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Validating System Models

l We have learned to synthesize models
½Sequential systems
½Concurrent, communicating systems
½Fault-tolerant distributed systems

l But how do you know that your model is “right”?
½ Inspection?
½Testing?
½Model checking?
½Proof?

*DLQLQJ�FRQILGHQFH�RI�FRUUHFWQHVV�LV�WKH�VXEMHFW
RI�WKLV�FRXUVH�
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Validating System Models      Course Content

1. The idea of validation:
½A review of VDM-SL
½Validation techniques: from inspection to proof

2. Proof in VDM:
½Logical Frameworks
½Logic and Data
½The good news and the bad news …

3. Supporting Validation:
½Executable specification: abstraction versus accessibility
½Support tools for execution
½Support tools for proof
½A true story about validation and proof (The BNFL example)
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The idea of validation

1. Some Basic Principles
½What is validation?
½System models

2. A Review of VDM-SL
½Model orientation: modelling data and functionality
½Example: the tracking manager
½Validation checks: internal consistency, validation conjectures

3. Validation Techniques:
½Technical review (inspection)
½Static checking
½Execution: testing (well, not really testing!)
½Model checking
½Proof

0RUH
GHPDQGLQJ��
DQG�OHVV
RIWHQ�GRQH�
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The idea of validation   Basics

Validation is the activity of increasing confidence that a
model is consistent with informally expressed requirements.

Verification is the activity of increasing confidence that the
system behaviour described by one model is consistent with
respect to another model.

7KH�PRGHOV�FRXOG
EH�UHTXLUHPHQWV�
GHVLJQV��RU�HYHQ
FRGH�

&RPSDULQJ�WKH
´IRUPDOµ�ZLWK
WKH�´LQIRUPDOµ�

YV�
&RPSDULQJ�WZR
´IRUPDOµ�PRGHOV�
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The idea of validation  Basics

What makes a good system model?

½ The model should have a clear purpose!

½ Abstraction: the omission of detail that is not relevant to
the purpose for which the model is being constructed.

½ Rigour: The language in which the model is expressed
should be precisely defined. This permits objective,
repeatable analysis of the model susceptible to machine
support.
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The idea of validation          VDM-SL

VDM-SL is a model-oriented language: models consist of data and
functions manipulating the defined data. A model contains:

l Data type definitions
Container :: fiss_mass : real

          material : <Glass> | <Metal> | <Liquid>

inv c == c.material = <Liquid> =>

           c.fiss_mass < Max_Liquid_Mass

l Constant definitions
value Max_Liquid_Mass : real = 100.0

l State variable definitions
state Tracker of

containers : map ContainerId to Container

phases : map PhaseId to Phase

end

7\SH�FRQVWUXFWRU
�VHWV��VHTXHQFHV�
PDSSLQJV��UHFRUGV�

'DWD�W\SH
LQYDULDQW
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The idea of validation          VDM-SL

l Functions

Consistent: Tracker -> bool

Consistent(mk_System(containers, phases)) ==

forall ph in set rng phases &

ph.contents subset dom containers;

l Operations
Introduce(cid:ContainerId, m:real, s:Material)

ext wr containers : map ContainerId to Container

pre cis not in set dom containers

post containers = containers~ munion

                  {cid |-> mk_Container(m,s)}

8VLQJ�RSHUDWRUV�RQ�WKH
EDVLF�W\SHV�

3UH��DQG�SRVW�FRQGLWLRQV��ORJLF�H[SUHVVLRQV��FKDUDFWHULVH�WKH
VHUYLFH�WR�EH�GHOLYHUHG�E\�WKH�RSHUDWLRQ�
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The idea of validation          VDM-SL

Two definition styles for functions:
½  Explicit

sumlist: seq of real -> real

sumlist(s) == if s = [] then 0

 else hd s + sum tl s

*LYHV�DQ�DOJRULWKP�IRU�WKH�FDOFXODWLRQ�RI�WKH�IXQFWLRQ·V�UHVXOW���WKH
LPSOHPHWRU�RI�WKH�V\VWHP�GRHVQ·W�KDYH�WR�XVH�WKLV�DOJRULWKP��LQGHHG�
VKRXOG�QRW�EH�ELDVHG�E\�LW���LW�QHHG�QRW�EH�HIILFLHQW���

½ Implicit
sqrt(n:nat)r:real

post r*r = n

*LYHV�QR�DOJRULWKP���PHUHO\�FKDUDFWHULVHV�WKH�UHVXOW�E\�JLYLQJ�LWV�HVVHQWLDO
SURSHUWLHV
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The tracking manager example

A model of an architecture for tracking the movement of
containers of hazardous waste as they go through
reprocessing was developed by a team in Manchester
Informatics with BNFL (Engineering) in 1995.

The purpose of the model was to establish the rules
governing the movement of containers of waste which the
tracking manager would have to enforce. The model was
safety-related, but note that the model was built simply in
order to understand the problem better, not as a basis for
software development. Models don’t just have to serve as
specifications.
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The tracking manager example       

At the top level, the tracker holds information about containers
and the phases of the plant:

Tracker :: containers : ContainerInfo

           phases     : PhaseInfo

ContainerInfo = map ContainerId to Container

PhaseInfo = map PhaseId to Phase

ContainerId = token

PhaseId = token

Container :: fiss_mass : real

             material : Material
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The tracking manager example

Each phase houses a number of containers, expects certain material
types and has a maximum capacity.

Phase :: contents : set of ContainerId

         expected_materials : set of Material

         capacity : nat

inv p == card p.contents <= p.capacity and

         p.expected_materials <> {}

6DIHW\�LQYDULDQW�SXW
WKHUH�E\�WKH�GRPDLQ
H[SHUWV�
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The tracking manager example
State Tracker of

containers : ContainerInfo

phases     : PhaseInfo

inv mk_Tracker(containers,phases) ==

 1. all of the containers present in phases are known about in the
containers mapping.

 2. no two distinct phases may have any containers in common.

 3. in any phase, all the containers have the expected kind of material inside
them.

inv mk_Tracker(containers,phases) ==
Consistent(containers,phases) and
PhasesDistinguished(phases) and
MaterialSafe(containers,phases)

7KH�LQYDULDQWV�DUH
GHILQHG�DV�DX[LOLDU\
IXQFWLRQV�
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The tracking manager example

Tracker functionality includes:

l introducing a new  container to the tracker, giving its identifier
and contents;

l giving permission for a container to move into a given phase;

l removing a container from a phase;

l deleting a container from the tracker.
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The tracking manager example
Move (cid:ContainerId, ptoid, pfromid:PhaseId)

ext rd Containers: ContainerInfo

    wr phases: PhaseInfo

post phases =
     phases~ ++ {pfromid |-> mk_Phase(...)}

             ++ {ptoid   |-> mk_Phase(...)}

pre Permission(mk_Tracker(containers,phases),cid,ptoid)

7KH�SUHFRQGLWLRQ�HQVXUHV�WKDW�ZH�ZLOO�UHVSHFW�WKH�WKLUG�SDUW
RI�WKH�LQYDULDQW�RQ�WKH�WUDFNHU��,Q�JHQHUDO��ZH�QHHG�WR�FKHFN
WKDW�WKH�IXQFWLRQV�DQG�RSHUDWLRQV�ZH�GHILQH�UHVSHFW�LQYDULDQWV�
7KLV�LV�DQ�H[DPSOH�RI�D�SURRI�REOLJDWLRQ�

Permission: Tracker * ContainerId * PhaseId -> bool
Permission(mk_Tracker(containers,phases),cid,dest) ==



CS R Validation Course 2000 - 16

The idea of validation       Validation Techniques

l What would we want to check in order to ensure that the
tracker model meets our clients’ expectations?

l Internal consistency:
½Syntax correctness
½Type correctness
½Unusual features (declared but not used etc.)
½Partial operators don’t get misused
½Explicit functions respect the invariant
½ Implicit functions & operations are satisfiable

l External consistency:
½Properties defined by the client, e.g. safety

6WDWLF�&KHFNV

3URRI�2EOLJDWLRQV

9DOLGDWLRQ
&RQMHFWXUHV
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The idea of validation       Validation Techniques

A simple proof obligation: Domain Checking for Functions with Pre-
conditions

If a function g uses a function f:T1*…*Tn -> R  in its body, occurring as an
expression f(a1,…,an) , then it is necessary to show

pre-f(a1,…,an)

for any a1,…,an  that can arise in this position.

Delete: Tracker * ContainerId * PhaseId -> Tracker
Delete(tkr,cid,source) ==
   mk_Tracker({cid} <-: tkr.containers,
              Remove(tkr,cid,source).phases)

pre pre_Remove(tkr,cid,source)

PO:

forall tkr:Tracker, cid:ContainerId, source:PhaseId &
   pre_Delete(tkr,cid,source) => pre_Remove(tkr,cid,source)
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The idea of validation        Validation Techniques

Models
Definitely OK

Definitely Wrong

Maybe, maybe not -
a machine can’t tell
you which.

0XFK�RI�WKH�FXUUHQW�UHVHDUFK�LQ�IRUPDO�PRGHOOLQJ�DLPV�WR
GHYHORS�WHFKQLTXHV�DQG�WRROV�WR�UHGXFH�WKH�VL]H�RI�WKH
PLGGOH�DUHD�E\�SHUIRUPLQJ�PRUH�DQG�PRUH�FKHFNV
DXWRPDWLFDOO\�
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The idea of validation        Validation Techniques
An explicit function with a pre-condition:

  f:T1*...*Tn -> R

  f(a1,...,an) == ...

respects the invariant on R if, for all inputs satisfying the pre-condition, the
result defined by the function body is of the correct type. Formally,

  forall p1:T1,…,pn:Tn &

    pre_f(p1,…,pn) => f(p1,…,pn) : R

A function f(a1:T1,…,an:Tn) r:R
        pre ...

         ost ...

is satisfiable if, for all inputs satisfying the pre-condition, there exists a result of
the correct type satisfying the post-condition. Formally,

   forall p1:T1,…,pn:Tn &
     pre_f(p1,…,pn) =>
        exists x:R & post_f(a1,…,an,x)
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The idea of validation                 Validation Techniques

l How might we go about checking these properties?

½ Inspection: organised process of examining the model
alongside domain experts.

½ Static Analysis: automatic checks of syntax & type
correctness, detect unusual features.

½ Testing: run the model and check outcomes against
expectations.

½ Model Checking: search the state space to find states
that violate the properties we are checking.

½ Proof: use a logic to reason symbolically about whole
classes of states at once.
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The idea of validation                 Validation Techniques

Inspection
l “A method involving a structured encounter in which a group of
technical personnel analyses an artifact according to a well-specified
process. The outcome is a structured artifact that assesses or improves
the quality of the artifact as well as the quality of the method.”

l Typical roles:

½ Chairman

½ Author

½ Reader

½ Reviewers

½ Scribe

l Preparation and follow-up are vital.
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The idea of validation                 Validation Techniques

Inspection
l Increasing interest in empirical assessment of inspections.

l Defect removal efficiency is seen as a measure of cost-effectiveness.
Some combinations of inspection and testing are claimed to have
achieved 99% efficiency.

l But a lack of reliable data on defect numbers in delivered products.

l 2-person teams are as effective as 4-person teams.

l Single inspection meetings are more cost-effective than multiple-
meeting approaches.

l Computer-mediated inspections are a likely direction for future technical
work in the area.
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The idea of validation                 Validation Techniques
Static Analysis
l Parsing the source of the model (usually code) to identify anomalies.

l Derived data (e.g. flow graph) can be used to determine white-box tests
(has been applied to VDM-SL models).

l No extensive empirical assessment.

l For formal models, static checks include syntax and type checking, but
also automatic proof obligation generation for violation of conditions on
partial operators.
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The idea of validation                 Validation Techniques
Execution
l The model must be executable!

exists cid in set dom containers & …

exists cid : ContainerId & …

… post n*n = r

l If the model is executable, then we can run tests directly, in batch mode,
with coverage analysis (done for executable VDM-SL models in the IFAD
Tools).

l But validation involves domain experts who don’t necessarily understand
the formal model ...

4XDQWLILFDWLRQ
RYHU�LQILQLWH
GRPDLQV�LV
SUREOHPDWLF�

,PSOLFLW
VSHFLILFDWLRQV
FDQ·W�EH�GLUHFWO\
H[HFXWHG�
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The idea of validation                 Validation Techniques
Animation is the execution of the model through an interface.
The interface can be coded in a programming language of choice
so long as a dynamic link facility exists for linking the interface
code to the model.

Formal
model

Interpreter

Interface

C++ or
Java
interface
code

Testing can increase confidence, but is only as good as the test set.
Exhaustive techniques could give greater confidence.
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The idea of validation                 Validation Techniques
Model checking
l An exhaustive automated test of the state space to verify that a
desired property holds in each state, or to find a counter-example.

l The searched space must be finite!

l But infinite spaces may be searched if abstractions to a finite space can
be made.

l Origins in hardware and protocol verification.

l An advantage over proof is the production of a counter example, but a
disadvantage is the requirement for a tractable state space.
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The idea of validation                Validation Techniques

Levels of Proof:

l “Textbook”:  natural language supported by formulae. Justifications
require human insight (“Clearly …”, “By the properties of prime numbers …”
etc.). Easiest style to read, but can only be checked by humans.

l Formal: highly structured sequences of formulae. Justifications appeal to
a formally stated rule of inference (each rule can be axiomatic or itself a
proved result). Can be checked by a machine. Construction very laborious,
but yields high assurance (used in critical applications)

l Rigorous: highly structured sequence of formulae, but relaxes
restrictions on justifications so that they may appeal to general theories
rather than specific inference rules.
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The idea of validation                Validation Techniques

From t:Tracker; cid:ContainerId;

     pf:PhaseId; pf in set dom t.phases;

     pt:PhaseId; pt in set dom t.phases;

     t.phases(pt).capacity = card t.phases(pt).contents

1    not(card phases(pt).contents < t.phases(pt).capacity

                                              arithmetic(h7)

2    not Permission(t,cid,pt)             defn-Permission(1)

3    not Permission(t,cid,pt) or not pre_Remove(t,cid,pf)

                                               or-I-right(2)

4    not (Permission(t,cid,pt) and pre_Remove(t,cid,pf))

                                            not-and-I-deM(3)

Infer not pre_Move(t,cid,pt,pf)                      Fold(4)
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The idea of validation                 Review
l Validation is the act of increasing confidence that a model

of a system accurately reflects the client’s informally
expressed requirements

l A range of opportunities for validation arise in the production
of a model:
½ Internal consistency checks
½Validation conjectures

l Techniques for validation follow a range of different levels
of assurance and at different costs.

l We also reviewed the model-oriented specification language
of VDM.

)RUPDO�SURRI�LV�VHHQ�DV�DQ�LGHDO�IRU�YDOLGDWLRQ��%XW�ZKDW
GRHV�LW�WDNH�WR�SURYH�D�SURSHUW\�DERXW�D�PRGHO"
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Proof in VDM

l We examine the features needed to develop a proof
theory for a modelling language:
½The logical framework: how will we represent conjectures, proofs

and theorems, and collect them into useful theories?
½Logic and data: how do we provide useful rules for the logic and

data types in VDM?

l This has been done in practice for VDM - we will conclude
by looking at what went right and what went wrong in this
effort.
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Proof in VDM   Logical Framework

VDM-SL
model

Theory of the
VDM-SL model

7UDQVODWLRQ

Deduced POs &
V. Conjectures

'HGXFWLRQ

sequences
mappings

LPF equality

nat

3UH�H[LVWLQJ
WKHRULHV�DERXW
EDVLF�ORJLF�DQG
GDWD�W\SHV
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Proof in VDM   Logical Framework

In order to put together the base theories, and allow
translation and deduction, we need:

l a formal language for the expressions in the proof;

l definition of the form taken by inference rules;

l definition of a well-formed proof.
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Proof in VDM   Logical Framework
Expressions are made up from:

• Variables, which range over values, e.g. v, x1, cid

• Constants which represent value and type constructors, e.g.
{} for the empty set,  [_] for a singleton sequence, ^ for
sequence concatenation, 0 for zero, nat for the natural
numbers. Constants have an arity (the number of arguments
they take, e.g. the arity of {} is 0, the arity of ^ is 2)

• Binders, which correspond to constructors that introduce and
bind local variables, e.g. forall, exists, set
comprehension.

forall x in set s & x < 5

%LQGHU
9DULDEOH
�ERXQG�

9DULDEOH
�IUHH�

&RQVWDQWV
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Proof in VDM   Logical Framework
Rules of Inference (Hilbert Style)

n: nat
---------
(n+1):nat

Hypothesis

Conclusion

´,I���LV�D�QDWXUDO�QXPEHU�
WKHQ�ZH�PD\�LQIHU�WKDW����
LV�D�QDWXUDO�QXPEHU�

This rule would be perfectly valid for any natural number, not just
3, so we use metavariables in inference rules to stand for
arbitrary expressions:

3: nat

---------
(3+1):nat

Metavariables can also take arguments:

a=b; P(a)
---------

P(b)

+HUH�3�FDQ�WDNH�DQ\�H[SUHVVLRQ�ZLWK�D�IUHH
VSDFH��H�J��forall x < _ & x*2 > 12
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Proof in VDM   Logical Framework
A Proof is …

… an argument that some result follows from some hypotheses.

Consider a proof of:

ns : seq of nat
-------------------
[0]^ns : seq of nat

The proof starts as a “blank” sheet of paper with the hypotheses at the
top and the conclusion at the bottom:

from ns : seq of nat

infer [0]^ns : seq of nat            justify ???
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Proof in VDM   Logical Framework

from ns : seq of nat

1    0:nat 0-form

infer [0]^ns : seq of nat      justify ???

Looking in our theory of natural numbers, we find:

0-form  -----
0:nat

No hypotheses, so this can be applied anywhere, and we can conclude:
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Proof in VDM   Logical Framework

from ns : seq of nat

1    0:nat 0-form

2    [0]: seq of nat      singl-form(1)

infer [0]^ns : seq of nat      justify ???

Searching our theory of sequences, we find:

                 a:A
singl-form  -------------

        [a]: seq of A

The hypothesis can be made to match line 1 if we let the metavariable a
match to the expression 0 and the metavariable A match the expression
nat.
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Proof in VDM   Logical Framework

from ns : seq of nat

1    0:nat 0-form

2    [0]: seq of nat      singl-form(1)

infer [0]^ns : seq of nat     ^-form(2,h1)

Having a final look in the theory of sequences, we find:

        s1: seq of A; s2: seq of A
^-form  ---------------------------
              s1^s2: seq of A

The hypothesis of the rule can be made to match line 2 if we let the
metavariable s1 match to the expression [0], s2 matching ns and the
metavariable A match the expression nat. The conclusion of the rule
then matches the conclusion of the proof:
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Proof in VDM   Logical Framework

½ The completion of the proof allows us to add the proven
rule to the collection of theories (e.g. in the theory of
sequences or in the theory of the specific model in which the
sequence concatenation was used).

½�,W�ZDV�SUHWW\�WLPH�FRQVXPLQJ�ZDVQ·W�LW"�:H�UHTXLUHG�D
ORW�RI�DSSDUDWXV�WR�SURYH�D�VLPSOH�UXOH�
½�3URRI�DERXW�IRUPDO�PRGHOV�LV�OLNH�WKDW�

��VKDOORZ���QRW�UHTXLULQJ�PXFK�LQVLJKW
��EXW�KLJK�YROXPH

7KHVH�DUH�H[DFWO\�WKH�SURSHUWLHV�ZKLFK�PDNH�IRUPDO
SURRI�LQ�YDOLGDWLRQ�DQ�DFWLYLW\�WKDW�FRXOG�EHQHILW�IURP
PDFKLQH�VXSSRUW�
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Proof in VDM   Logical Framework
Natural Deduction style allows us to structure proofs better, e.g.

          P |- Q
deduction ------
          P => Q

“If you know that either A or B
holds and you want to prove C,
show that C follows under
asssumption of A and that C
follows under assumption of B”

“In order to prove that P implies
Q (P => Q), assume P and
prove Q follows from it.”

           A or B;
       A |- C; B |- C
cases ----------------
              C

The “|-” (sequent) symbol captures the idea that you should perform a
subproof.
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Proof in VDM   Logical Framework

          P or Q;  P|-R
one case ---------------
             R or Q

from P or Q;  P|-R
1    from  P
1.1        R sequent h2 (1.h1)
     infer R or Q or-I-right (1.1)
2    from  Q
     infer R or Q       or-I-left (2.h1)
infer R or Q cases (h2,1,2)

              A
or-I-right --------
            A or B

             B
or-I-left --------
           A or B

We can make deductions using
sequent hypotheses and refer to
subproofs in justifications. Here’s
an example.
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Proof in VDM   Logical Framework

Sometimes a constant can be defined in terms of other expressions, e.g.

e1 and e2 == not(not e1 or not e2)

We allow such definitions to be used in either direction (unfolding or
folding, e.g.

5  not ( (A and B) or not C)
6  not ( not ( not A or not B ) or not C)   unfolding(5)
7  (not A or not B) and C   folding(6)
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Proof in VDM             Logic & Data

The logic on which VDM is based is non-classical.

The Logic of Partial Functions (LPF) deals with expressions which include
“misapplications” of partial operators, e.g. the expression

x=0 or x/x =1

is well-defined in LPF (and true for all numbers x).

In proof terms, this means that we do not have some rules that are
present in classical propositional and predicate logic, e.g

Excluded_middle ----------
                e or not e

We distinguish defined/undefined expressions by δ:
δe == e or not e
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Proof in VDM             Logic & Data

The consequence in LPF is that many rules are qualified with a
definedness hypothesis, e.g.

              δe1;  e1|-e2
Deduction_Thm ------------
                e1 => e2

We must be careful when introducing binders. exists is treated like
a large disjunction and forall like a large conjunction:

                     x:A |- δP(x)
δ-exists-inherit --------------------
                 δ (exists x:A & P(x))
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Proof in VDM             Logic & Data
For each of the major types and type constructors, we introduce a constant,
e.g. set of _ is treated as a constant of arity 1. We provide rules defining
generators and basic elements, e.g.

{}-form -------------
         {}:set of A

         a:A; s:set of A
add-form ----------------
         add(a,s):set of A

)RUPDWLRQ�UXOHV�JLYH
WKH�W\SHV�RI�RSHUDWRUV�
'HILQLWLRQ�UXOHV�GHILQH
WKHLU�LQWHUDFWLRQV�

                a:A; b:A; s:set of A
inset-add-defn ----------------------------------------
               a in set add(b,s) <=> a=b or a in set s
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Proof in VDM             Logic & Data
The major collections have induction rules:

          s:set of A; P({});
          a:A, s’:set of A, P(s’), a not in set s’
          |- P(add(a,s))
set-indn ----------------------------------------
          P(s)

We treat the type judgement as a special kind of assertion, telling us
that the expression is well formed.

The formation rules are therefore telling us about definedness of the
expression formed in the conclusion.

This has consequences when we are defining comprehensions, which
are treated as binders.
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Proof in VDM             Logic & Data
Comprehension formation rules must ensure that the comprehension is
well formed:

               forall x:A & δ P(x)
               x:A, P(x) |- f(x):B
               exists s:set of B &

                forall y in set A &
                 P(y) => f(y) in set s

set-comp-form -----------------------------------
               {f(x) | x:A & P(x)}: set of A

7KH�SUHGLFDWH�PXVW
EH�WRWDO�

7KH�SUHGLFDWH�PXVW
EH�VDWLVILHG�DW�D
ILQLWH�QXPEHU�RI
SRLQWV�
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Proof in VDM  Good & Bad Points
The axiomatisation developed for VDM-SL was based on typed predicate
LPF with equality, to which we added theories for the types and type
constructors of VDM.

✔ The axiomatisation is generally intuitive.

✔ It is defined in enough detail to provide for proof tools.

✔ It has been tested on case studies.

However, there are some interesting points at which it becomes hard to
use:

? Arities that are not fixed, e.g. reasoning about arbitrary enumerations

[3, 5, 4, 4, 7 2]

?… and this extends to function expressions like cases

? Loose expressions, e.g.

let x:nat be s.t. (x**2 + 3*x + 4) in ...

… especially problematic in recursion.
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Proof in VDM   Review

l Proof is a very powerful validation mechanism, but in order to use it, we
must develop:

½ a logical framework of expressions, inference rules and a notion of
proof, plus some equivalent of theory structuring.

½ theories of the base types and type constructors of the language.

l This has been done for VDM using a relatively simple logical frame.

l There are some advantages (ease of use and extension) but also some
disadvantages, e.g. the overhead in handling definedness and finiteness.

We complete this course by taking a quick look at validation in practice:
tool support and the lessons learned from the tracking manager case study
in real life.
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Supporting Validation

l What about support tools?
½Support for execution and testing
½Support for proof

l What is it like in practice?
½Lessons from the tracking manager study
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Supporting Validation   To Execute or not?

l Only some specifications are executable.

exists x: nat & P(x)

forall x: nat & P(x)

pre x > 0

post r*r = x

l But many can be transformed into an executable form:

exists x:nat & x < 20 and P(x)

exists x in set {1,…,20} & P(x)

7\SH�ELQGLQJV�DUH�XVXDOO\
IRUELGGHQ�EHFDXVH�ZH
PD\�KDYH�WR�VHDUFK�IRU
DQ�DUELWUDULO\�ORQJ�WLPH�
,PSOLFLW�GHILQLWLRQV�FDQ
QRW�EH�H[HFXWHG�XQOHVV
ZH�JLYH�D�SXWDWLYH�UHVXOW�
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Supporting Validation   To Execute or not?

l In practice, many implicit specifications are just “pseudo-
implicit” with a post-condition of the form
post result = f(inputs)

l This leads us to believe that a functional style is not much of
an overhead in many cases.

l However, this is a controversial point, and many models are
better expressed as implicit operations with side effects on
state variables than as referentially transparent functions.

l Some new technologies are applicable to the executability
problem, especially constraint and logic programming.
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Supporting Validation        Testing Support

l Executable definitions can be tested directly or through
an accessible user interface.

l Tools support:
½batch mode testing
½coverage analysis
½white-box test generation

l Important not to confuse specification testing with testing of
an implementation against a specification. Specification-
based testing involves using the model in to generate black-
box tests for the implementation. If the model is executable,
it can be used as a test oracle.
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Supporting Validation           Proof Support

VDM-SL
model

Theory of the
VDM-SL model

6SHF�7RRO

Deduced POs &
V. Conjectures

3URRI�7RRO

sequences
mappings

LPF equality

nat

7KH�085$/�DSSURDFK
LQYROYHG�KDYLQJ�D�VSHF
WRRO�IRU�HGLWLQJ�DQG
WUDQVODWLQJ�PRGHOV�
SOXV�D�SURRI�HGLWRU
ZKLFK�FKHFNHG�SDWWHUQ
PDWFKLQJ�DQG�PDQDJHG
WKH�WKHRULHV�

7KHRU\
6WRUH
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Supporting Validation           Proof Support
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Supporting Validation           Tracker Study
l Delimit system scope! The proof of a property in a model is a proof
about the model - not about the real world. Thus we can not “prove that a
system is safe”. We can only prove that a model has some properties.
These properties are chosen by experts in system safety. A model is only
as good as the assumptions underlying it.

l Use experience of proof during development of the model! If a
model is validated by proof, then some changes may be necessary to
make the proof task more straightforward. Better to make these changes
while the model is still in development!

l Search for generic properties: a modular specification with a generic
component instantiated to the particular plan would have simplified the
production of the safety case and separated validation issues of general
concern from those specific to this plant.

lRelationship to testing: more thorough, but more demanding.



CS R Validation Course 2000 - 57

Supporting Validation                     Review

l Choosing executability is a restrictive assumption.

l Some (many?) models may be transformed to executable versions with
modest effort.

l Tool support for execution allows for systematic testing and animation,
and the analysis of implementations using specification-based test
generation.

l Proof support is available at different levels of automation. The major
challenge is interacting with the user when proofs fail.

l The choice of validation strategy should have a significant effect on the
way we design a system model (e.g. take advantage of potential re-use
and genericity; factor validation techniques into the review cycle)

´'HVLJQ�IRU�YDOLGDWLRQµ�DSSOLHG�MXVW�DV�PXFK�WR�WKH�GHYHORSPHQW�RI
PRGHOV�DV�WR�WKH�GHYHORSPHQW�RI�FRGH�
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Models of Reliable Multicast?
Properties:

(i) Validity: if a correct process p sends m then every correct process in
G (including p) delivers m.

(ii) Integrity: for any m, every correct process in G delivers m at most
once, and only if m was sent by some process in G.

Message delivered to a correct process is sent by some process in
G; allows non-delivery of a message from a faulty process since the
faulty sender can fail while sending the message.

(iii) Agreement: if a correct p delivers m then every other correct q in G
also delivers m.

Agreement property ensures that correct processes are unanimous in
delivering or not delivering a message from a faulty process.
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• no regard to process crashes or to views. The multicast
itself takes place instantaneously.

• a collection of processes, indexed by identifiers.

• Characteristics of the system, such as the upper bound on
transmission time, are also recorded in the state, although
these are much less volatile than the processes.

A first attempt under some restrictive conditions ...
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      state System of
procs: map PId to Process

      delta: Time
end;

PId = token;
Time = nat;

Each process is modelled as a kind of history - a mapping from times to
the sets of messages delivered at each time:

Process = map Time to set of Msg

Msg = token;

Thus, given a process, we can determine all the messages delivered by
the process p up to a point in time t by the following expression:

dunion {p(t’)|t’ in set dom p & t’ <= t}
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RMCast1 (m:Msg, ts:Time)
ext wr procs: map PId to Process
    rd delta: Time
pre m not in set
    dunion {delivered_so_far(p,ts)|p in set dom procs}
post dom procs = dom procs~ and
     forall pid in set dom procs &

  exists tr:Time & ts < tr and tr <= ts+delta &
     let e = if tr in set dom procs(pid)
             then procs(pid)(tr)
             else {}
     in
     procs(pid) = procs~(pid) ++
                  {tr |-> e union {m}}
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RMCast1x: System * Msg * Time -> System
RMCast1x(mk_System(procs,delta),m,ts) ==

mk_System(
   {pid |-> let tr in set {ts,…,ts+delta} in
            let e = if tr in set dom procs(pid)
                    then procs(pid)(tr)
                    else {}
            in
            procs(pid) ++ {tr |-> e union {m}}
   | pid in set dom procs
   },
   delta)

pre m not in set
    dunion {delivered_so_far(p,ts)|p in set dom procs}

An executable version ...


