-point as described earlier in Section 2.3.

The results of the search, in terms of the range of fan usage and temperature devia-
tions for each controller frequency tested, are shown in Figures 4 & 5 respectively. On
these graphs the colouration is used to indicate those controller frequencies that passed
the constraint for that measure (coloured green) or that failed to meet the constraint
(coloured grey). This is a departure from the normal INTO-CPS DSE result, where a
Pareto analysis is used and colour represents the relative rank of a simulation result.
Here the graphs indicate that there is a tension, with the best results for each measure
being found at opposite ends of the controller frequency range.

Figure 6 presents a view of the results where the two objective measures are rep-
resented on the axis and the green colouration is only applied to designs that meet the
constraints for both fan usage and temperature deviation, both with and without the
attacker being active. Each ’.’ and ’+’ connected by a line represent a single design
(controller frequency), with the location of the ’.’ and ’+’ indicating the fan usage and
temperature deviations for that design. This view supports the stakeholders understand-
ing what options are available in terms of the two measures both with and without the
attacker, providing the stakeholders with information that allows them to explore the
range of acceptable results to trade off between the two measures.

PRELIM
IN

ARY P
ROCEEDIN

GS

Fig. 4. Results showing the range of fan usage values for each controller frequency simulated.

Fig. 5. Results showing the range of temperature deviation values for each controller frequency
simulated.

PRELIM
IN

ARY P
ROCEEDIN

GS

Fig. 6. Feasible security monitor designs within the bounds of maximum fan use of 25 and maxi-
mum temperature deviation of 3.

5 Future Work

The results presented in the previous section illustrate how DSE can be used to design
a security controller, while assessing the security/usability tradeoff. It is particularly
useful to be able to compare the effects on fan usage and temperature deviation with
and without an attacker, since in practice, we cannot be certain whether an attacker is
actually present or not.

The approach we presented in this paper is a stepping stone towards a generalised
security controller design method, where it should be possible to sweep through mul-
tiple scenarios. Indeed, different users might have different usability requirements or
ways of behaving within the system, and the security controller should be designed
accordingly. However, this is likely to require the usage of probabilistic or statistical
models, which are not yet supported in INTO-CPS.

The graphs in Figures 4 & 6 show that for fan usage, the range of controller frequen-
cies that pass the constraint is not continuous. This is indicated by the presence of grey,
non-compliant results, within the block of green, compliant, results. This emergent be-
haviour is believed to be due to the relative frequencies of both the controller and the
attacker and indicates that the optimal controller frequency could differ with changing
attacker frequencies. Thus we will expand upon the DSE reported in this paper to al-
ter both controller and attacker parameters in the same search, to better understand the
relationship between them.

PRELIM
IN

ARY P
ROCEEDIN

GS

Similarly, we would like to explore the DSE of the attacker and of the security
controller using game theory, as it is likely that, in practice, the attacker will adapt its
behaviour to that of the security controller, and conversely. Ideally, the tool support
should help looking for a Nash equilibrium (i.e., for a configuration where neither the
attacker nor the security controller has any incentive in changing their strategy).

Finally, we would also like to explore the design of more complex attackers, for in-
stance multiple attackers synchronising their attacks, or attackers learning the behaviour
from the users to increase their impact.

6 Conclusions

In this paper, we present an approach to the utilisation of multi-models in the design
of a security controller for cyber-physical systems, particularly for the control of smart
building systems. We have demonstrated how DSE can be particularly helpful in ex-
ploring the inherent trade-off between security and usability considerations, and have
illustrated our approach on a simple case study, by the design a security monitor for a
FCU, where the attacker aims at over-using the fan by tempering with the temperature
set-points, and the security monitor provides a counter-measure by taking a moving
average over input values.

We believe our approach is a stepping-stone towards a more integrated method to
assess and design security mechanisms for the control of CPSs, and opens the door for
modelling experts to include more complex defensive and offensive mechanisms in the
discrete models of both controllers and potential attackers, respectively.

References

1. H. Boyes, “Security, privacy, and the built environment,” IT Professional, vol. 17, no. 3,
pp. 25–31, 2015.

2. S. Mansfield-Devine, “The dangers lurking in smart buildings,” Computer Fraud & Security,
vol. 2015, no. 11, pp. 15 – 18, 2015.

3. T. Mundt and P. Wickboldt, “Security in building automation systems - a first analysis,” in
Proc. of the International Conference on Cyber Security And Protection Of Digital Services,
Cyber Security, pp. 1–8, 2016.

4. ENISA, “Threat landscape for smart home and media convergence,” 2015.
5. J. Mace, C. Morisset, K. Pierce, C. Gamble, C. Maple, and J. Fitzgerald, “A multi-modelling

based approach to assessing the security of smart buildings,” in Proc. of the PETRAS, IoTUK
& IET 1st Int. Conf. on Living in the Internet of Things, 2018. In press.

6. P. G. Larsen et al., “Integrated tool chain for model-based design of cyber-physical systems:
The INTO-CPS project,” in Proc. of the 2nd Int. Workshop on Modelling, Analysis, and
Control of Complex CPS, pp. 1–6, 2016.

7. K. W. Roth, D. Westphalen, J. Dieckmann, S. D. Hamilton, and W. Goetzler, “Energy con-
sumption characteristics of commercial building hvac systems volume iii: Energy savings
potential,” 2002.

8. S. T. Bushby and H. M. Newman, “BACnet Today: Significant new features and future en-
hancements,” ASHRAE Journal, vol. 44, no. 10, pp. 10–17, 2002.

PRELIM
IN

ARY P
ROCEEDIN

GS

9. M. Ruta, F. Scioscia, E. D. Sciascio, and G. Loseto, “Semantic-based enhancement of
ISO/IEC 14543-3 EIB/KNX standard for building automation,” IEEE Transactions on In-
dustrial Informatics, vol. 7, no. 4, pp. 731–739, 2011.

10. “Hack attack causes ‘massive damage’ at steel works.”
http://www.bbc.co.uk/news/technology-30575104.

11. R. Langner, “Stuxnet: Dissecting a cyberwarfare weapon,” IEEE Security & Privacy, vol. 9,
no. 3, pp. 49–51, 2011.

12. “Let’s get cyberphysical: Internet attack shuts off the heat in Finland.”
https://securityledger.com/2016/11/lets-get-cyberphysical-ddos-attack-halts-heating-in-
finland/. Accessed: 12-03-2018.

13. “Lock out: The Austrian hotel that was hacked four times.”
http://www.bbc.co.uk/news/business-42352326. Accessed: 12-03-2018.

14. P. G. Larsen, J. Fitzgerald, J. Woodcock, P. Fritzson, J. Brauer, C. Kleijn, T. Lecomte,
M. Pfeil, O. Green, S. Basagiannis, and A. Sadovykh, “Integrated tool chain for model-based
design of cyber-physical systems: The into-cps project,” in 2016 2nd International Workshop
on Modelling, Analysis, and Control of Complex CPS (CPS Data), (Vienna, Austria), IEEE,
April 2016. http://ieeexplore.ieee.org/document/7496424/.

15. C. Kleijn, “Modelling and Simulation of Fluid Power Systems with 20-sim,” Intl. Journal of
Fluid Power, vol. 7, November 2006.

16. P. G. Larsen, K. Lausdahl, N. Battle, J. Fitzgerald, S. Wolff, S. Sahara, M. Verhoef, P. W. V.
Tran-Jørgensen, and T. Oda, “VDM-10 Language Manual,” Tech. Rep. TR-001, The Over-
ture Initiative, www.overturetool.org, April 2013.

17. M. Verhoef and P. G. Larsen, “Enhancing VDM++ for Modeling Distributed Embedded
Real-time Systems,” Tech. Rep. (to appear), Radboud University Nijmegen, March 2006. A
preliminary version of this report is available on-line at http://www.cs.ru.nl/ marcelv/vdm/.

18. C. Gamble, “Comprehensive DSE Support,” tech. rep., INTO-CPS Deliverable, D5.3e, De-
cember 2017.

19. J. Fitzgerald, C. Gamble, R. Payne, and B. Lam, “Exploring the cyber-physical design space,”
in INCOSE Int. Symp., vol. 27, pp. 371–385, 2017.

20. J. Fitzgerald, C. Gamble, R. Payne, P. G. Larsen, S. Basagiannis, and A. E.-D. Mady, “Col-
laborative model-based systems engineering for cyber-physical systems, with a building au-
tomation case study,” INCOSE Int. Symp., vol. 26, no. 1, pp. 817–832, 2016.

21. M. Mansfield, C. Gamble, K. Pierce, J. Fitzgerald, S. Foster, C. Thule, and R. Nilsson, “Ex-
amples Compendium 3,” tech. rep., INTO-CPS Deliverable, D3.6, December 2017.

22. A. Avizienis, J. C. Laprie, B. Randell, and C. Landwehr, “Basic concepts and taxonomy of
dependable and secure computing,” IEEE Transactions on Dependable and Secure Comput-
ing, vol. 1, pp. 11–33, Jan 2004.

23. E. Brosse, “SysML and FMI in INTO-CPS,” tech. rep., INTO-CPS Deliverable, D4.3c, De-
cember 2017.

PRELIM
IN

ARY P
ROCEEDIN

GS

Integrating VDM-SL into the continuous delivery
pipelines of cloud-based software

Simon Fraser

Anaplan, York, UK
simon.fraser@anaplan.com
http://www.anaplan.com

Abstract. The cloud is quickly becoming the principle means by which software
is delivered into the hands of users. This has not only changed the shipping mech-
anism, but the whole process by which software is developed. The application of
lean manufacturing principles to software engineering, and the growth of con-
tinuous integration and delivery, have contributed to the end-to-end automation
of the development lifecycle. Gone are the days of quarterly releases of mono-
lithic systems; the cloud-based, software as a service is formed of hundred or
even thousands of microservices with new versions available to the end user on a
daily basis. If formal methods are to be relevant in the world of cloud computing,
we must be able to apply the same principles; enabling easy componentization of
specifications and the integration of the processes around those specifications into
the fully mechanized process. In this paper we present tools that enable VDM-SL
specifications to be constructed, tested and documented in the same way as their
implementation through the use of a VDM Gradle plugin. By taking advantage
of existing binary repository systems we will show that known dependency res-
olution instruments can be used to facilitate the breakdown of specifications and
enable the easy re-use of foundational components. We also suggest that the de-
ployment of those components to central repositories could reduce the learning
curve of formal methods and concentrate efforts on the innovative. Furthermore,
we propose a number of additional tools and integrations that we believe could
increase the use of VDM-SL in the development of cloud software.

Keywords: Continuous delivery · Software as a Service · Vienna Development
Method (VDM) · Overture

1 Introduction

The ubiquity of fast internet access has led to a move from shrink-wrapped, on-premise
products to the adoption of the software as a service (SaaS) model [2,10]. Both start-
ups and large, established enterprises are embracing a cloud delivery model, and are
benefiting from this in the form of increased revenues [16].

Shipping SaaS is significantly different from other forms of software as it is possible
to completely automate the delivery process by following the principles of continuous
integration (CI) and delivery (CD) [3,4] and thus significantly reduce the cost of re-
leasing. This leads to more frequent releases where each release contains smaller – and
thus less risky – changes to the system. This shift has coincided with the growth of both

PRELIM
IN

ARY P
ROCEEDIN

GS

http://www.anaplan.com

lean software development [15] and the microservice architecture [13], which not only
encourage the ruthless mechanisation of all aspects of the development lifecycle, but
promote the breakdown of the system into compact, independently-releasable compo-
nents.

The move to smaller, encapsulated components should make the use of formal meth-
ods more inviting, yet in our experience companies producing SaaS are unlikely to use
them. One reason for this is a lack of suitable tooling. Integrated development environ-
ments (IDE) such as Overture [5], Rodin [1] and CZT [8] have significantly improved
the ability of individuals to engage with their respective methodologies, but to get any
traction within a company delivering SaaS, it is essential that all aspects of the process
can be automated and integrated into existing CD pipelines.

A very basic CD pipeline incorporating a formal specification is presented in fig. 1.
Whenever a change is made to either the service’s specification or its implementation,
all verification and validations actions are executed on a centralized CI/CD system
[11,18] and if all succeed, the new version of the service is immediately deployed to
the production environment. There should be no manual process required, so all steps
must be automatable and we must have complete confidence in our process to ensure
the correctness of the service.

Fig. 1. A basic CD pipeline

This paper introduces a VDM plugin to the Gradle [12] build-system [9] that uses
the core components of Overture to integrate VDM-SL into a CD pipeline. Gradle is
widely used and plugins are available for many development languages including Java,
Scala and C++. These plugins are used to automate commonly performed tasks includ-
ing building, verifying and deploying code; the VDM plugin automates similar tasks on
specifications for VDM-SL users. All configuration, including which plugins to use, is
declared in a build.gradle file that is usually found in a project’s root directory. Using
Gradle is simply a matter of invoking the tool in the appropriate directory with the list
of tasks to execute, for example: gradle build. A user can do this locally from the

PRELIM
IN

ARY P
ROCEEDIN

GS

command line or an IDE plugin; CI/CD systems are designed to execute Gradle tasks.
As all configuration is defined in a file there is no dynamic set-up and a CD pipeline is
thus defined as a sequence of tasks to execute on one or more projects.

The eventual goal of the VDM Gradle plugin would be to automatically perform
every task that can be performed manually within Overture and thus incorporate all
those tasks into a CD pipeline. In this paper, we describe what we believe is the mini-
mum viable feature set required to enable the use of VDM within a pipeline; covering
the automation of essential tasks and also the breakdown of specifications into compo-
nents that can be published to and consumed from a binary artifact repository. We will
outline some opportunities for immediate extension to the plugin’s capabilities, but the
flexibility of Gradle’s orchestration mechanisms means that there are few constraints
on what can be achieved. For instance, it would be possible to integrate other tools,
such as theorem provers, to mechanically perform tasks that are not currently possible
in Overture.

Section 2 introduces the plugin and shows how it can be used to parse and type
check a set of modules and section 3 describes how that plugin is extended to auto-
mate specification testing. Section 4 proposes the use of central binary repositories for
sharing specifications and explains how this is facilitated by the plugin. The tool also
enables a user to integrate a natural language specification with a formal one and this is
described in section 5. In section 6, we discuss a number of additional areas in which
tooling could be of use and we remark upon the work thus far in section 7.

2 An automated build

Overture provides an IDE for VDM, however it does not give us the one-step ‘compile,
test and assemble’ process that is required in the modern software engineering pipeline.
Engineers expect to be able to invoke a build from a single command that can also be
used by a centralized CI/CD system.

Tools such as Make have existed for many years and are capable of performing
the basic tasks, but they lack the sophistication and easy integration of more modern
tools. Maven and Gradle are tools that began as ways to build Java code, but are now
considered general purpose, feature-rich and extendable build toolsets that are designed
to form part of a CD pipeline. Both Maven and Gradle are widely used in the creation
of SaaS. We chose to plug into Gradle as its task-based approach offers more flexibility
than Maven’s lifecycle. Given the relative similarities between modern build systems,
it would be trivial to later generalize the concepts of this plugin to provide a similar
plugin for Maven (and others).

Gradle defines tasks than can be standalone or which can define dependencies on
other tasks. When building, an engineer will specify the task that they wish to run
and the system will run that task and all of its dependencies in an order that satisfies
all relationships. Gradle’s base plugin defines three tasks: clean, build and assemble.
Running the clean task will remove all files generated by any previous runs, the build
task will typically perform compilation, type checking and testing (see section 3), and
the assemble task will generate any output files required.

PRELIM
IN

ARY P
ROCEEDIN

GS

Our VDM plugin utilizes the base plugin and adds hooks to its tasks. Specifically,
we define parse, typeCheck and package tasks, such that package depends upon type-
Check which depends upon parse. Additionally, we declare that build depends upon
typeCheck and assemble depends upon package. Thus a user invoking assemble will
expect all tasks to be run (barring build issues).

The parse task will find files in a specified directory (src/main/vdm by default)
which have an extension derived from the configurable dialect (VDM-SL by default).
The files are then parsed using VDMJ from the Overture core, such that the resultant
AST is serialised to the Gradle build directory. This binary serialization means that we
do not need to re-parse from scratch in subsequent tasks. The final task, package create
a zip file from the original specification files parsed and places it in the build directory.
Plain text files are packaged rather than binaries to improve readability downstream —
see section 4.2. If at any point a task cannot be completed due to, for instance, a parse
or type checking error the build fails and subsequent tasks will not run.

Even a Gradle plugin supporting this very limited set of tasks provides a great deal
of value as we can ensure that our specification is correctly typed on every commit by
creating a job in any Gradle-aware CI/CD tool. This immediately gives us the benefits
that such tools provide; for example: a history of builds, notification of failures, build
dashboards/alarms and allow us to be more confident that our head of specification is
always in a ‘correct’ state.

3 Acceptance testing a specification

When creating SaaS, a test-driven approach to development is frequently used alongside
a CI/CD system to ensure that all code is tested and that all tests pass after every commit.
We believe that the same approach should be taken to the creation and maintenance of
specifications; this approach to ‘unit-testing’ formal specifications has been explored
elsewhere [22], so will not justify it further here.

The plugin is thus extended to define a new task test. We have followed the standard
Gradle pattern of holding ‘main’ and ‘test’ files in separate directories and processed by
separate tasks, thus we also introduce parseTests and typeCheckTests tasks at this point.
parseTests will locate and parse files in a specified directory (src/test/vdm by default)
in the context of the parsed ‘main’ specification (introducing a dependency on parse)
producing a second binary output in the build directory. Similarly, typeCheckTests has a
dependency on typeCheck and parseTests but we cannot avoid type checking all loaded
binary specification files. The test task depends upon typeCheckTests and can be config-
ured to execute different testing strategies. There are existing schemes that can be used
to apply acceptance tests to VDM specifications, but in this instance our primary focus
was automatability so we devised the simple strategy described below.

This strategy identifies all modules originating in the test directory that have a name
beginning with ‘Test’. Each of these modules is considered a test suite. In each module,
the list of operations is examined and those that have a name beginning with ‘Test’
are considered test cases. We expect the post condition of each test operation to hold
the test’s assertions about the result. Each test case is then evaluated. If the evaluation
completes without error the test is considered to have passed. If the evaluation leads to

PRELIM
IN

ARY P
ROCEEDIN

GS

a post condition error then the test is considered to have failed. If the evaluation leads
to another type of error – such as precondition or invariant failure – then the test is
considered to have errors.

For example, in the following block we have one test suite: TestArithmetic and three
test cases TestAdd, TestMultiply and TestDivide. CheckSubtract is not a test case as its
name does not start with ‘Test’. TestAdd will evaluate without error and is recorded
as a pass. TestMultiply will be recorded as a failure as the post-condition will evaluate
to false. TestDivide will be recorded as an error as we can assume that there will be a
precondition that prevents division by zero.�
module TestArithmetic
imports from Arithmetic
definitions
operations

TestAdd:() ==> real
TestAdd() == Arithmetic‘Add(3, 4)
post RESULT = 3;

TestMultiply:() ==> real
TestMultiply() == Arithmetic‘Multiply(3, 4)
post RESULT = 14;

TestDivide:() ==> real
TestDivide() == Arithmetic‘Divide(3, 0)
post RESULT = 0;

CheckSubtract:() ==> real
CheckSubtract() == Arithmetic‘Add(6, 4)
post RESULT = 2;

end TestArithmetic
� �

In order that test results can be reported in CI/CD tools, the task records the results
in JUnit format (the most common test result, interchange format), producing one file
per test suite in the build directory. As well as a simple result, any failure messages
are listed and the evaluation duration recorded. This integration ensures that the build
– and any subsequent steps in the CD pipeline – will fail when a change is made that
causes a test to fail. A CI/CD system can notify all stakeholders of success or failure
and it also provides time-based reporting. This not only allows us to visualize trends
over time, but will highlight commonly failing tests which can often indicate poorly
written specifications or tests.

PRELIM
IN

ARY P
ROCEEDIN

GS

4 Dependency management

Although the primary purpose of a build system is to provide a simple mechanism to
reliably build and test artifacts, much of what we have discussed to this point could be
reproduced using Make or Ant. The true value of tools like Gradle is their ability to go
beyond this basic process and enable large systems to be broken down into small com-
ponents and then declaratively pieced together through the mechanism of dependency
management. Not only has this encouraged the decoupling of concerns and encapsula-
tion within a single system, but it has allowed small, tightly-focused components to be
shared globally. We would argue that Maven’s primary contribution to the art is not its
toolchain, but the Maven Central repository.

4.1 Componentizing a specification

When producing SaaS the tendency has been away from the monolithic and towards
microservice architectures. With this approach we still have a whole system, but it is
deliberately broken down, with hard boundaries introduced, so that one team can be
wholly responsible for all aspects of a small subset of components. There is likely
still common code, but this should be managed through the creation of library compo-
nents which are owned by one team and consumed by others (often using an internal
open-source model). In an environment like this, we want to break down our ‘system’
specification in the same way.

VDM-SL provides a module mechanism, but its level of granularity is not what
is needed here; we would expect a component to be formed of a number of ‘main’
modules and a number of ‘test’ modules that correspond to a particular block of system
functionality. Each component should have its own Gradle build and typically its own
repository in a VCS. It should be possible to automatically publish the components for
use by others and to specify the use of those components in downstream projects.

Fig. 2. Dependencies of components extracted from ISO-8601 specification

Consider, as a simple example, the ISO-8601 specification that is distributed with
Overture. It contains not only the specification of the standard itself, but a number of
other modules that provide utility types, values and functions in a number of areas. We

PRELIM
IN

ARY P
ROCEEDIN

GS

are certain that those utilities modules benefit specifications other than that for this par-
ticular standard as we have found them to be useful in many other instances. In this
example, each of these modules would benefit from being split into its own component
so that its specific behaviour could be packaged and shared. With some minor refactor-
ing to prevent circular dependencies, we could create components with a dependency
tree illustrated in Fig. 2. Doing this here would enable downstream specifiers to de-
pend, for example, upon the Seq component without having to make any reference to
the ISO-8601 specification.

4.2 Sharing via a binary repository

Gradle already has mechanisms for publishing to and consuming components from
binary repositories with a number of formats including Maven and Ivy. For our imple-
mentation we have chosen initially to support Maven formatted repositories given the
relative importance of Maven Central. Extending the plugin to support other repository
types should not prevent a significant challenge and existing implementation choices
will not prevent this.

Maven repositories assign every component group/artifact/version (GAV) co-ordinates.
The group is typically the reversed domain of the owning organisation, the artifact is the
component’s name and the version has a value typically assigned by the maintainer us-
ing the semantic versioning system1. These values are normally declared in the Gradle
configuration file (although the name defaults to that of the containing directory).

The first step to sharing is to publish a component without dependencies – such as
the Ord module in Fig. 2 – to the binary repository. We do not assume that all users of
the VDM Gradle plugin will wish to publish their artifacts and there will always be some
specific configuration required to indicate the specific binary repository to use, so our
plugin will only try to publish when the maven-publish plugin is applied to the build.
When this has been applied a ‘vdm’ publication will be created automatically and a
hook added to the publish tasks (defined by the maven-publish plugin) to deploy the zip
file of specifications generated by the assemble task. The snippet below demonstrates
all the salient aspects of the build.gradle file required to build, test and publish the Ord
component.�
group = 'org.overture'
version = '1.0.0'
apply plugin: 'vdm'
apply plugin: 'maven-publish'
� �
The next step is to consume the published component; if we take for example Seq, we
need to add dependencies on Ord and Numeric components. Here the plugin hooks
directly into Gradle’s existing dependency resolution mechanism – which is described
in depth in chapter 5 of [12] – so there is little custom work required. We add a new
‘vdm’ configuration to distinguish dependencies from those required by Java or other

1 http://semver.org

PRELIM
IN

ARY P
ROCEEDIN

GS

http://semver.org

languages (making it possible to build specification and code in the same component —
see section 6.3) and these are processed by a new dependencyUnpack task that extracts
the specification from the zip files into a GAV based directory structure. A dependency
on this task is added to parse and the behaviour of this task is altered slightly so that
it now parses the dependent specifications as well as those introduced in the current
component. An Overture user can view the dependent specifications within their project
and that tool is able to parse and type check using these dependencies seamlessly. From
the user’s perspective it is trivial to add dependencies, as the following example for the
Seq component demonstrates.�
group = 'org.overture'
version = '1.0.0'
apply plugin: 'vdm'
apply plugin: 'maven-publish'
dependencies {

vdm group: 'org.overture', name: 'Numeric', version: '1.0.0'
vdm group: 'org.overture', name: 'Ord', version: '1.0.0'

}
� �
4.3 Transitive dependency management

The previous section does not provide the whole story. This naı̈ve approach has not
taken into account the intricacies of transitive dependencies. For instance, the creator
of the ISO-8601 module knows that they depend upon Numeric, Set and Seq, but they
also have an implicit dependency on Ord as Seq depends upon it. Fortunately, it is
relatively simple to ensure that the dependencyUnpack task processes all dependencies
– whether direct or not, but how are downstream components able to determine what
this component’s dependencies are? The publication mechanism described thus far has
not considered this.

Again, the process required depends upon the repository type; as we are targeting a
Maven repository we need to produce a project object model (POM) on publication that
not only gives details of the component we are publishing, but also of its dependencies.
A basic POM is produced by the maven-publish plugin automatically, but this just gives
the details of the artifact being published. A new task addVdmDependenciesToPom is
created to add our dependencies to the POM in the publish phase of the build2. This task
depends upon the maven-publish plugin’s POM generation task and a dependency is
added to any publish tasks to ensure it is performed before the deploy of the component.

When dealing with a large complicated system with many components which we
would expect to be typical in a microservice architecture, this form of automated de-
pendency management quickly becomes essential. However, while automated transitive
dependency management removes a large burden from the user, there is one scenario in
which the unwary can be caught out. Consider the situation where version 1.0.0 of Seq

2 Gradle’s incubating Software Model was not considered to be mature enough for use at this
time.

PRELIM
IN

ARY P
ROCEEDIN

GS

has declared a dependency on version 1.0.0 of Ord, but version 2.0.0 of Seq uses version
2.0.0 of Ord. If Set declares dependencies upon version 2.0.0 of Seq and version 1.0.0
of Ord, it will effectively depend upon both versions 1.0.0 and 2.0.0 of Ord. Gradle’s
default resolution mechanism is to take the newest version, but in our plugin we have
enforced a strict no-conflict strategy. That is, if the same component is acquired more
than once, it must have exactly the same version or the build will be failed. This forces
the user to make an explicit choice of the version they require.

The user can resolve this failure by either updating dependencies so that all versions
agree or by explicitly excluding specific transitive dependencies as in the example be-
low. Note that, using version 1.0.0 of Ord with version 2.0.0 of Seq may have unex-
pected consequences, including but not limited to the inability to parse and type check
Seq when building Set.�
group = 'org.overture'
version = '1.0.0'
apply plugin: 'vdm'
apply plugin: 'maven-publish'
dependencies {

vdm (group: 'org.overture', name: 'Seq', version: '2.0.0') {
exclude group: 'org.overture', module: 'Ord'

}
vdm group: 'org.overture', name: 'Ord', version: '1.0.0'

}
� �
Conventionally the number of declared dependencies is minimized to reduce this form
of conflict. In the previous example, removing the direct dependency on Ord would
produce the same result as updating the direct dependency to version 2.0.0.

Given this convention, the configuration for ISO-8601 would contain only a single
dependency – Set – as all other required dependencies would be acquired transitively.

4.4 Using central repositories for common components

We would argue that Java does not owe its success to the language, nor even the JVM,
but to the sheer breadth of trusted open-source library components. For example, cus-
tom code is rarely written to implement a data structure; in almost every case there is
at least one implementation that has been battle-hardened in countless production sys-
tems that we are free to employ seamlessly. Java engineers are left to worry about the
core aspects of their system rather than how to re-invent the foundations. However, it
was only when repositories like Maven Central and the accompanying tools made those
components easy to find and use that the consumption of those really components took
off.

There is no doubt that we have found the ability to componentize specifications
useful, but when defining some components it has felt that we have been re-inventing the
wheel. We have already alluded to the fact that we have found some of the components
in the ISO-8601 specification useful beyond their stated purpose and additionally when

PRELIM
IN

ARY P
ROCEEDIN

GS

we write specifications for trees, graphs, multisets and multimaps we are sure that we
cannot be the first to do so. Finding and using those existing specifications is possible,
but not easy, and even when we do find them it is unlikely that we are able to place the
same amount of trust in them as we would like.

We suggest that if VDM ‘library’ specifications were prevalent to the same extent
in central repositories, then the uptake of VDM would be considerably greater. Speci-
fiers would have the same ability to put together well-trusted, verified building blocks
to form the foundation of their systems and would be able to concentrate on the aspects
unique to their systems. Without tool support we lack a consistent way to publish to
and consume from central repositories. We hope that the introduction of a Gradle plu-
gin such that we describe in this paper would encourage specifiers to begin publishing
library components of specification that others could use and that by doing so we could
facilitate wider use of VDM.

5 Producing a natural language specification

Although Overture is capable of processing specifications that are embedded within a
LATEX document, it does not drive the user towards this approach, with the UI directing
users to create modules and classes rather than documents. Whilst this choice enables
to better tool support, it leads to a separation of the formal specification and the infor-
mal requirements (whereas Z encourages a single document, but suffers from poor tool
support3). Additionally, whilst LATEX can be a fantastic tool for document preparation, it
does not typically form part of the standard toolkit of a cloud software engineer; nor are
postscript documents or PDFs the standard instruments for sharing documents within a
cloud-based company.

Agile methodologies are typically used for SaaS and end-to-end team ownership
of components is encouraged, therefore all members of a team will need access to the
specification, but they will use it for different purposes. The customer proxy will need
to verify that the specification correctly captures their acceptance criteria, the engineers
will need the specification to guide their implementation, the QA will need to verify that
the implementation matches the specification and writers will use the specification as a
starting point for their user documentation. Each of these individuals will have different
levels of understanding of the formal aspects and all will need informal instruments to
record their interpretations, even if only with which to validate a shared understanding
with other team members. It is essential, therefore, that there is some mechanism for
annotating the formal with the informal. Furthermore, all the members of the team need
consistent access to the ‘latest’ version of the specification; there should be no confusion
over which is the latest version of a document, nor should it require the use of any
particular tool. At a cloud-based company this inevitably means that the specification
itself should be in the cloud, either as a website on an intranet or in a collaboration tool,
such as a wiki; an HTML representation would enable both.

3 Note that, the sheer expressivity of Z rather than the LATEX format is the primary reason for its
lack of mechanisation.

PRELIM
IN

ARY P
ROCEEDIN

GS

5.1 An HTML compatible VDM pretty printer

Consider first, the necessity to view the formal specification in a browser; simply check-
ing out raw VDM from a VCS repository and displaying it as text is unlikely to be the
most useful practice. Thus a generic VDM pretty printer was created that was capable
of rendering an ASCII specification into HTML and other formats. This was done by
implementing Overture’s ‘Question/Answer’ interface which facilitates interaction with
the specification’s AST; as such, the pretty printer could be applied to any node from a
module to a simple expression.

Although we specifically required a mechanism to render the specification to HTML,
we kept the implementation generic. The pretty printer was designed to accept different
render strategies depending on the user’s requirements. The render strategies that we
have implemented presently are:

– A plain ASCII strategy — intended to format a specification in place (in the future
we would like to integrate this into Overture in the same way as Eclipse’s standard
Source > Format).

– A mathematical unicode text strategy — uses mathematical symbols in favour of
ASCII keywords where possible to produce a UTF-8 text representation.

– A mathematical unicode HTML strategy — as the previous, but produces a UTF-
8 HTML representation (for example using heading, bold and italic tags where
appropriate).

As well as defining how to render the tokens found in the specification, the strategy
also determines how vertical and horizontal whitespace is inserted into the rendering;
for example: rather than a space. Additionally, the pretty printer will insert
navigational markers into the rendering and the stategy describes how they are rendered;
for example an empty div with the identifier of the object of interest in the HTML
strategy. Fig. 3 illustrates the HTML rendering of the pretty printer when applied to the
classic Alarm example.

We have not yet implemented a mathematical LATEX rendering strategy, but it should
be relatively straightforward to do so if needed.

The pretty printer is not entirely naı̈ve, it will for example keep track of renamed
imports in a module and only use the fully-qualified name of an imported object where
it is necessary to do so. There are also some configuration options; for example it is
possible to specify a length for a node list over which each entry is rendered on a new
line. We have found that the renderings produced provide a more readable version of
the specification from which we can easily include snippets in wiki or emails as well
as producing full HTML documents. There is additional work that could improve the
output, for instance the current approach to precedence is simplistic and our rendering
relies too much on the use of parentheses, but we feel that even in its current state it
adds a useful addition to the practitioner’s toolbox.

5.2 Integrating informal Markdown specifications

The usual language for producing documentation in cloud companies is Markdown [7],
it is the markup language of choice for many SaaS solutions including GitHub and

PRELIM
IN

ARY P
ROCEEDIN

GS

Fig. 3. HTML rendering of the functions in the Alarm specification

Confluence. Like LATEX, Markdown enables text to be annotated with rendering instruc-
tions, unlike LATEX the syntax is simple and intuitive, and most IDEs provide real-time
previews of the final document. Markdown is easily transformed to HTML and can be
treated like code in the development process.

The approach we took was that the Markdown documents would drive the content
of the rendered specification document. That is, the user would write their informal text
and then place references using custom Markdown directives to include or refer to parts
of a VDM-SL specification. The VDM Gradle plugin was extended to add a docGen
task that depended upon typeCheck. When run, this task finds all Markdown files in a
specified directory (src/main/md by default) and would then transform those files into
HTML files placed within the project’s build directory. Additionally, the task would
use the pretty printer introduced previously to render all main modules into one sub-
directory and all test modules into another. In order to create an integrated specification,
the Markdown processor was extended to define new directives that would enable the
writer to use VDM within their informal text. In our experience thus far, only a few
directives have been required and they are summarized in Table 1.

The output of the process can be viewed in Overture by opening the generated
HTML files, but a more useful next step would be to use the CI/CD tooling to auto-
matically publish this documentation to a versioned location. We do not propose incor-

PRELIM
IN

ARY P
ROCEEDIN

GS

Table 1. Summary of VDM Markdown directives

Directive Description Example

{@link:definition} Creates a link to the definition in the
modules appendix

{@link:ISO8601‘subtract}

{@ref:definition} Includes the pretty printed definition
as a quoted element in the rendering

{@ref:ISO8601‘subtract}

{@mainModuleList} Includes an unordered list of main
modules in the rendering

{@mainModuleList}

{@testModuleList} Includes an unordered list of test
modules in the rendering

{@testModuleList}

{expression}
Parses and pretty prints any VDM
expression and includes in the
rendering

{forall d in set nat & d >= 0}

porating aspects of this into the plugin as existing tools already provide the means to
achieve this.

6 Further requirements

We have made a start in the integration of tools supporting VDM-SL into a CD pipeline.
However, there are additional aspects of the development process that must be tackled.
In this section, we describe some of the most pressing.

6.1 Integration of coverage reports

Just as code coverage is an integral part of ensuring that all the paths through a piece
of code have been tested, ensuring that all parts of a specification have a corresponding
and testable system requirement is vital in validating that our specification matches
our requirements. A plethora of code coverage tools exist [17], but there has been a
convergence in the format of the files produced.

Overture has valuable support for showing coverage when running within the IDE,
but we have not yet integrated that into our test framework. It is essential to do so, but
for it to have genuine value we must translate the .covtbl files produced by Overture
into a format understandable by CI/CD tools. The Cobertura XML schema is widely
supported, and translation into this format would enabling visualisation of coverage
over time and the capability to fail builds if coverage extent drops.

6.2 Automated test case generation

Beyond the basic acceptance testing of a specification there is a need to verify the
consistency of our specification and that our implementation matches said specification.

One method of checking our specification is to use combinatorial testing [6]. Over-
ture already provides an excellent mechanism to perform combinatorial testing through
VDM traces; it would be trivial to execute these from the Gradle plugin, but thought

PRELIM
IN

ARY P
ROCEEDIN

GS

must be given to the selection of traces to run – executing every trace defined on every
commit may prove unwieldy.

Test generation can also verify our implementation by ensuring that, within reason-
able bounds, the specification and implementation give the same results when evaluat-
ing instructions. There are tools [14,19] that take different approaches to the generation
and it is necessary to evaluate to what extent they could be integrated into a CD pipeline.
There are a number of different forms of test case generation, including:

1. Generating a file containing a list of test steps with expected results after each step.
2. Generating code that executes test steps and asserts that the expected results are

achieved.
3. Generating a file containing a list of test steps and code that can verify results

achieved satisfy post-conditions at each step.

For a SaaS system the second is unlikely to be particularly useful as a microservice
architecture can often promote the use of many programming languages and it would
be difficult for a single tool to support the different paradigms of multiple languages.
However, the first is useful to verify that the explicit acceptance tests give the correct
results in the implementation and the third provides a mechanism for combinatorial
testing of the code. In both these cases we would expect that the artifacts are produced
with the Gradle plugin when building the specification, but are consumed independently
by other means when building and testing the code.

6.3 Code generation

In some cases it may be advantageous to generate code directly from a specification.
Overture provides mechanisms [20,21] for the automated generation of Java and C++.
However, in a CD pipeline it is not sufficient to simply generate the code, but to build
it, package it and deploy it to a binary repository. The VDM Gradle plugin should be
extended to support different code generation strategies and integrated with Gradle’s
existing Java and C++ plugins to automatically produce and deploy the appropriate
binary artifacts.

6.4 Integration with other IDEs

Eclipse is a tool in rapid decline – 64% of Java developers used Eclipse in 2012, but
survey results [23] show a consistent contraction in every year surveys have been con-
ducted since, with only 33% of respondents selecting it in the 2017 survey (twenty
percentage points behind new market leader IntelliJ IDEA).

In the authors’ experience Eclipse is unlikely to be used in the development of SaaS
and it would certainly aid in the adoption of Overture if plugins were available for other
IDEs.

PRELIM
IN

ARY P
ROCEEDIN

GS

7 Concluding remarks

Integration of VDM-SL into a fully automated CD pipeline is essential if VDM-SL is
to be used in enterprises delivering SaaS. This paper has shown that it is possible to
use an existing build system to build, test and share such specifications and that the use
of these tools facilitates interaction with standard CI/CD infrastructure. The described
VDM Gradle plugin not only enables these basic tasks, but integrates with Gradle’s
dependency resolution mechanism so that complex dependency structures can be main-
tained with little manual involvement and thus large systems can be componentized
without undue overhead.

By using this plugin it is possible to not only share specifications within an enter-
prise, but globally using centralised binary repositories. We believe that this mechanism
will make it easier to focus on the interesting aspects of specifications and ultimately
facilitate the adoption of VDM-SL in the development of SaaS.

Tools for merging formal specifications with informal Markdown documents were
also introduced in this paper alongside a mechanism for rendering the resultant docu-
ment into HTML. The capability to publish integrated specifications has perhaps pro-
vided significant benefit to the authors as it has enabled all members of our team to
actively engage with the specification despite a lack of previous exposure to formal
methods.

We have also identified a number of additional tools that could further improve
the uptake of VDM within cloud companies. However, the VDM Gradle plugin de-
scribed herein enables the immediate integration of VDM-SL into a fully automated
CD pipeline and will enable us, and others, to actively use formal methods in our cloud-
oriented development process.

References

1. Abrial, J.R., Butler, M., Hallerstede, S., Hoang, T.S., Mehta, F., Voisin, L.: Rodin: an open
toolset for modelling and reasoning in Event-B. International journal on software tools for
technology transfer 12(6), 447–466 (2010)

2. Dempsey, D., Kelliher, F.: Cloud Computing: The Emergence of the 5th Utility. In: Industry
Trends in Cloud Computing, pp. 29–43. Springer (2018)

3. Duvall, P.M., Matyas, S., Glover, A.: Continuous integration: improving software quality and
reducing risk. Pearson Education (2007)

4. Humble, J., Farley, D.: Continuous Delivery: Reliable Software Releases through Build, Test,
and Deployment Automation. Pearson Education (2010)

5. Larsen, P.G., Battle, N., Ferreira, M., Fitzgerald, J., Lausdahl, K., Verhoef, M.: The Overture
initiative integrating tools for VDM. ACM SIGSOFT Software Engineering Notes 35(1),
1–6 (2010)

6. Larsen, P.G., Lausdahl, K., Battle, N.: Combinatorial testing for vdm. In: Software Engineer-
ing and Formal Methods (SEFM), 2010 8th IEEE International Conference on. pp. 278–285.
IEEE (2010)

7. Leonard, S.: Guidance on Markdown: Design philosophies, stability strategies, and select
registrations (RFC-7764) (2016)

8. Malik, P., Utting, M.: CZT: A framework for Z tools. In: International Conference of B and
Z Users. pp. 65–84. Springer (2005)

PRELIM
IN

ARY P
ROCEEDIN

GS

9. Maudoux, G., Mens, K.: Correct, efficient, and tailored: The future of build systems. IEEE
Software 35(2), 32–37 (2018)

10. Mell, P., Grance, T., et al.: The NIST definition of cloud computing (2011)
11. Meyer, M.: Continuous integration and its tools. IEEE software 31(3), 14–16 (2014)
12. Muschko, B.: Gradle in Action. Manning (2014)
13. Newman, S.: Building microservices: designing fine-grained systems. O’Reilly Media, Inc.

(2015)
14. Oriat, C.: Jartege: A tool for random generation of unit tests for Java classes. In: Quality of

Software Architectures and Software Quality, pp. 242–256. Springer (2005)
15. Poppendieck, M., Poppendieck, T.: Lean software development: an agile toolkit. Addison-

Wesley (2003)
16. Price Waterhouse Coopers: Global 100 software leaders: Key players & market trends. New

York: PWC CIL (2016)
17. Shahid, M., Ibrahim, S.: An evaluation of test coverage tools in software testing. In: 2011 In-

ternational Conference on Telecommunication Technology and Applications Proc. of CSIT.
vol. 5 (2011)

18. Shahin, M., Babar, M.A., Zhu, L.: Continuous integration, delivery and deployment: a sys-
tematic review on approaches, tools, challenges and practices. IEEE Access 5, 3909–3943
(2017)

19. Tomoyuki Myojin, F.I.: Automated test procedure generation from formal specifications. In:
15th Overture Workshop on VDM (2017)

20. Tran-Jørgensen, P.W.V., Larsen, M., Couto, L.D.: A code generation platform for VDM. In:
12th Overture Workshop on VDM (2015)

21. Tran-Jørgensen, P.W.V., Larsen, P.G., Leavens, G.T.: Automated translation of VDM to JML-
annotated Java. International Journal on Software Tools for Technology Transfer pp. 1–25
(2017)

22. Utting, M., Malik, P.: Unit testing of Z specifications. In: International Conference on Ab-
stract State Machines, B and Z. pp. 309–322. Springer (2008)

23. ZeroTurnaround: RebelLabs developer productivity report. Tech.
rep. (2017), https://zeroturnaround.com/rebellabs/
developer-productivity-report-2017-why-do-you-use-java-tools-you-use/

PRELIM
IN

ARY P
ROCEEDIN

GS

https://zeroturnaround.com/rebellabs/developer-productivity-report-2017-why-do-you-use-java-tools-you-use/
https://zeroturnaround.com/rebellabs/developer-productivity-report-2017-why-do-you-use-java-tools-you-use/

Multi-modelling of Cooperative Swarms

Georgios Zervakis1, Ken Pierce2, and Carl Gamble2

1 Elsevier, United Kingdom
g.zervakis@elsevier.com

2 Newcastle University, United Kingdom
{kenneth.pierce,carl.gamble}@newcastle.ac.uk

Abstract. A major challenge in multi-modelling and co-simulation of cyber-
physical systems (CPSs) using distributed control, such as swarms of autonomous
Unmanned Aerial Vehicles (UAVs), is the need to model distributed controller-
hardware pairs where communication between controllers using complex types
is required. Co-simulation standards such as the Functional Mock-up Interface
(FMI) only supports simple scalar types. This makes the protocol easy to adopt for
new tools, but is limiting where a richer form of data exchange is required, such
as distributed controllers. This paper applies previous work on adding an explicit
network VDM model, called an ether, to a multi-model by deploying it to a more
complex multi-model, specifically swarm of UAVs.

Keywords: multi-modelling, swarms, FMI, co-simulation

1 Introduction

The design of cyber-physical systems (CPSs) requires engineers from across disciplines
to collaborate in order build the collections of physical, control and network systems
from which they are built. Swarms of Unmanned Aerial Vehicles (UAVs) represent
CPSs; they require their hardware, software and elements to be closely integrated if
they are to function properly. While model-based engineering approaches for CPSs are
desirable, the distinct modelling formalisms used by different disciplines is a barrier to
collaborative design. A promising approach to overcome this is multi-modelling, where
individual models of the components, retained in their appropriate tools and formalisms,
are combined into system-level models that can be analysed through co-simulation.

Multi-modelling of distributed CPSs such as UAV swarms presents a challenge to
current approaches. Such swarms form sets of controller-hardware pairs within the multi-
model, which must also communicate between pairs in order to model distributed control
(c.f. Figure 2a). Co-simulation standards such as the Functional Mock-up Interface
(FMI)3 support simple scalar types and strings, and not the rich set of data abstractions
familiar to engineers modelling software components in formalisms such as Vienna
Development Method (VDM) [11]. Also as the number of units in the swarm increases,
direct connection between all controller models becomes unwieldy.

3 http://fmi-standard.org/

PRELIM
IN

ARY P
ROCEEDIN

GS

In previous work [5], introduction of an explicit network model to a multi-model
was demonstrated and applied to a building case study. This approach overcomes both
the limited number of types available and the increasing number of connections required
as swarms increase inside. In this paper we present the multi-modelling of a swarm
of UAVs using the INTO-CPS technologies4. The multi-model comprises the simple
network model and a scalable set of controller-hardware model pairs, modelled in VDM
and 20-sim, respectively (see Section 2). We demonstrate the potential of this approach
and consider weaknesses and future directions based on experiences.

The remainder of the paper is structured as follows. Section 2 describes the modelling
technologies used in the paper. Section 3 introduces the case study, namely a swarm of
UAVs. Section 4 describes the modelling of the case study, focusing on the controller
and network model. Section 5 shows results of co-simulation of the multi-model. Finally,
Section 6 draws conclusions and presents future work.

2 Background

In this section we briefly describe the modelling tools used for the multi-modelling
covered in Section 4: the INTO-CPS technologies, VDM-RT and 20-sim.

2.1 INTO-CPS Technologies

The INTO-CPS technology allows the user to build and analyse multi-models comprising
multiple constituent models [9], using both discrete-event (DE) and continuous-time (CT)
formalisms. INTO-CPS adopts the Functional Mock-up Interface (FMI) standard, where
constituent models are packaged as Functional Mockup Units (FMUs). Over 30 different
tools can produce FMUs, with partial or upcoming support bringing the total to over 1005.
INTO-CPS provides a co-simulation engine, Maestro, which acts as a co-simulation
master algorithm, offering both fixed step size and variable step size co-simulation.
The INTO-CPS technologies are supported by the INTO-CPS Association, a group of
organisations working on the technologies, based around a community of industrial users.
As their organisations are part of the Association, INTO-CPS has guaranteed support for
FMUs produced by Overture and 20-sim, described below.

2.2 VDM-RT

The Vienna Development Method (VDM) [11] is a well-established formal method for
systematic analysis of system specifications. VDM++ is an object-oriented extension
of the original VDM Specification Language (VDM-SL) used for the development of
computer-based systems and software. VDM-RT is an extension of VDM++, intended
for the specification of real-time embedded and distributed systems [16]; it includes
features required for description of real-time controllers, in particular native support for
a computational time model and distribution of functionality between compute units,
interconnected by a communications network.

4 http://into-cps.org/
5 http://fmi-standard.org/tools/

PRELIM
IN

ARY P
ROCEEDIN

GS

2.3 20-sim

20-sim6 represents continuous-time (CT) models using graphs of connected blocks or
icons [8]. Blocks and icons contain differential equations or code that represent physical
phenomena, while the connections denote channels over which the phenomena interact.
These channels may be one-way (signals) or two-way (bonds). The bi-directional bonds
carry the domain-independent values of effort and flow— these map to familiar physical
concepts, e.g. voltage and current. Bonds offer a powerful, compositional and domain-
independent way to model physical phenomena. These CT models are solved numerically
to yield high-fidelity simulations of physical components.

3 Case Study

Swarms of relatively inexpensive UAVs have the potential to save time and money and
even lives across a variety of applications, including border patrol [12], monitoring
of nuclear power plants, monitoring of forest fires [4] and search missions for finding
missing persons [2]. Using automated guidance and autonomous decision making,
UAVs have the potential to operate for extended periods of time without significant
human supervision [6]. Consequently, they can be used for wilderness search and rescue
operations that may require hundreds of hours of search at low altitude, and using flight
profiles close to objects where piloted systems cannot be flown [1, 14]. Even with only
simple algorithms for generating search paths, a team of UAVs is more efficient than a
single UAV [15], therefore the development of robust, cooperative UAV systems will
lead to improved outcomes in operations such as search and rescue.

(a) (b)

Fig. 1. Quadcopter airframe and camera view

6 http://www.20sim.com/

PRELIM
IN

ARY P
ROCEEDIN

GS

http://www.20sim.com/

In this paper we consider a case study of a UAV swarm searching a geographical
location. The INTO-CPS technology was applied in the design of a UAV swarm for
searching and surveillance. Specifically, the swarm was tasked with collaboratively and
autonomously searching for human bodies within a specified area. Each UAV in the
swarm is a quadcopter, as shown in Figure 1a, a compact drone with four fixed-pitch
propeller blades and requiring a low-level loop controller for aerial stability. Searching
is carried by two downward-facing cameras (not modelled), covering the visual and
infrared spectrum [14]. This gives a rectangular footprint (the minimum of the two
cameras) as shown in Figure 1b. To search an individual area, a UAV must visit a number
of locations to guarantee visual coverage of its assigned area. As a swarm, the UAVs
must divide up larger search areas to be searched by individual UAVs.

4 Multi-Modelling of the UAV Swarm

4.1 Multi-model Composition

The UAV swarm is realised as a set of FMUs connected together as a multi-model. The
logical connections between the DE, CT and network models are shown in Figure 2a.
Each UAV is represented by a DE-CT model pair, representing the controller and
hardware respectively. The DE model passes control outputs (for the motors) to the CT
model, which in turn passes back positional information, i.e. x-, y- and z-coordinates.
Each DE model is also connected to the network model, so that the controllers can pass
messages for coordination. Figure 2b shows how these logical connections are actually
realised in the FMI protocol, via the co-simulation engine (Maestro).

4.2 CT Model

The CT model for a single UAV is shown in Figure 3. Each block is an element of the
physical system (motors, rotors, frame, battery). The arrows in the top left are inputs to
the model (throttle, pitch, yaw, and roll) which allows the DE model to move the UAV.
The arrows on the lower half are outputs (sensor readings of position and orientation).
Together these form the interface of the FMU. The physics and battery model allows the
controller to be tuned accurately for minimal-energy path planning and return-to-base
recharging. This model is derived from the high-fidelity model presented in [10], but
incorporates loop-level control. This presents a higher-level interface to the controller
and speeds up simulations as fewer synchronisation steps are needed per co-simulation.

4.3 DE Model

The DE model provides the supervisory control of the UAVs, specifically movement
and distributed coordination for searching. The modes of the controller are shown in
Figure 4. Each UAV searches a specific area using waypoints and visiting these in turn.
The waypoints cover the entire assigned search area, including along straight line paths
(see Section 5, as the UAV must pause briefly to take a clear image at each waypoint.
The controller also monitors its battery usage and returns to base to recharge, resuming

PRELIM
IN

ARY P
ROCEEDIN

GS

(a) Logical connections between constituent models in the multi-model

(b) Connections between FMUs and the co-simulation engine

Fig. 2. Diagrams showing logical and actual multi-model compositions

Fig. 3. Physical model of a quadcopter in 20-sim

PRELIM
IN

ARY P
ROCEEDIN

GS

its visiting of the waypoints until its search is complete. The costliest maneuver for a
quadcopter is a U-turn [13], which the path planner takes into account by minimising
U-turns when dividing and generating the assigned waypoints in the search space.

Fig. 4. Modes of the controller model

The UAV has four modes: INITIALIZATION, RETURN_TO_BASE, TAKE_OFF,
and FLY. The first mode that the UAV enters is the INITIALIZATION mode, which
the UAV will enter only once to generate waypoints for a specific area, and plan its
trajectory, as well as to store its initial coordinates. Since the UAV starts from a base,
it is essential to store those coordinates to return when it has finished its task, or when
there is a need for recharging.

When the UAV has generated waypoints and trajectory and has sufficient energy, it
enters the TAKE_OFF mode to carry out the mission. As we model a quadcopter able to
take-off and land vertically, the TAKE_OFF mode is used to launch the UAV vertically.
When the UAV reaches a desired altitude that is considered safe to start its mission, it
enters the FLY mode to visit the waypoints. These can be seen in Section 5.

In FLY mode, the UAV continually determines its target position, which is the next
waypoint that exists in the sequence. It is also responsible for updating the sequence with
the remaining waypoints, erasing the visited waypoints. A waypoint is considered visited
only if the UAV has reached approximately the position of that waypoint (in order to
take an accurate photo and ensure coverage). In this model, a waypoint was considered
visited if the UAV inclines less than 0.3 distance units (metres) per each coordinate.

The RETURN_TO_BASE mode forces the UAV to return to its base. The UAV
enters that mode for two reasons. Firstly, the UAV enters that mode when it finishes
its mission in order to return back to its base. Secondly, it enters that mode if there
is insufficient energy to carry on the mission. Note the UAV does not attempt to visit
extra waypoints on the way back to recharge, but this could be implemented as an

PRELIM
IN

ARY P
ROCEEDIN

GS

efficiency saving. In each iteration, the UAV calculates its average consumption based
on the distance travelled and the battery consumption. Afterwards, it checks whether
the distance from its base is greater than the distance that can be travelled, taking into
account the remaining energy. A safety buffer is included, so that a UAV will return to
base before its energy is exhausted, ensuring there is sufficient energy to return to base.

The actual flight controller model for each UAV is split across both the DE and CT
models. The DE model for each UAV is responsible for determining the difference be-
tween the current position of the UAV and its next waypoint. This difference, along with
the current velocity in the X,Y, and Z axes, become the input for three PID controllers,
one each for the UAVs X axis and Y axis, that output pitch and roll angles for the drone
to adopt and a third for the Z axis that outputs a throttle setting to maintain the target
altitude. These pitch, roll and throttle values are sent from the DE controller to the CT
model of the UAV (Figure 2a), this is consistent with an ‘attitude mode’ of flight control
that is found on many multi-rotor UAVs. The CT model receives the pitch and roll and
uses a PID controller in the ‘Rotation Response’ block (Figure 3) to determine the actual
orientation of the UAV at any point in time. The orientation is combined with the throttle
value in the ‘Linear Response’ block to compute the velocity of the UAV relative to its
own axis, which is translated into a global velocity in the ‘Translation to XYZ’ block.
All sensing of the UAVs orientation, position and velocity is performed in the CT model
(taken directly from the computed values), with the X,Y,Z position and speeds sent back
to the DE controller in the ’poisitions’ message (Figure 2a).

4.4 Network Model

The network model is a single FMU that represents an abstract communications medium,
called the ether [7]. We adopt this approach because connecting each controller model
directly to every other controller is unwieldy, and FMI currently lacks native support
for such network connections. The ether is aware of all controllers connected to it, and
passes all messages received to all other UAVs. By encoding messages as strings, we
can also overcome the limited types supported by FMI connections. In this multi-model,
identifiers and message recipients are handled by the VDM model directly, because
this would form part of the software as deployed on the real UAVs, however message
handling could be added to the ether model if this was appropriate.

The network FMU used in this case study is an initial, abstract network model built
in VDM as a proof of concept for modelling communications within the limitations of
FMI. The model does not currently cover advanced features such as specific protocols,
error handling, or data rates. The network model is also unaware of the physical world
meaning that communications are not affected by distance, orientation or obstruction and
so, without explicit modelling of faults elsewhere in the multi-model, the communication
network is fully connected at all times.

4.5 Distributed Coordination with Communication

During INITIALIZATION, each UAV announces itself and a LEADER is selected, with
the others becoming WORKER UAVs. In the current model, the selection is deterministic
(the UAV with the lowest id becomes leader), however Bryans et al. [3] demonstrate a

PRELIM
IN

ARY P
ROCEEDIN

GS

robust, distributed election scheme that could be implemented in the final system. The
LEADER then divides the search space between the available UAVs and assigns them a
sub-area. Each UAV then searches its sub-area, managing waypoints and battery levels.

Using the ether FMU, each UAV is able to broadcast its id number, position, battery
life, a tag id, four real numbers, an acknowledgment, a map consisting of the id numbers
of the UAVs undertaking a task and the coordinates of their task, and a map consisting
of the UAVs that have finished their tasks and the coordinates of their tasks. The tag id
indicates which UAV should undertake a task; the four (real) numbers form two pairs of
coordinates indicating the sub-area that the worker UAV should cover. The worker UAV
knows when a task is intended for itself when the tag id is equal to its id number.

The acknowledgment is used from the worker UAVs to send an acknowledgment
to the LEADER that they received their task. After the completion of their task, the
workers send the LEADER another acknowledgment indicating that they finished it. If
the LEADER receives such an acknowledgment, it erases the worker UAV from the list
of the UAVs undertaking a task, and stores the UAV and its task in the map of UAVs that
have finished their tasks. The LEADER does the same when it finishes its task.

The two maps are being sent from the LEADER UAV to the other members of the
team, allowing them to know which UAVs have been assigned a task, and which UAVs
have finished their tasks and the areas covered so far. At this stage, these maps are
not used for anything, but have potential for future work to incorporate more dynamic
cooperation, such as in-flight reassignment or responses to potential results.

After INITIALIZATION and TAKE_OFF, the UAV goes into FLY mode. During
FLY mode, each UAV transmits its id number and position, allowing every member of
the swarm to determine the other UAVs that are taking part in the mission and their
position. Processing of these messages is shown in the extract in Listing 1.1. In the
message tuple, the first (natural) number is the tag id, the next three (real) numbers are
the x-, y-, and z-positions of the UAV, and the final (real) number is the battery level.

If a UAV is not heard from in a certain amount of time, its sub-area is reassigned to
the first available UAV to finish its initial sub-area. If communication with the LEADER
is lost, a new leader is selected (the UAV with the next lowest id). In this way, the swarm
is resilient to lost UAVs.

5 Results

The multi-model was successfully able to simulate a range of scenarios and demonstrate
the possibility of studying distributed communications and swarm behaviours with
multi-modelling techniques. In these results the swarm is homogeneous, with all UAVs
beginning at the same time, from the same spot, and with the same initial fuel.

A live plot of a single UAV searching an area is shown in Figure 5. Here the vertical
take-off is shown as {uav}.uav.posZ (green), with a zig-zag searching pattern
shown by {uav}.uav.posX and {uav}.uav.posY (blue and orange respectively).
At 400 seconds the UAV returns to base for recharging before completing its search.

Such visualisations give intuitive feedback to software engineers about the effects
of their design choices, however to better demonstrate the behaviour of the swarms, the
co-simulation outputs (in CSV format) were post-processed in Matlab. A plan view of

PRELIM
IN

ARY P
ROCEEDIN

GS

�
public uavPosition :: x : real

y : real
z : real

bat : real;
...

Step() == cycles(2)
(

-- broadcast own position
etherOut.setValue(

VDMUtil‘val2seq_of_char[nat*real*real*real*real](
mk_(id, posX.GetValue(), posY.GetValue(),

posZ.GetValue(), battery.GetValue())
)

);

-- receive messages
if len etherIn.getValue() >= 2 then (

let mk_(list,l) =
VDMUtilDebug‘seq_of_char2val[
seq of(nat*real*real*real*real)](etherIn.getValue())
in if list then (

for all z in set inds l do (
let x = l(z) in (uavPositions:= uavPositions ++

{x.#1 |-> mk_uavPosition(x.#2,x.#3,x.#4,x.#5)};
)

)
)

)
)
� �

Listing 1.1. Message processing in the UAV controller VDM model

the data shown in Figure 5 is given in Figure 6a. Here the waypoints are marked as
triangles, with the path of the UAV as a black line, including its return to base to recharge.
The UAV controller divided the space along the long axis to minimise U-turns.

Figure 6c shows a UAV swarm dividing and searching an area cooperatively. As in
Figure 6a this is a plan view of the x- and y-position of the UAVs. In this co-simulation,
there are three UAVs that can potentially join the swarm, however as the area is smaller
than in Figure 6a, negotiations result in two of the three UAVs take a divide-and-conquer
approach to perform the search cooperatively (represented by the black and green lines).
Note that they fly in a latitude-first direction to minimise U-turns. Figure 6b shows how
the camera footprint captures the searched area.

Figure 6d shows the same three-UAV swarm searching another area. A communica-
tion fault is included in the UAV controller FMU and when triggered, by a combination
of time and UAV id, it blocks that UAV from communicating with the remainder of the

PRELIM
IN

ARY P
ROCEEDIN

GS

Fig. 5. Live plot of the position of a single UAV during a search

(a) (b)

(c) (d)

Fig. 6. Plan view of UAV searches

PRELIM
IN

ARY P
ROCEEDIN

GS

swarm. The second UAV (green line) is then ‘lost’ from the swarm, as can be seen by
the line ending at around point (17,28). After a timeout, the leader decides that this UAV
is missing as no further communications were received. The leader then reassigns this
area to another UAV (specifically itself, in this scenario), which completes searching this
area after completing its own sub-area.

6 Conclusions and Future Work

In this paper we applied a multi-modelling approach to a swarm of UAVs. The multi-
model uses a simple network model [5] to allow a set of UAV controllers to communicate
using complex data types in order to model realistic communication protocols. Each
controller model is paired with a high-fidelity physics model. The results presented
demonstrate the potential of this paradigm for multi-modelling of swarms and other
CPSs with distributed control within the constraints of the FMI standard.

The network FMU used in this case study is an initial, abstract network model built in
VDM as a proof of concept for modelling communications within the limitations of FMI.
As highlighted in previous work [5], there are some drawbacks to that specific network
FMU approach. Firstly, messages require a number of co-simulation cycles to reach
recipients, so careful consideration of co-simulation synchronisation timing is required7.
Secondly, the model does not currently cover advanced features such as specific protocols,
error handling, or data rates. The openness of FMI means that network models can be
swapped, either with an improved version of the existing FMU or replacing it with a
dedicated network model such as OpNet or NS2, which in combination with an increase
in multi-model synchronisation rate to some multiple of the controller frequency, could
improve network modelling fidelity.

However, increasing the synchronisation rate of whole multi-model is undesirable
since synchronisation additional synchronisation steps above the frequency of a DE
controller have no effect on behaviour but will increase the time to complete a simulation.
The multi-model could be altered to make use of the hierarchical co-simulation feature
of Maestro to target increasing the frequency of the controller-ether synchronisations
while leaving the controller-uav physics synchronisations at their current rate.

Improvement of the network model is a key next step. One such improvement would
be the addition of fault behaviour to better support the behaviour that is demonstrated
in Figure 6d. The goal here would be to move the fault triggering from its current hard
coded state to something that may be altered more easily, such as either parameters of
the FMU or perhaps a script that could be read in at the beginning of a simulation.

Another intriguing next step forward is to observe in Figure 2a the potential for an
analogue of the network model to link together CT models on the bottom of the diagram.
This would suggest an “environmental ether” model representing physical interactions
between components. This could include, for example, physical obstacles, occlusion
of line-of-site for communications, and even collisions. Physical interactions such as
contact and collision models are particularly challenging as they require tightly-coupled
interactions.

7 The Maestro co-simulation engine supports minimum frequency constraints which could
alleviate this problem somewhat

PRELIM
IN

ARY P
ROCEEDIN

GS

Acknowledgements

The work reported here is supported by the EU Horizon 2020 Projects “Integrated
Tool Chain for Model-based Design of Cyber-Physical Systems” (INTO-CPS, Grant
Agreement 644047) and “CPS Engineering Labs - expediting and accelerating the
realization of cyber-physical systems” (CPSELabs, Grant Agreement 644400).

References

1. Adams, J.A., Humphrey, C.M., Goodrich, M.A., Cooper, J.L., Morse, B.S., Engh, C., Ras-
mussen, N.: Cognitive task analysis for developing unmanned aerial vehicle wilderness
search support. Journal of Cognitive Engineering and Decision Making 3(1), 1–26 (2009),
https://doi.org/10.1518/155534309X431926

2. Beard, R.W., McLain, T.W., Nelson, D.B., Kingston, D., Johanson, D.: Decentralized coop-
erative aerial surveillance using fixed-wing miniature uavs. Proceedings of the IEEE 94(7),
1306–1324 (July 2006)

3. Bryans, J., Fitzgerald, J., Payne, R., Kristensen, K.: Maintaining Emergence in Systems
of Systems Integration: a Contractual Approach using SysML. In: INCOSE International
Symposium on System Engineering. INCOSE (2014)

4. Casbeer, D.W., Kingston, D.B., Beard, R.W., McLain, T.W.: Cooperative forest fire surveil-
lance using a team of small unmanned air vehicles. International Journal of Systems Science
37(6), 351–360 (2006), https://doi.org/10.1080/00207720500438480

5. Couto, L.D., Pierce, K.: Modelling Network Connections in FMI with an Explicit Network
Model. In: J. S. Fitzgerald, P.W.V.T.J., Oda, T. (eds.) The 15th Overture Workshop. pp. 31–43.
Newcastle University, Computing Science. Technical Report Series. CS-TR- 1513, Newcastle,
England (September 2017)

6. DeLima, P., Pack, D.: Toward developing an optimal cooperative search algorithm for multiple
unmanned aerial vehicles. In: 2008 International Symposium on Collaborative Technologies
and Systems. pp. 506–512 (May 2008)

7. Fitzgerald, J., Larsen, P.G., Verhoef, M. (eds.): Collaborative Design for Embedded Systems
– Co-modelling and Co-simulation. Springer (2014), http://link.springer.com/
book/10.1007/978-3-642-54118-6

8. Kleijn, C.: Modelling and Simulation of Fluid Power Systems with 20-sim. Intl. Journal of
Fluid Power 7(3) (November 2006)

9. Larsen, P.G., Fitzgerald, J., Woodcock, J., Fritzson, P., Brauer, J., Kleijn, C., Lecomte, T., Pfeil,
M., Green, O., Basagiannis, S., Sadovykh, A.: Integrated tool chain for model-based design
of Cyber-Physical Systems: The INTO-CPS project. In: 2016 2nd International Workshop on
Modelling, Analysis, and Control of Complex CPS (CPS Data). IEEE, Vienna, Austria (April
2016), http://ieeexplore.ieee.org/document/7496424/

10. Larsen, P.G., Fitzgerald, J., Woodcock, J., Nilsson, R., Gamble, C., Foster, S.: Towards
semantically integrated models and tools for cyber-physical systems design. In: Margaria, T.,
Steffen, B. (eds.) Leveraging Applications of Formal Methods, Verification and Validation,
Proc 7th Intl. Symp. Lecture Notes in Computer Science, vol. 9953, pp. 171–186. Springer
International Publishing (2016)

11. Larsen, P.G., Lausdahl, K., Battle, N., Fitzgerald, J., Wolff, S., Sahara, S., Verhoef, M., Tran-
Jørgensen, P.W.V., Oda, T.: VDM-10 Language Manual. Tech. Rep. TR-001, The Overture
Initiative, www.overturetool.org (April 2013)

12. Leng, G., Qian, Z., Govindaraju, V.: Multi-UAV surveillance over forested regions. Pho-
togrammetric Engineering & Remote Sensing 80(12) (2014)

PRELIM
IN

ARY P
ROCEEDIN

GS

https://doi.org/10.1518/155534309X431926
https://doi.org/10.1080/00207720500438480
http://link.springer.com/book/10.1007/978-3-642-54118-6
http://link.springer.com/book/10.1007/978-3-642-54118-6

13. Maza, I., Ollero, A.: Multiple uav cooperative searching operation using polygon area de-
composition and efficient coverage algorithms. In: Alami, R., Chatila, R., Asama, H. (eds.)
Distributed Autonomous Robotic Systems 6. pp. 221–230. Springer Japan, Tokyo (2007)

14. Rudol, P., Doherty, P.: Human body detection and geolocalization for uav search and rescue
missions using color and thermal imagery. In: 2008 IEEE Aerospace Conference. pp. 1–8
(March 2008)

15. Sujit, P.B., Ghose, D.: Search using multiple uavs with flight time constraints. IEEE Transac-
tions on Aerospace and Electronic Systems 40(2), 491–509 (April 2004)

16. Verhoef, M., Larsen, P.G.: Enhancing VDM++ for Modeling Distributed Embedded Real-time
Systems. Tech. rep., Radboud University Nijmegen (March 2006), a preliminary version of
this report is available on-line at http://www.cs.ru.nl/~marcelv/vdm/

PRELIM
IN

ARY P
ROCEEDIN

GS

http://www.cs.ru.nl/~marcelv/vdm/

	preface
	pc
	author_index
	toc
	paper_1
	paper_2
	paper_3
	paper_4
	paper_5
	paper_6
	paper_7
	paper_8

