
VDM Animation
for a Wider Range of Stakeholders

Tomohiro Oda Software Research Associates, Inc.
Yasuhiro Yamamoto University of Tokyo
Kumiyo Nakakoji Kyoto University
Keijiro Araki Kyushu University
Peter Gorm Larsen Aarhus University
This work is supported by Grant-in-Aid for Scientific Research (S) 24220001

expressiveness

2

Formal specification

A formal specification of a system explains the
system's functionality:
● what concepts are involved
● what should be achieved

● It's hard to express things like "user's
feelings" in formal specs, which may
change value of the system, i.e.
○ crispy transition of modes
○ instant and responsive update of info

3

Expressiveness of Formal Specs

● Animation can let people to experience the
specified system
○ implications to UI
○ implications to client modules
○ implications to programs that is out of the scope of

the formal spec.
○ implications to the value of the system

Animation can be understood by people
who have no formal methods background.

4

Topics in this talk

to extend users of formal specs
from readers to experiental group

● formal engineers
○ overture tool, VDMTools, VDMPad

● programmers and testers
○ Webly Walk-Through, pyVDMC

● UI designers
○ Lively Walk-Through

● non-engineering stakeholders
○ Cloudly Walk-Through

5

basis

6

VDMPad
Animation to explore spec space

7

outreach

8

Webly Walk-Through

Web API prototype for web programmers
● specify Web API in VDM-SL
● serve the Web API

○ http://localhost:8087/<module>/<operation>?arg...
○ VDM-SL ⇔ JSON conversion

● build a prototype of web client
○ html/css/javascript

● evaluate and discuss the Web API
○ history of Web API calls

9

Webly Walk-Through
demo

10

pyVDMC
example fibonacci numbers
from pyVDMC import *

@vdm_module('n1', 'n2')

class fibonacci:

 """

 state State of

 n1 : nat

 n2 : nat

 init s == s = mk_State(0, 1)

 end

 operations

 next : () ==> nat

 next() == (dcl n : nat := n1 + n2; n1 := n2;

n2 := n; return n)

 post RESULT = n1~ + n2~ and n1 = n2~ and n2 =

RESULT;

 prev : () ==> nat

 prev() == (dcl n : nat := n2 - n1; n2 := n1;

n1 := n; return n2)

 post n1 + n2 = n2~ and n2 = n1~ and n2 =

RESULT;

 """

 def __init__(self):

 self.n1 = 0

 self.n2 = 1

 @vdm_method

 def next(self):

 pass

 @vdm_test

 def prev(self):

 n = self.n2 - self.n1

 self.n2 = self.n1

 self.n1 = n

 return self.n2

the spec is used as
an implementation.

the spec is used as
a test oracle.

the class comment
as a VDM-SL spec

11

Lively Walk-Through
prototyping with UI designers

12

Cloudly Walk-Through
general diagrams with mini-VDMPads

13

conclusion

14

Summary

15

Overture in 1, 5, 10 years

in 1 year
● supports gradual implementation

○ all ops in VDM -> some ops in PL -> ...
-> most ops in PL -> all ops in PL

in 5 years
● supports more impl languages

in 10 years
● Dynabook of VDM

○ live spec
○ VDM spec and code on one dynamic media
○ VDM spec for everyone including end users 16

