
Fuyuki Ishikawa
National Institute of Informatics, Japan

Case Studies on Combination of 
VDM and Test-Driven Approaches: 

Application, Model Finding and Refinement



Thanks to the Overture community!
Today in my role as an educator for the industry:
Top SE program at NII since 2007
(reported in the 7th WS, and today in FMSEET’15)

Every year 20-35 persons (among 40) take the 
VDM class (as the starting point of FM)
A few of them choose VDM for their 3 or 6 month in-
depth studies (e.g., a case study with Crescendo)

SQiP program since 2011
Every year several engineers use VDM for 9 month 
studies and discussions on specification

First of All

2015/6/23 f-ishikawa@13thOvertureWS 2

1. Overview



Connection between VDM and Test-Driven 
Development (TDD) 

Well, TDD and its extensions (such as BDD, ATDD) are 
somewhat popular for a certain community of 
engineers (the agile camp)
In the discussions with engineers/researchers, some 
of them tried to investigate the connections

This talk reports three case studies
Application of TDD to VDM
Model finding for TDD and VDM
Refinement by Example

Today’s Topic

2015/6/23 f-ishikawa@13thOvertureWS 3

1. Overview



Introduction to TDD
Application of TDD to VDM
Model Finding for VDM and TDD (or Testing)
Refinement by Example

2015/6/23 4f-ishikawa@13thOvertureWS

TOC



Sample: a classical problem to judge a triangle type, 
equilateral, isosceles, scalene and non-triangle (Myers)

How TDD Works

- Can judge equilateral
- Can judge isosceles
- Can judge scalene
- …

(Initial) Check List (TODOs)

2015/6/23 f-ishikawa@13thOvertureWS 5

1. Overview



Sample: a classical problem to judge a triangle type, 
equilateral, isosceles, scalene and non-triangle (Myers)

How TDD Works

- Can judge equilateral
- Can judge isosceles
- Can judge scalene
- …

Check List (TODOs)
Choose a simple one 
and write a test case

TestEquilateral : () ==> ()
TestEquilateral() ==
assertTrue(judge(5,5,5)=<EQUI>);

2015/6/23 f-ishikawa@13thOvertureWS 6

Note: usually target program code, 
here explained using the VDM syntax

1. Overview



Sample: a classical problem to judge a triangle type, 
equilateral, isosceles, scalene and non-triangle (Myers)

How TDD Works

- Can judge equilateral
- Can judge isosceles
- Can judge scalene
- …

Check List (TODOs)
Choose a simple one 
and write a test case

TestEquilateral : () ==> ()
TestEquilateral() ==
assertTrue(judge(5,5,5)=<EQUI>);

Fail

2015/6/23 f-ishikawa@13thOvertureWS 7

1. Overview



Sample: a classical problem to judge a triangle type, 
equilateral, isosceles, scalene and non-triangle (Myers)

How TDD Works

- Can judge equilateral
- Can judge isosceles
- Can judge scalene
- …

Check List (TODOs)
Choose a simple one 
and write a test case

TestEquilateral : () ==> ()
TestEquilateral() ==
assertTrue(judge(5,5,5)=<EQUI>);

2015/6/23 f-ishikawa@13thOvertureWS 8

Write code to pass

types
TType = <EQUI>;

functions
judgeTriangle : int*int*int -> TType
judgeTriangle(a, b, c) ==

return <EQUI>;

1. Overview



Sample: a classical problem to judge a triangle type, 
equilateral, isosceles, scalene and non-triangle (Myers)

How TDD Works

- Can judge equilateral
- Can judge isosceles
- Can judge scalene
- …

Check List (TODOs)
Choose a simple one 
and write a test case

TestEquilateral : () ==> ()
TestEquilateral() ==
assertTrue(judge(5,5,5)=<EQUI>);

Pass

2015/6/23 f-ishikawa@13thOvertureWS 9

Write code to pass

types
TType = <EQUI>;

functions
judgeTriangle : int*int*int -> TType
judgeTriangle(a, b, c) ==

return <EQUI>;

1. Overview



Sample: a classical problem to judge a triangle type, 
equilateral, isosceles, scalene and non-triangle (Myers)

How TDD Works

- Can judge equilateral
- Can judge isosceles
(case a=b)

- Can judge scalene
- …

Check List (TODOs)
Choose a simple one 
and write a test case

TestIsosceles1 : () ==> ()
TestIsosceles1 ==
assertTrue(judge(4,4,2)=<ISO>);

Pass

2015/6/23 f-ishikawa@13thOvertureWS 10

Write code to pass

types
TType =
<EQUI> | <ISO>;

judgeTriangle(a, b, c) ==
if a = b and b <> c then

return <ISO>
else return <EQUI>;

May evolve

g
Generalize by 
triangulation

Repeat the 
small step

1. Overview



“Clean code that works” is often too difficult
(in the triangle problem I pretended to think so)

Let’s start with “code that works”
“Design for clean code” usually does not work with 
(mysteriously) some of the test cases

Test what you wrote quickly
Writing long code without test accumulates faults, 
leading to hard debug and rollback

Test cases give confidence as examples
It is difficult to have confidence on validity only with 
declarative, general descriptions

2015/6/23 11f-ishikawa@13thOvertureWS

(Part of) Why TDD?
1. Overview



BDD (Behavior-Driven Development)
ATDD (Acceptance Test-Driven Development)

Start with test cases for high-level TODOs 
(outside-in, not starting with the unit testing level)
Link human-readable text/graphical description to 
executable test cases

Tests as Documents & Specification by Example

2015/6/23 12f-ishikawa@13thOvertureWS

cf. BDD and ATDD

Scenario: A woman over 15 years old can marry in Japan
Given I have entered false into the system (asked is male?)
And I have entered 16 into the system
When I press “can marry?”
Then the result should be true

1. Overview



Introduction to TDD
Application of TDD to VDM
Model Finding for VDM and TDD (or Testing)
Refinement by Example

2015/6/23 13f-ishikawa@13thOvertureWS

TOC



No reason to deny similar application of TDD for 
(executable specification of) VDM, if you want

Except for your feeling of doubts, and the difficulty to 
prove real effectiveness (e.g., [Erdogmus, TSE05])

A case study with an engineer
He had a feeling that it is good for the first step of 
VDM learning (anyway run, check asap)
A similar way of application worked
One additional point is: we should test on pre- and 
post-condition functions

2015/6/23 14f-ishikawa@13thOvertureWS

Application of TDD to VDM
2. Application



Value of testing and testing in small steps

Test cases to check “post-conditions deny 
wrong result”, or find false-positive check by 
weak post-conditions

2015/6/23 15f-ishikawa@13thOvertureWS

Notable Experiences

post
a=b and b=c <=> ¥RESULT=<EQUI>
a<>b and b<>c <=> ¥RESULT=<SCA>
a=b and b<>c or b=c and c<>a or

c=a and a<>b <=> ¥RESULT=<ISO>
...

assertTrue(
judge(5,3,5)=<ISO>

)

Post-cond fails

post
¥result=<SCA> => a<>b and b<>c

Return <SCA> from the explicit part for 
the input (5,3,5) is accepted by this post-condition SILENTLY

assertFalse(
post_judge
(5,3,5,<SCA>)

)

2. Application



Introduction to TDD
Application of TDD to VDM
Model Finding for VDM and TDD (or Testing)
Refinement by Example

2015/6/23 16f-ishikawa@13thOvertureWS

TOC



TDD (or just testing) relies on “good” test cases
Test design, or specification of test cases, matters
e.g., at least one case for (a=b and b<>c)

What we want to do is validation among 
specification (properties), test-design and test 
cases (examples)
Prototyped a “Spec-Test-Go-Round” tool: 

Language to mix implicit specification, test design 
and test case descriptions (on VDM or Java)
Tool to generate test cases by a constraint solver 
(current impl. Is the Java version)

2015/6/23 17f-ishikawa@13thOvertureWS

Model Finding
3. Model Finding



First give precondition

18

Simple Example

pre a > 0 and b > 0 and c > 0

a b c
4 2 1 [LowerB]
6 6 6
3 12 2

1 [LowerB] 1 [LowerB] 7

Cases with 
valid inputs

a b c
-5 [Under] 2 1 [LowerB]

5 -1 [Under] 0 [UnderB]
0 [UnderB] 0 [UnderB] 2

12 12 -30 [Under]

Cases with
invalid inputs

2015/6/23 f-ishikawa@13thOvertureWS

3. Model Finding



Add weak/partial postcondition

19

Simple Example

post a = b and b = c => ¥result = <EQUI>

a b c ¥result Case Prop.
8 8 8 EQUI

1 [LowerB] 3 3 NON
6 6 1 SCA
3 5 7 EQUI

a b c ¥result Case Prop.
5 5 5 NON
3 3 3 SCA

1 [LowerB] 1 [LowerB] 1 [LowerB] SCA
10 10 10 ISO

2015/6/23 f-ishikawa@13thOvertureWS

3. Model Finding

Cases with 
valid inputs
and correct
outputs

Cases with
valid inputs
and incorrect
outputs



Add a specific test case (or example) 

20

Simple Example

case ¥"ex-equi“
a=5 and b=5 and c=5 and ¥result=EQUI

a b c ¥result Case Prop.
5 5 5 EQUI [ex-equi]

1 [LowerB] 3 3 NON
6 6 1 SCA
12 12 12 EQUI
3 5 7 EQUI

2015/6/23 f-ishikawa@13thOvertureWS

3. Model Finding

Cases with 
valid inputs
and correct
outputs

(detected if inconsistent with the specification)



Add test designs

21

Simple Example

partition{
¥"p-equi" a=b && b=c, ¥"p-sca" a<>b && b<>c,
¥"p-iso1" a=b && b<>c, ¥"p-iso2" b=c && c<>a,
¥"p-iso3" c=a && a<>b

}

a b c ¥result Case Prop.
5 5 5 EQUI [ex-equi, p-equi]
5 3 4 SCA [ex-sca, p-sca]
4 4 2 ISO [p-iso1]
1 10 10 EQUI [p-iso2]
5 2 5 NON [p-iso3,p-sca]
3 6 6 NON [p-iso2]

missing c <> a

2015/6/23 f-ishikawa@13thOvertureWS

3. Model Finding

Cases with 
valid inputs
and correct
outputs



Other functions/usages (details omitted)
Validation of test cases with test designs
Automated insertions of test designs : 
e.g., make A true in (A => B), 
use all of Boolean or enum values, etc.

The first prototype simply based on Alloy 
Analyzer (with symbolic encoding heuristics)
Experiment through one-day 
seminars with 60 people 
in total (most from the industry)

22

Prototype and Seminar

2015/6/23 f-ishikawa@13thOvertureWS

3. Model Finding



Advantages (multiple choices allowed)

23

Questionnaire Results (1)

Enable to incorporate principles from TDD, formal methods,
test design 22
Enable to run the tool as soon as some description is given 22
Make easier use of formal methods and solvers 17
Provide opportunities to enlarge and learn viewpoints 16
Is a general-purpose tool to support various tasks to some 
extent 14
Enable lightweight usages such as partially automated test 
design 14

2015/6/23 f-ishikawa@13thOvertureWS

3. Model Finding



Effective Usages (multiple choices allowed)

24

Questionnaire Results (2)

Education and enhancement of understanding and 
awareness to enlarge insights of mid-level engineers 15
Management and discussion on test cases in TDD 14
Introduction and education of foundations for beginners 12
Clarification and validation of constraints in domain 
analysis or specification construction 11
Assistance of test design for quality assurance 10
Clarification and validation of logic regardless of the task 9
Machine-readable standard comment formats on program 
code 7
Formalization and validation before using existing formal 
methods 7

Easy use of solvers on complex problems 4
2015/6/23 f-ishikawa@13thOvertureWS

3. Model Finding



Introduction to TDD
Application of TDD to VDM
Model Finding for VDM and TDD (or Testing)
Refinement by Example

2015/6/23 25f-ishikawa@13thOvertureWS

TOC



2015/6/23 26f-ishikawa@13thOvertureWS

Simplistic? View on Refinement
4. Refinement

I think we should make a more systematic way 
for validation of the relationship between 

an abstract model and its next model

Abstract
Model

Concrete
Model



2015/6/23 27f-ishikawa@13thOvertureWS

Simplistic? View on Refinement
4. Refinement

I think we should make a more systematic way 
for validation of the relationship between 

an abstract model and its next model

Abstract
Model

Concrete
Model

We have refinement!



2015/6/23 28f-ishikawa@13thOvertureWS

Simplistic? View on Refinement
4. Refinement

For example …

Abstract
Model

Concrete
Model

Behavior only 
for success cases

Behavior including
fault handling

Scenario Increment



2015/6/23 29f-ishikawa@13thOvertureWS

Simplistic? View on Refinement
4. Refinement

For example …

Abstract
Model

Concrete
Model

This is the rule of Event-B!

Behavior only 
for success cases

Behavior including
fault handling

Scenario Increment

Nondeterministic 
Success/Failure

Conditional Branch

Removal of Non-Deteminism



2015/6/23 30f-ishikawa@13thOvertureWS

Simplistic? View on Refinement
4. Refinement

Abstract
Model

Concrete
Model

You connect the models by 
link/gluing invariants

I = P(xin_a_1, …, xin_a_m, xin_c_1, …, xin_c_n)



2015/6/23 31f-ishikawa@13thOvertureWS

Simplistic? View on Refinement
4. Refinement

Are the internal representation in the models 
(“mock-up” or “ghost” variables) really central

and should we make effort on them?

Abstract
Model

Concrete
Model

You connect the models by 
link/gluing invariants

I = P(xin_a_1, …, xin_a_m, xin_c_1, …, xin_c_n)



User-defined rules?
At the cost of losing correctness-by-construction
(which actually most developers do not have now)

Definition by test cases on observable behavior?
Do not constraint the internal variables

Refinement by Example?
Use test cases that give confidence on inheritance of 
the essences, (as in Specification by Example)
Allow custom mapping rules between test cases for 
the two models

A case study (not formalized into a framework)

2015/6/23 32f-ishikawa@13thOvertureWS

Simplistic? View on Refinement
4. Refinement



2015/6/23 33f-ishikawa@13thOvertureWS

Simple Example
types
authenticator = token;

operations
public login :
token ==> ()

login(authenticator)
== ...;

types
Authenticator ::
username : seq of char
password : seq of char;

operations
public login :
Authenticator ==> ()
login(authenticator) 
== ...;

Conceptual System Model
(Use Case Level Interface)

Design Model
(Design Level Interface)



2015/6/23 34f-ishikawa@13thOvertureWS

Simple Example
types
authenticator = token;

operations
public login :
token ==> ()

login(authenticator)
== ...;

types
Authenticator ::
username : seq of char
password : seq of char;

operations
public login :
Authenticator ==> ()
login(authenticator) 
== ...;

Conceptual System Model
(Use Case Level Interface)

Design Model
(Design Level Interface)

test1A()==
...
login(mk_token("tom"));
...

test1A()==
...
login(mk_Authenticator

("tom", "tompwd"));
...Define matching rule for the test cases

(e.g., assertion over arguments in each line pair of 
invocation of the corresponding methods)



3 studies to discuss TDD and VDM together
Run by curiosity and ideas of engineers
More focus on what practitioners are discussing, 
often in (superficially) different wording

Can help in application of VDM, 
as well as active community discussions 

Test (for V&V or as examples) is one of 
the keys factors in VDM
People enjoy and have more confidence if they can 
link the discussions to their camps, trend words, etc.

2015/6/23 35f-ishikawa@13thOvertureWS

Summary



In our FM foundation lecture using VDM,
After 1 year: I can give demos or tooling ideas 
about of essential topics in FM with Overture-
based tools

Connecting with stakeholders, model checking, etc.
Currently with other tools and abstract guidelines

After 5 year: I can let students try such features 
only with Overture-based tools 
After 10 year: I can let students try some 
valuable functions I cannot imagine now
Always: I can continue including a “emerging 
topics” session every year

Overture Community

2015/6/23 f-ishikawa@13thOvertureWS 36


