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Formal specification

A formal specification of a system explains the 
system's functionality:
● what concepts are involved
● what should be achieved

● It's hard to express things like "user's 
feelings" in formal specs, which may 
change value of the system, i.e.
○ crispy transition of modes
○ instant and responsive update of info
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Expressiveness of Formal Specs

● Animation can let people to experience the 
specified system
○ implications to UI
○ implications to client modules
○ implications to programs that is out of the scope of 

the formal spec.
○ implications to the value of the system

Animation can be understood by people 
who have no formal methods background.
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Topics in this talk

to extend users of formal specs
from readers to experiental group

● formal engineers
○ overture tool, VDMTools, VDMPad

● programmers and testers
○ Webly Walk-Through, pyVDMC

● UI designers
○ Lively Walk-Through

● non-engineering stakeholders
○ Cloudly Walk-Through
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basis
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VDMPad
Animation to explore spec space

7



outreach
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Webly Walk-Through

Web API prototype for web programmers
● specify Web API in VDM-SL
● serve the Web API

○ http://localhost:8087/<module>/<operation>?arg...
○ VDM-SL ⇔ JSON conversion

● build a prototype of web client
○ html/css/javascript

● evaluate and discuss the Web API
○ history of Web API calls
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Webly Walk-Through
demo
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pyVDMC
example fibonacci numbers
from pyVDMC import *

@vdm_module('n1', 'n2')

class fibonacci:

    """

    state State of 

        n1 : nat

        n2 : nat

        init s == s = mk_State(0, 1)

    end

    operations

        next : () ==> nat

        next() == (dcl n : nat := n1 + n2; n1 := n2; 

n2 := n; return n)

        post RESULT = n1~ + n2~ and n1 = n2~ and n2 = 

RESULT;

        prev : () ==> nat

        prev() == (dcl n : nat := n2 - n1; n2 := n1; 

n1 := n; return n2)

        post n1 + n2 = n2~ and n2 = n1~ and n2 = 

RESULT;

    """

    def __init__(self):

        self.n1 = 0

        self.n2 = 1

    @vdm_method

    def next(self):

        pass

    @vdm_test

    def prev(self):

        n = self.n2 - self.n1

        self.n2 = self.n1

        self.n1 = n

        return self.n2

the spec is used as 
an implementation.

the spec is used as 
a test oracle.

the class comment 
as a VDM-SL spec
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Lively Walk-Through
prototyping with UI designers
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Cloudly Walk-Through
general diagrams with mini-VDMPads
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conclusion
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Summary
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Overture in 1, 5, 10 years

in 1 year
● supports gradual implementation

○ all ops in VDM -> some ops in PL -> ...
-> most ops in PL -> all ops in PL

in 5 years
● supports more impl languages

in 10 years
● Dynabook of VDM

○ live spec
○ VDM spec and code on one dynamic media
○ VDM spec for everyone including end users 16


