Automated Generation of C# and
.NET Code Contracts from VDM-SL
Models

Steffen P. Diswal, Peter W. V. Tran-Jorgensen and
Peter Gorm Larsen

AARHUS
/ NP UNIVERSITY

DEPARTMENT OF ENGINEERING

14th Overture workshop, FM 2016
Limassol, Cyprus — November 7



Introduction The translation Performance results Conclusion and future plans

Agenda

Introduction
The translation
Performance results

Conclusion and future plans

[2/17]



Introduction The translation Performance results Conclusion and future plans

Agenda

Introduction

[3/17]



Introduction The translation Performance results Conclusion and future plans

Code generating a VDM specification

e Leverage model during implementation
» Contracts describe desired system properties
» Does the implementation satisfy the specification?

[4/17]



Introduction

Code generating a VDM specification

e Leverage model during implementation
» Contracts describe desired system properties
» Does the implementation satisfy the specification?

¢ A VDM-SL-to-Java/JML translation already exists

e JML is a Java-based technology
« JML tools are falling behind

[4/17]



Introduction

Code generating a VDM specification

e Leverage model during implementation
» Contracts describe desired system properties
» Does the implementation satisfy the specification?

¢ A VDM-SL-to-Java/JML translation already exists

e JML is a Java-based technology
« JML tools are falling behind

e .NET Code Contracts

e A DbC technology for .NET (several languages)
e Library-based (unlike JML)
e Robust, open-source technology

[4/17]



Introduction The translation Performance results Conclusion and future plans

Agenda

The translation

[5/17]



Introduction The translation Performance results Conclusion and future plans

VDM-SL-to-C# translation

« Tries to make the generated code look natural
» Uses .NET Code Contracts

[6/17]


https://github.com/SPDiswal/VdmSl-to-Cs

The translation

VDM-SL-to-C# translation

« Tries to make the generated code look natural
» Uses .NET Code Contracts

« Inspired by Overture’s Java/JML translation
e Addresses issues with the JML translation

[6/17]


https://github.com/SPDiswal/VdmSl-to-Cs

The translation

VDM-SL-to-C# translation

« Tries to make the generated code look natural
» Uses .NET Code Contracts

e Inspired by Overture’s Java/JML translation
e Addresses issues with the JML translation

¢ No support for traces yet

[6/17]


https://github.com/SPDiswal/VdmSl-to-Cs

The translation

VDM-SL-to-C# translation

Tries to make the generated code look natural
» Uses .NET Code Contracts
Inspired by Overture’s Java/JML translation
e Addresses issues with the JML translation
No support for traces yet
Translation formulated as rules

[6/17]


https://github.com/SPDiswal/VdmSl-to-Cs

The translation

VDM-SL-to-C# translation

Tries to make the generated code look natural
» Uses .NET Code Contracts
Inspired by Overture’s Java/JML translation
e Addresses issues with the JML translation
No support for traces yet
Translation formulated as rules
Visit the project on Github'

'Github: https://github.com/SPDiswal/VdmSl-to-Cs
[6/17]


https://github.com/SPDiswal/VdmSl-to-Cs

The translation

Example: pre- and postconditions

operations
AddCard: Card ==> ()

pre c not in set validCards

post c in set validCards;
~

AddCard(c) == validCards := validCards union {c}

public static void AddCard(Card c) {
Contract.Requires(c !'= null);
Contract.Requires (PreAddCard(c, State));
Contract.Ensures (

Copy()), State));
State.ValidCards.Add (c);

PostAddCard(c, Contract.OldValue (State.

[717]



Introduction The translation Performance results Conclusion and future plans

Pre- and postcondition functions

[Pure]

public static bool PreAddCard(Card c, St st) {
Contract.Requires(c !'= null);
Contract.Requires (st != null);

return !st.ValidCards.Contains(c);

[Pure]

public static bool PostAddCard(Card c, St oldSst,
St st) {
Contract.Requires(c != null);
Contract.Requires (oldSt != null);
Contract.Requires (st != null);

return st.ValidCards.Contains(c);

[8/17]



Introduction The translation Performance results Conclusion and future plans

Example: type aliases

types
Pin = nat
inv p == p <= 9999;

» Type used to represent a pin code
e pe{0,1,...,9999}

[9/17]



The translation

Type aliases

public sealed class Pin : ICopyable<Pin>, IEquatable<Pin> {
public int Value { get; }

public Pin(int @value) { Value = @value; }

[ContractInvariantMethod]

private void ObjectInvariant () {
Contract.Invariant (Value >= 0);
Contract.Invariant (InvPin (Value));

[Pure]

public static bool InvPin (int p) {
Contract.Requires(p >= 0);
return p <= 9999;

}

// Equals, GetHashCode etc. have been omitted.

[10/17]



The translation

Rule-based translation (Example)

Translating invariants

Let / be an invariant for type T, let e; be the logical predi-
cateofi,andlet T,,,: T —> bool be the self-contained
function for i in VDM-SL. Then T becomes an appropri-
ate type T’ in C# and T,,, becomes a member of T’ as
the pure method 7. . The special ObjectInvariant
helper method of T’ calls Contract.

Invariant (T, (this)). T, evaluates and returns e,.

[11/17]



Introduction The translation Performance results Conclusion and future plans

Agenda

Performance results

1217



Performance results

Experiments

« Exhaustive testing of FAD code obfuscation algorithm
e Performance analysis

» Experiment I: No contracts checked
« Experiment Il: Contracts specified, but not checked
« Experiment lll: Contracts specified and checked

[13/17]



Performance results

Results

Size .NETI .NETIl .NETHl Javal Java ll Java lll
[ms] [ms] [ms] [ms] [ms] [ms]

1 1 1 1 1 2 2

2 1 1 1 2 20 22

3 1 1 1 4 245 254

4 15 15 23 22 3,103 3,212

5 190 189 295 212 37,626 38,401

6 2,273 2,279 3,610 2,498 440,716 443,523

e .NET Il completes in ~ 3.6 seconds
e Java lll completes in =~ 7.4 minutes
e Huge difference between Java | and Il

[14/17]



Introduction The translation Performance results Conclusion and future plans

Analysing the results

o .NET Code Contracts vs. JML

« Slightly different set of constructs
e Semantics of constructs sometimes different

[15/17]



Performance results

Analysing the results

o .NET Code Contracts vs. JML

« Slightly different set of constructs
e Semantics of constructs sometimes different

e .NET contracts add 60% overhead

[15/17]



Performance results

Analysing the results

o .NET Code Contracts vs. JML

« Slightly different set of constructs
e Semantics of constructs sometimes different

e .NET contracts add 60% overhead
« Java ll/lll indicate poor OpenJML performance

[15/17]



Introduction The translation Performance results Conclusion and future plans

Agenda

Conclusion and future plans

[16/17]



Introduction The translation Performance results Conclusion and future plans

Conclusion and future plans

o VDM-SL-to-C# translation

o Uses .NET Code Contracts
e Fully automated
e Command-line support

[1717)



Introduction The translation Performance results Conclusion and future plans

Conclusion and future plans

o VDM-SL-to-C# translation

e Uses .NET Code Contracts
e Fully automated
e Command-line support

e Promising performance results

[1717)



Conclusion and future plans

Conclusion and future plans

e VDM-SL-to-C# translation
e Uses .NET Code Contracts
e Fully automated
e Command-line support
e Promising performance results
e Future plans

Integrate with the Overture IDE (GUI)
Pattern matching (native support in C# 7.0)
Add regression tests

Add support for traces

[1717)



	Introduction
	The translation
	Performance results
	Conclusion and future plans

