
Reasoning about VDM-SL Proof
Obligations in HOL

Sten Agerholm Kim Sunesen

!FAD, Forskerparken 10
DK-5230 Odense M, Denmark

May 25, 1999

Project Id.: PROSPER LTR. 26241
Deliverable Id.: D1.4a.V1
Document Id.: IFAD-PROSPER.-DOC-5
Availability: RESTRICTED

Copyright@ 1998 !FAD.

Contents

1 Introduction 1

2 VDM-SL proof obligations 2

3 Domain checking 5
3.1 Strategies 5
3.2 Summary of experiments . 7

3.2.1 Unfolding definitions . 9
3.2.2 Arithmetic 11
3.2.3 Simplification . 13

4 Subtype checking 16
4.1 Strategies 16
4.2 Summary of experiments . 19

4.2.1 Reusing type information 24
4.2.2 Normal form 25
4.2.3 Translational choices . 27

5 Implicitly defined functions 32

6 Termination 34

7 General properties 36

8 Conclusions 39

A Appendix 42

Chapter 1

Introduction

This document presents experiments in proving the validity of VDM-SL proof
obligations using the HOL theorem prover. Proof obligations are logical prop­
erties that are generated from VDM-SL specifications in order to ensure their
internal consistency (see [2]). We see the ability to handle proof obligation rea­
soning well as a key requirement of our VDM-SL proof tool. However, it is
obviously not possible to automate the proofs of all proof obligations, so we aim
to be able to automate as many as possible.

There are two main purposes of the experiments. First, they should improve
our understanding of how involved such verifications are, before we start to
design and implement the VDM-SL proof tool. Second, they should generate
input for the development of the PROSPER Core Proof Engine (CPE). Hence,
this report aims to illustrate the easy, and especially the difficult aspects of
verifying proof obligations, using a range of different proof techniques and proof
support tools provided by the current HOL98/CPE system (Athabasca Release
version 1).

The rest of the report is structured as follows. Chapter 2 presents a classi­
fication of the 24 proof obligations chosen for the experiments and explains the
general ideas of our proof attempts. Chapter 3 presents concrete attempts to
prove proof obligations categorized as domain checking, and Chapter 4 discusses
the strategies for proving proof obligations categorized as subtype checking.
Chapter 5 and Chapter 6 present preliminary attempts to prove satisfiability
and termination checking conditions, and the developed proof strategies are ex­
ercised on some general conjectures in Chapter 7. The conclusions arc presented
in Chapter 8.

As a prerequisite the reader is expected to be familiar with the HOL98
theorem prover [SL and in particular with the specification examples given in [5]
and [3].

1

Chapter 2

VDM-SL proof obligations

Proof obligations in VDM-SL are logical conjectures that must hold of a model
in order for it to be regarded as internally consistent. Proof obligations can
be produced automatically by a proof obligation generator (see [2]), which is
currently being developed in PROSPER (Task 1.1). However, the experiments
presented in this document concern the proof of obligations rather than their
generation.

The 24 proof obligations for the experiments reported here were derived
manually from examples in [7] and are documented in the PROSPER reports
[5] and [3], which present the VDM-SL and HOL98 versions respectively. The
example specifications are relatively small, but employ a variety of different
constructs in the declarative subset of VD!\1-SL that we are intere.stecl in, and
so are well-suited for the purposes of the present experiments.

Our initial proof attempts indicated that proof obligations may be grouped
into classes on the basis of the situation in which they arise. Obligations in each
class appear often to require similar proof strategies. We therefore started to
classify proof obligations in four different categories:

Domain checking: Proof obligations that are generated due to the use of par­
tial operators. If verified, these ensure that the operators are applied to
values in their re.<:;pective domains.

Subtype checking: Proof obligations that are generated due to the use of
subtypes, in particular due to the use of invariants. If verified, these
ensure that subtype relations hold.

Satisfiability: Proof obligations that are generated for implicit function def­
initions. If verified, these ensure that there exists a valid result for any
input of such functions.

Termination: Proof obligations that are generated for recursive type and func­
tion definitions. If verified, these ensure that the recursive definitions ter­
minate. Note that this category is included for completeness only as the

2

J Example I PO I Classification I Duration (sec) I
1 domain checking 0.0
2 domain checking 0.0

Alarm 3 domain checking 0.0
4 Satisfiability 3.0

1 domain checking 0.0
Gateway 2 domain checking 0.0

3 domain checking 0.0

1 domain checking 2.7
2 subtype checking 6.6
3 domain checking 0.0
4 domain checking 0.0
5 domain checking 0.1
6 subtype checking 12.2
7 subtype checking 101.3
8 domain checking 0.0

Tracker 9 domain checking 0.2
10 subtype checking 8.5
11 domain checking 0.2
12 subtype checking 528.5
13 domain checking 0.1
14 subtype checking 127.1
15 domain checking 0.0
16 domain checking 0.0
17 domain checking 0.0

Table 2.1: Summary of experiments in verifying proof obligations.

initial version of the proof obligation generator will not support termina­
tion proof obligations (see [2]). Currently termination is checked using
HOL directly (see [1]).

In this report, the main focus is on proof obligations falling into the first two
categories, but some preliminary experiments have also been conducted with
proof obligations in the other two categories, which we believe are less numerous
in practice. Note that we expect this classification to be refined in further
experiments as our proof experience increases. For example, proof obligations
due to map application and the division operator both fall into the first category,
but are likely t.o require fairly different proof strategies.

Table 2.1 presents a. classification of the 24 proof obligations chosen for
our experiments and shows the duration of the fastest proof measured in the
experiments discussed in the following chapters.

The main focus is on proving the validity of proof obligations categorized as
domain checking and subtype checking. In general, it is undecidable whether

3

or not a given proof obligation is valid. Hence, we cannot hope to invent a
fully automated tool to decide all proof obligations. Instead we can look for
automated techniques that can decide many proof obligations in practice. In
searching for an automated strategy to verify all 24 example proof obligations,
we have tried to employ standard decision procedures first to prove the easy
ones, and then a heuristic automated strategy to handle a wider class of proof
obligations.

In the experiments, all but one of the domain checking proof obligations
are solved within seconds by propositional logic decision procedures whereas
none of the subtype checking proof obligations are handled by these. To solve
the subtype checking proof obligations, we suggest a rather brute-force, fully­
automated tactic which involves advanced rewriting-based simplification, deduc­
tion and resolution techniques. The tactic solves each of the subtype checking
proof obligations within minutes. Some proofs involve subgoals which split into
as many as 114 subgoals.

The suggested tactic was developed in an "extend-by-need" fashion. While
solving the proof obligations one by one, we extended the current tactic with
new techniques and theorems when subgoals were not solved by the current
tactic. This somewhat arbitrary and time-consuming process led to a tactic
which solves all of the example proof obligations. We made a few experiments
with the robustness of the tactic by testing the consequences of some minor
changes in the tactic and specifications of the proof obligations.

Even though the main focus is on domain checking and subtype checking,
we have also done some initial case studies verifying the termination of user­
defined functions and the satisfiability of implicitly defined functions, i.e. func­
tions specified by pre- and post-conditions. Furthermore, we exhibit some initial
experiments with the inductive proving of conjectures expressing general desired
properties of specifications (termed "validation conjectures" in VDM).

4

Chapter 3

Domain checking

The first class of proof obligations that we investigate is the class generated
from the use of partial operators. These cover built-in partial operators, like
map application, head, and division, and user-defined partial functions defined
by the use of preconditions.

In the examples [5, 3], the proof obligations 1 to 3 of the alarm examples, 1
to 3 of the gateway example and 1, 3 to 5, 8, 9, 11, 13, 15 to 17 of the tracker
example are classified as domain checking proof obligations.

3.1 Strategies

Our main interest is the investigation of classes of proof obligations that in prac­
tice are equally hard or easy to solve, that is, solvable by the same techniques.

A quick inspection of the domain checking proof obligations in the exam­
ples [5, 3] suggests that some can be solved by decision procedures. Therefore,
we have tried out six of HOL98's standard decision procedures implemented by
the tactics described below.

TAULTAC is a tautology checker. Given a goal which is an instance of a valid
propositional formula, TAULTAC proves the goal by performing Boolean case
analysis on the variables of the goal. A propositional formula is a term contain­
ing only Boolean constants, variables, conditionals and standard logical connec­
tives. In particular, let expressions are not accepted. The instance of a formula
is the formula with one or more variables replaced by terms of the same type.
Goals with or without universal quantifiers for the variables are accepted. The
tactic fails if the goal is not an instance of a propositional formula or if the goal
is not valid. The tactic is described in the HOL reference library.

MESON_TAC is a decision procedure for first order logic. Given a goal which is
a valid first order formula it proves the goal using a PTTP (prolog technology
theorem prover) based implementation of model elimination (for details see [9]).

5

The tactic fails if the goal is not a first order formula or if goal is not a valid
formula.

DEGIDLTAG is a decision procedure combining a number of cooperating de­
cision procedures. Given a goal which is a quantifier-free formula constructed
from linear natural number arithmetic, propositional logic, and the equational
theories of pairs, recursive types, and uninterpreted function symbols the pro­
cedure either proves that the formula is valid or fails. Also, formulas that when
put in prenex normal form contain only universal quantifiers are accepted, and
additionally formulas with subterms from other theories are accepted if the
subterms do not affect the validity of the formula. The procedure is described
in [6].

SIMP _TAG booLss [] is an instantiation to standard logic simplification of the
powerful simplifier implemented by SIMP _TAG. Given a goal, it rewrites/simplifies
the goal using standard logic simplifications like

1- C>t. --t = tl 11 c-r = Fl 11 c-F = rJ

and

1- ! t.
(T ==> t = t) /\

(t ==> T = T) /\
(F ==> t = T) /\

{t ==> t = T) /\
(t==>F=-t)

The simplifier is documented in [13]. Another helpful reference is the description
of the simplifier of the Isabelle system given in [11]. The tactic never fails but
may not advance the goal.

ARITH_TAG 1 is a partial decision procedure for a subset of Presburger arith­
metic on the natural numbers. The procedure is based on two separate (incom­
plete) methods: one for handling universally quantified formulas and one for
existentially quantified formulas. The procedure only accepts formulas with­
out genuine quantifier alternations, that is, formulas which when put in prenex
form contain only one kind of quantifiers. The tactic is described in the HOL
reference library.

REDUCE_TAC performs arithmetic and Boolean reductions, in bottom-up order,
on all suitable redexes of a goal. In particular, it proves any goal, if true, con­
structed from only numerals and the Boolean constants. The tactic is described
in the HOL reference library

Based on the amount of unfolding of definitions done before applying a tactic
we define three strategies for applying the decision tactics from above

1DeHncd by CONV_TAC ARITH_CONV.

6

l. without any unfolding of specification definitions,

2. with unfolding of specification definitions of projections and predicates
and elimination of let-expressions, and

3. with unfolding of all specification definitions and elimination of let-expressions.

In HOL98, the strategies for (2) and (3) are

fun VDM_PROJ_AND_PRED_DEF_RW (tac:tactic):tactic
PURE_RW_TAC (append proj_DEF_rules pred_DEF_rules) THEN
(CONV_TAC (DEPTH_CONV let_CONV)) THEN tac;

fun VDM_DEF_RW (tac:tactic):tactic
PURE_RW_TAC DEF_rules THEN
(CONV_TAC (DEPTH_CONV let_CONV)) THEN tac;

3.2 Summary of experiments

In this section, we summarize the experiments that we performed with the
solving of domain checking proof obligations.

For each of the decision procedures above, we applied each of the three
unfolding tactics to each of the domain proof obligations.

The file vdm-domain-tactics. sml containing the HOL98 tactics used, and
the files alarm-proof-lab. sml, gateway-proof-lab. sml, and tracker-proof-lab. sml
containing the applications of the tactics are found in [4].

Table 3.1 summarizes the results obtained. For each tactic, we have applied
each of the three strategies to all proof obligations and marked the response
time in seconds. The grey shaded boxes mark that the strategy failed.

The results divide into two groups; those that solved all but one of the
domain proof obligations and those that failed on almost all. The first group
consists of TAULTAC, MESON_TAC, and SIMF_TAC booLss []. The second group
consists of DECIDE_TAC, ARITH_TAC, and REDUCE_TAC. This also divides the pro­
cedures into those that handle pure logic and those that also handle arithmetic.

The tactics in the second group fail on almost of the proof obligations with
essentially the same time efficiency. Below, we examine this phenomenon more
closely.

The tactics in the first group prove all proof obligations valid with essentially
the same time efficiency except for one on which they all fail. The results do
not allow any clear conclusions, but they could indicate that MESON _TAG is less
good at failing fast on goals it cannot prove. Due to the fact that the solving of
proof obligation is inherently undecidable, we cannot expect to automatically
decide all proof obligations. Instead, we hope that the decision procedures will
solve a large percentage of the proof obligations. Therefore, it is important that
a strategy quickly realizes whenever it cannot prove or disprove a goal.

7

Example
TAUT MESON DECIDE SIMP AR!TH REDUCE

PO I 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

1 0.0 0.0 0.0 0.0 o.o 0.0 o.o 0:~-
0.0. 0.0 o.o 0.0 o.o 0.0 o.o 0.0~ 0.0 o.o

----· r--0.0~ -~.~-Alarm 2 0.0 0.0 0.0 0.0 o.o 0.0 0.0 o.o 0.0 0.0 o.o 0.0 0.0 o.o 0.0 ·o.o--
3 o.o 0.0 0.0 'o.o. 0.2 0.2 o.o' 0.1 0.1. 0.1 0.1 0.1 o.o o.o o.o 0.0' 0.0 o.o
1 0.0 0.0 0.0 0.0 o.o 0.0 o.o. 0.0; o.o. 0.0 0.0 0.0 o.o o.o o.o. o.o 0.0 0.0.

Gateway 2 0.0 o.o 0.0 0.0 o.o 0.0 0.0 o.o. o.o' 0.0 o.o 0.0 0.0 o.o o.o o.o 0.0 0.0

3 0.0 0.0 0.0 0.0 0.0 0.0 i o:ii. . o.o . • 0.0. 0.0 0.0 0.0 0.0 0.0 0.0 . 0.0. 0.0 o.o
1 0.1 '0.1. 0.1. 20. : 21 22' 0.1 i 0.2. 2.5 . o.o' i 0.1: ; 0.3' 0.1 0.2. 0.6 0.0 0.1 0.2'

3 0.0 0.1 0.1 0.1 0.2 0.4 - o.o 0.3' • 4.1: 0.0 0.1 0.4 o.o . 0.2' 0.6. • o.o' 0.1 0.2'

"" 4 0.0 0.1 0.1 0.0 0.2 0.4 o.o. ,0.2; 3.3_; 0.0 0.1 0.3 o.o 0.2 O.B ___ 0.0 '-- 0.1 f-c-·0.1 •
i ------- ---"·

-0.0- --- ·-,- r--~ ·' - o.1:-5 o.o 0.1 0.1 • 0.1 0.3 0.5 0.0. • 0.3' 4.2; 0.0' 0.1 0.4 0.2' 0.6 f-o:o • 0.2

Tracker 8 0.0 0.0 0.1 0.0 0.1 0.2 0.0 0.2' 3.9. 0.0 0.1 0.4 0.0 0.1 0.2 0.0' 0.1 0.2

9 o.o 0.1' 0.2 • 0.0' 0.2 0.5 0.0 0.2' 2.9. o.o: • 0.2' 0.3 0.0 0.1 0.5' '0.0' 0.0 0.2_.

11 o.o 0.2 0.3 0.1 0.5 0.8 0.0' ,..''' 0:<! • '11' o.o' 0.2 0.4 o.o . 0.3' 0.7• 0.0' 0.1 0.2'
----·· ···-- - ----- c--.--

13 o.o 0.1 0.1 0.0 0.1 0.2 0.0 0.2; 3.0 o.o i 0.1 0.3 'o.o. 0.1 0.2 0.0. 0.1 0.2;

15 0.0 0.0 0.0 0.0 0.1 0.1 0.0. 0.1 0.1 0.0 0.1 0.1 0.0 0.1. 0.1 o.o' 0.0 '0.0.

I
16 0.0 o.o 0.0 0.0 0.1 0.1 0.0' 0.1' 0.1 0.0 0.1 0.1 'o.o: 0.1' 0.0 0.0. 0.0 o.o i
17_ o.o ____ 0.0 0.0 0.1 0.1 0.1 0.0 c..Jl-1 ' 0.1' 0.0 0.1 0~1 -- o.o -- 0.1. 0.1 0.0' 0.0' o.o,

Table 3.1: Summary of experiments with domain checking proof obligations.

3.2.1 Unfolding definitions

In this section, we give examples of proof obligations proved valid using different
degrees of unfolding of definitions.

No unfolding of specification definitions The proof obligation

val alarm_POi = Term '!a per schedule.
inv_Schedule(schedule) ==>

(a IN alarms /\ per IN FDOM schedule ==>
per IN FDOM schedule)';

is an example of a formula solved without unfolding of the specification def­
initions. The proof obligation is generated to verify that the map lookup
schedule (per) is done with an element per in the domain of the map schedule,
that is, per IN FDOM schedule. The example illustrates a typically easy case
where the map lookup is guarded by a condition per IN FDOM schedule en­
suring exactly that the element is in the domain of the map.

Unfolding of projections and predicates The proof obligation

val tracker_P011 =Term '!trk cid ptoid pfromid.
(inv_Tracker trk) ==>
(let pha = (mk_Phase(((

in

Phase_contents{FAPPLY (Tracker_phases trk) ptoid)) UNION {cid}),
Phase_expected_materials(FAPPLY (Tracker_phases trk) ptoid),
Phase_capacity(FAPPLY (Tracker_phases trk) ptoid)))

pre_Move(trk,cid,ptoid,pfromid) ==>
pre_Remove(trk,cid,pfromid))';

is an example of a formula which is not solved without unfolding the specification
definitions. Unfolding definitions of predicates (e.g. preJllove) and projections
(e.g. Phase.contents), and then eliminating let-expressions yields the formula

''!trk cid ptoid pfromid.
(!pid.

pid IN FDOM (Tracker_phases trk) ==>
FINITE (Phase_contents (FAPPLY (Tracker_phases trk) pid)) /\
FINITE

(Phase_expected_materials (FAPPLY (Tracker_phases trk) pid)) /\
CARD (Phase_contents (FAPPLY (Tracker_phases trk) pid)) <=
Phase_capacity (FAPPLY (Tracker_phases trk) pid) /\
(Phase_expected_materials (FAPPLY (Tracker_phases trk) pid) <>
{})) /\

Consistent (Tracker_containers trk,Tracker_phases trk) /\
PhasesDistinguished (Tracker_phases trk) /\
MaterialSafe (Tracker_containers trk,Tracker_phases trk) ==>
FINITE

(Phase_contents
(mk_Phase

(Phase_contents (FAPPLY (Tracker_phases trk) ptoid) UNION {cid},
Phase_expected_materials {FAPPLY (Tracker_phases trk) ptoid),
Phase_capacity (FAPPLY (Tracker_phases trk) ptoid)))) /\

g

FINITE
(Phase_expected_materials

(mk_Phase
(Phase_contents (FAPPLY {Tracker_phases trk) ptoid) UNION {cid},
Phase_expected_materials (FAPPLY (Tracker_phases trk) ptoid),
Phase_capacity (FAPPLY (Tracker_phases trk) ptoid)))) /\

CARD
(Phase_ contents

(mk_Phase
(Phase_contents (FAPPLY (Tracker_phases trk) ptoid} UNION {cid},
Phase_expected_materials (FAPPLY (Tracker_phases trk) ptoid},
Phase_capacity (FAPPLY {Tracker_phases trk} ptoid))}) <=

Phase_ capacity
(mk_Phase

(Phase_contents (FAPPLY {Tracker_phases trk} ptoid} UNION {cid},
Phase_expected_materials (FAPPLY (Tracker_phases trk) ptoid),
Phase_capacity {FAPPLY (Tracker_phases trk) ptoid))) /\

(Phase_expected_materials
{mk_Phase

(Phase_contents (FAPPLY (Tracker_phases trk) ptoid) UNION {cid},
Phase_expected_materials (FAPPLY (Tracker_phases trk) ptoid),
Phase_capacity (FAPPLY (Tracker_phases trk) ptoid))) <>

{}) ==>
Permission (trk,cid,ptoid) /\
pfromid IN FDOM (Tracker_phases trk) /\
cid IN Phase_contents (FAPPLY (Tracker_phases trk) pfromid) ==>
pfromid IN FDOM (Tracker_phases trk) /\
cid IN Phase_contents (FAPPLY (Tracker_phases trk) pfromid)''

which is solved. In fact, it would be enough to just unfold the definition of
pre_Move. Also, it is worth mentioning that proof is in the last four lines of the
listing above. The rest is not required.

Unfolding of all specification definitions The proof obligation

val tracker_P09 =Term '!trk cid ptoid pfromid.
(inv_Tracker trk) ==>
(pre_Move(trk,cid,ptoid,pfromid) ==> ptoid IN (FDOM (Tracker_phases trk)))';

is an example of a formula which is not solved when only projections and
predicates are unfolded. Unfolding all definitions, and then eliminating let­
expressions yields the formula

'' !trk cid ptoid pfromid.
(!pid.

pid IN FDOM (Tracker_phases trk) ==>
FINITE (Phase_contents (FAPPLY {Tracker_phases trk) pid)) /\
FINITE

(Phase_expected_materials (FAPPLY (Tracker_phases trk) pid)) /\
CARD (Phase_contents {FAPPLY (Tracker_phases trk) pid)) <=
Phase_capacity (FAPPLY (Tracker_phases trk) pid) /\
(Phase_expected_materials (FAPPLY (Tracker_phases trk) pid) <>
{})) /\

(!pi d.
T ==>

10

pid IN FDOM (Tracker_phases trk) ==>
Phase_contents (FAPPLY (Tracker_phases trk) pid) SUBSET
FDOM (Tracker_containers trk)} /\

~(?pi p2.
(T !\ I) !\
pi IN FDOM (Tracker_phases trk) /\
p2 IN FDOM (Tracker_phases trk) /\
(p! <> p2) /\
(Phase_contents (FAPPLY (Tracker_phases trk) pi) INTER
Phase_contents (FAPPLY (Tracker_phases trk) p2) <>
{})) 1\

(!pid.
T ==>
pid IN FDOM (Tracker_phases trk) ==>
(!cid.

T ==>
cid IN Phase_contents (FAPPLY (Tracker_phases trk) pid) ==>
cid IN FDOM (Tracker_contair,ers trk) /\
(cid IN FDOM (Tracker_containers trk} ==>
Container_material (FAPPLY (Tracker_containers trk) cid) IN
Phase_expected_materials (FAPPLY (Tracker_phases trk) pid)))) ==>

(cid IN FDOM (Tracker_containers trk) /\
ptoid IN FDOM (Tracker_phases trk) /\
CARD (Phase_contents (FAPPLY (Tracker_phases trk) ptoid)} <
Phase_capacity (FAPPLY (Tracker_phases trk) ptoid) /\
Container_material (FAPPLY (Tracker_containers trk) cid) IN
Phase_expected_materials (FAPPLY (Tracker_phases trk) ptoid)) /\

pfromid IN FDOM (Tracker_phases trk) /\
cid IN Phase_contents (FAPPLY (Tracker_phases trk) pfromid) ==>
ptoid IN FDOM (Tracker_phases trk) 11

which is solved. As in the case above, it would be enough to just unfold the
definition of pre_Move. Also again, the proof is in the last nine lines of the
listing above. The rest is not required.

For all three examples above, it is typical that the proof consists of "digging
out" the consequence in the antecedent. Hence, the reasoning is essentially
trivial.

3.2.2 Arithmetic

The decision procedures for arithmetic are not relevant for the proof obligations
in our examples since no arithmetic occurs. Arithmetic is, however, important
for domain checking proof obligations generated by arithmetic partial opera­
tors like division, and therefore it is also interesting to see to what extent and
effeciency they cope with formulas without arithmetic. In this light it is dis­
appointing that the decision procedures for arithmetic fails in almost all cases
as reported in Table 3.1. However, the failures for a large part stem from the
formulas not being in an appropriate normal form. For instance, ARITH_TAC
solves the formula

val alarm_P02 =
Term '!per plant. inv_Plant{plant) ==>

{per IN FDOM (Plant_schedule plant) ==>
per IN FDOM (Plant_schedule plant)) ';

11

but fails to solve the formula

val alarm_P01 = Term '!a per schedule.
inv_Schedule(schedule) ==>

(a IN alarms /\ per IN FDOM schedule ==>
per IN FDOM schedule)';

However, if the formula is put on implicative form

val alarm_P01_2 = Term '!a per schedule.
inv_Schedule(schedule) ==>

(a IN alarms ==> per IN FDOM schedule ==>
per IN FDOM schedule)';

ARITH_TAC solves it. A similar situation holds for REDUCE_TAC. For instance, the
formula alarm_?OL2 defined above is reduced to

' ' ! a per schedule. T''

by REDUCE_TAC but not solved. In fact, extending the tactic by first removing all
universal quantifications from the front of a goal and then invoking REDUCE_TAC,
that is, the tactic

REPEAT GEN_TAC THEN REDUCE_TAC

yields a tactic which solves as many or rather as few of the proof obligations in
Table 3.1 as ARITH_TAC with essentially the same efficiency.

An obvious approach would hence be to first move formulas into an appro­
priate normal form and then apply the respective decision procedur~s. However,
the appropriateness of the approach seems hard to justify by the collection of
proof obligations available in this case study. Because even mild rewriting is on
its own sufficient to solve almost all domain checking proof obligations in the
examples. In particular, removing the PURE prefix from the tactics above

fun VDM_PROJ_AND_PRED_DEF_RW (tac:tactic):tactic =
RW_TAC (append proj_DEF_rules pred_DEF_rules) THEN
(CONV_TAC (DEPTH_CONV let_CONV)) THEN tac;

fun VDM_DEF_RW (tac:tactic):tactic
RW_TAC DEF_rules THEN
(CONV_TAC (DEPTH_CONV let_CONV)) THEN tac;

that is, allowing RW~TAC to apply its build-in rewrites yields tactics which solve
most of the domain checking proof obligations before invoking the argument
tactic tac. Moreover 1 also the standard tactic

REPEAT STRIP_TAC

solves almost all the domain checking proof obligations as efficiently as TAULTAC.
This fact supports the observation from above that the proofs often consists of
digging out the consequence in the antecedent.

12

For the decision procedure implemented by DECIDE_TAC, the problem seems
to be that the tactic, while not properly programmed with definitions for sets
and maps, does not interpret constants like IN and FDOM as uninterpreted con­
stants. In fact, DECIDE_TAC proves many2 of the proof obligations when read
in uninterpretcd, that is, without reading in definitions of sets, lists, maps, and
user defined things. However, decisionLib admits facilities for programming
DECIDLTAC to work with new types and also to extend it with other decision
procedures. What we have tried out is only the raw version of DECIDE_TAC.
Further investigations are needed.

3.2.3 Simplification

One domain checking proof obligation, tracker_F01, is not proved valid by any
of the decision strategies. The property verified by tracker _FOi is that the
mappings applied to the merge map operator, munion, are compatible, see [2],
that is, that each element belonging to the domain of both mappings is mapped
to the same element by both mappings

val tracker_P01 =Term '! trk cid quan mat.
inv_Tracker trk ==>
pre_Introduce(trk,cid,quan,mat) ==>
!c1 c2.

ci IN (FDOM (Tracker_containers trk)) /\
c2 IN (FDOM (MAPENUM [(cid,mk_Container(quan, mat))]))

==>
(cl = c2) ==>

((FAPPLY (Tracker_containers trk) c1) =
(FAPPLY (MAPENUM [(cid,mk_Container(quan, mat))]) c2})';

After inspecting tracker_F01, it is no surprise that it cannot be solved by a
procedure for propositional logic. The expression

MAPENUM [(cid,mk_Container(quan, mat))]

defines a map enumeration, here a mapping with the singleton domain consisting
of cid. In particular in the case of tracker YO!, c2 is equal to cid and c1 which
is the essential information in the proof of its validity. Since this information is
extractable by rewriting, it would be tempting to try to solve it using the tactic

VDM_DEF_RW (SIMP_TAC vdrn_ss vdm_rewrites)

The simplification set (ss) and rewrite theorems used here are described in the
code [4]. However, the result is the following subgoal

''!trk cid quan mat cl c2.
(!pid.

pid IN FDOM (Tracker_phases trk) ==>
FINITE (Phase_contents (FAPPLY (Tracker_phases trk) pid))) /\

(!pid.

2 M any, because not aU proof obligations can be read in uninterprcted, for instance the set
enumeration notation {. . } is not accepted by the default syntax checker

13

pid IN FDOM (Tracker_phases trk) ==>
FINITE

(Phase_expected_materials (FAPPLY (Tracker_phases trk) pid))) /\
(!pid.

pid IN FDOM (Tracker_phases trk) ==>
CARD (Phase_contents {FAPPLY (Tracker_phases trk) pid)) <=
Phase_capacity (FAPPLY (Tracker_phases trk) pid)) /\

(!pid.
pid IN FDOM (Tracker_phases trk) ==>
({} <>
Phase_expected_materials (FAPPLY (Tracker_phases trk) pid))) /\

(!pid.
pid IN FDOM (Tracker_phases trk) ==>
Phase_contents (FAPPLY {Tracker_phases trk) pid) SUBSET
FDOM (Tracker_containers trk)) /\

(!p1 p2.
pl IN FDOM
p2 IN FDOM
(p1 <> p2)

(Tracker_phases
(Tracker_phases
==>

trk) /\
trk) /\

{Phase_contents (FAPPLY (Tracker_phases trk) pl) INTER
Phase_contents (FAPPLY (Tracker_phases trk) p2)
{})) /\

{!pid cid.
pid IN FDOM (Tracker_phases trk) /\
cid IN Phase_contents (FAPPLY (Tracker_phases trk) pid) ==>
cid IN FDOM (Tracker_containers trk)) /\

(!pid cid.
pid IN FDOM (Tracker_phases trk) /\
cid IN Phase_contents (FAPPLY (Tracker_phases trk) pid) /\
cid IN FDOM (Tracker_containers trk) ==>
Container_material (FAPPLY (Tracker_containers trk) cid) IN
Phase_expected_materials (FAPPLY (Tracker_phases trk) pid)) /\

-ccid IN FDOM (Tracker_containers trk)) /\
cl IN FDOM (Tracker_containers trk) /\
(c2 = cid) /\
(cl = c2) ==>
(FAPPLY (Tracker_containers trk) cid = mk_Container (quan,mat))''

showing that the simplifier fails to identify that c1 and cid are equal, and hence
fails to catch the contradiction in the antecedents. The problem is the ordering
of the assumptions. Below, we rephrase the problem and give a partial solution.
First, we split the goal using VDM.JlPLILTAC to get

''FAPPLY {Tracker_containers trk) cid = mk_Container {quan,mat)''

''c1=c2''
'' c2 = cid''
''c2 IN FDOM (Tracker_containers trk)''
''-(cid IN FDOM (Tracker_containers trk))''

'' !pid.
pid IN FDOM (Tracker_phases trk) ==>
FINITE (Phase_contents (FAPPLY (Tracker_phases trk) pid))''

14

An invocation of the full simplification tactic with simpset booLss and no
rewrite theorems, that is, the tactic

FULL_SIMP _TAC bool_ss []

leaves the goal invariant. This is because the FULLS IMP _TAC tactic simplifies
each assumption (bottom-up in the ordering of the listing above) using the
assumptions already simplified as extra rewrite theorems. Hence, the ordering
of assumptions can be essential as in this case where the assumption

''~(cid IN FDOM (Tracker_containers trk))''

is simplified without using the assumptions

"cl = cid"
''c2=cid''
''c2 IN FDOM {Tracker_containers trk)''

We have modified the standard full simplification tactic to help avoid some
of the problems with the dependency on the ordering of assumptions. Our
version, called OUR_FULLSIMP_TAC, works as FULLSIMP3AC except that when
simplifying an assumption it uses all other assumptions; those that have already
been simplified as well as those to be simplified. Hence, the modification is not
ideal since it depends on the ordering of assumptions but less than the standard
version. In particular, invoking OUR_FULL1>IMP _TAC booLss [) solves the goal
from above. Altogether, the tactic

VDM_DEF_RW (SIMP_TAC vdm_ss vdm_rewrite.s) THEN

VDM_SPLIT_TAC THEN (OUR_FULL_SIMP_TAC bool_ss [])

proves the tracker _1101 in 2. 7 seconds.

15

Chapter 4

Subtype checking

The second class of proof obligations that ·we investigate is the class generated
from the use of subtyping.

In the examples [5, 3], the proof obligations 2,6,7,10,12, and 14 of the tracker
example are classified as subtype checking proof obligations.

4.1 Strategies

Our main interest is the investigation of classes of proof obligations that are in
practice equally hard or easy to solve, i.e., that are in most cases solvable by
the same techniques.

A first naive attempt could be to try out the strategies that worked for do­
main checking proof obligations in Chapter 3. But none of the subtype checking
proof obligations are proved by the decision procedures discussed in Chapter 3.

Instead, we suggest a rather brute-force strategy involving both

• simplification,

• goal directed reasoning, and

• resolution.

The overall strategy that we apply is goal directed reasoning combined with
simplification, and when everything else fails we then apply resolution.

The main tactic

fun VDM_REC_INV_TAC (depth:int):tactic = fn g => (
let val _ = max_depth := (if depth> (!max_depth) then depth

in
VDM_SPLIT_TAC THEN
((SIMP_TAC vdm_arith_ss vdm_rewrites) THEN
FIRST

[OUR_ASM_ACCEPT_TAC,

else (!max_depth))

COND_CASES_TAC THEN (VDM_REC_INV_TAC (depth+i)),

16

l

end

g;

(VDM_INV_EXISTS_TAC (VDM_REC_INV_TAC (depth+!))),
VDM_CONTRADICT_TAC,
(VDM_DEDUCT_TAC (VDM_REC_INV_TAC (depth+!))},
(VDM_SIMP_TAC (VDM_REC_INV_TAC (depth+!))),
(VDM_RES_TAC NO_TAC),
(BACKTRACKING_TAC depth)

is a depth-first recursive tactic performing depth-first proof search. The tactic
was constructed gradually in an "extend by need" fashion. While solving the
proof obligations one by one, we extended the current tactic with new techniques
and theorems when subgoals were not proved by the current tactic. Much effort
has gone into adding "good" rewrite theorems to the simplifier both theorems
from the standard libraries and new theorems combining reasoning about sets,
maps, and lists. This means that the tactic is somewhat tailored towards prov­
ing the proof obligations of the examples and therefore still rather unpolished,
unoptimized, and primitive.

Below, we give a short description of each of the component tactics.

VDM_SPLJT _TAC first splits the goal using REPEAT STRIP _TAG then ap­
plies a case analysis tactic on conditionals in the assumptions, and then per­
forms simple term substitutions in the assumptions based on equalities in the
assumptions.

SIMP _TAC vdrn_arith_ss vdrn_rewrites simplifies the conclusion of the
goal using the largest simpset that we use, vdm_ari th_ss, and the largest list of
rewrite theorems that we use, vdm..rewri tes.

OUR_ASM_ACCEPT _TAC tries to solve the goal by applying simple checks
for acceptance by matching each of the assumptions against the conclusion.

COND_CASES_TAC does a case analysis on the conclusion of the goal.

VDM_1NV_EXISTS_TAC (VDM_REC_1NV_TAC (depth+l)) fails if
the conclusion of the goal is not existentially quantified, and otherwise in­
vokes the tactic OUR_INV..EXISTS_TAG followed by a recursive application of
VDM.JtECINV _TAG. On failure it first simplifies the goal, then performs reso­
lution, using the tactic VDMJ\ES_TAC described below, and then invokes tactic
OUR_INV..EXISTS_TAC followed by a recursive application of VDMJ\ECINV_TAG.
The tactic OUR_INV..EXISTS_TAC, is a simple tactic for solving existentially quan­
tified goals. Given a goal of the form

A?- ?x1 ... ?xm. C1 /\ ... /\ Cn

17

it first looks for instantiations of the variables by matching for each of the clauses
individually against each of the assumptions, and then invokes the argument
tactic on the instantiated goal trying out all of the instantiations found taking
the one that lead to the most matches first.

VDM_CONTRADICT _TAC fails if conclusion of the goal is not Boolean
constant F, and otherwise tries to prove a contradiction in the assumptions by
simplification followed by resolution. There is no recursive call. The resolution
is performed by the tactic VDMJ\ES_TAC described below.

VDM_DEDUCT_TAC (VDM_RECJNV_TAC (depth+l)) does goal
directed reasoning MATCH_MP _TAG applied to theorems and assumptions. If a
match results in an exists goal then the tactic OUR_INV .JlXISTS_TAC described
above is invoked.

VDM_SIMP _TAC (VDM_RECJNV _TAC (depth+l)) simplifies the goal.
If the simplification does not make any changes then it fails otherwise it applies
VDMJ\EC_INV _TAG recursively. The simplification divides into two; first simpli­
fication is applied only to the goal and to the assumptions that do not begin
with a quantifier, if this simplification fails to make any changes, a second sim­
plification is applied this time simplifying the goal and all of the assumptions.

VDM_RES_TAC applies resolution followed by simplification in three ways

fun VDM_RES_TAC (tac:tactic):tactic =
let val _ == vdm_res_ tac : = (! vdm_rc::;_ tac) + 1 in

FIRST
[RES_TAC THEN (ASM_SIMP_TAC vdm_ss vdm_rewrites) THEN tac,
VDM_PRED_SET_EXT_TAC THEN
RES_TAC THEN (OUR_SIMP_ASM_TAC vdm_ss vdm_rewrites) THEN tac,
(MAP_EVERY ASSUME_TAC res_list) THEN
VDM_PRED_SET_EXT_TAC THEN
RES_TAC THEN (OUR_SIMP_ASM_TAC vdm_ss vdm_rewrites) THEN tac

l
end;

First it applies resolution on the assumptions, using the standard tactic RES_TAC,
followed by simplification of the conclusion using the assumptions. If the first
attempt fails it rewrites the assumptions with some special rewrite theorems
before applying RES_TAC and simplification. Examples of the special rewrite
theorems used are

!- !st. s SUBSET t::: (!x. x INs==> x IN t)

and

!- !s. (s = {}) = (!x. ~(x INs))

They are intended to lower the reasoning about sets to the element level.
If also the second attempt fails it first adds a list of theorems to the assump­

tions and then does as in the second attempt.

18

"' "' "' < < < < < < s o' s
~ 0 ~ !l' !l' !l' !l' !l' !l' ~ ~ ~ ! ~ ~ (>

" ' ' ' \:>. ' ~ \:>. "" '
" 00 ~· (> 00 " 00

f-' ~· "' ~ 0 ro ~· ro ro ~ g.
ro 0 f-' < ;; §' .lJ 00 "' ~

~ ~· ~

'"'
" (> "" " ~ (>

'"' "' "" 0
~

'"'
" " " ~

~· ~
00 ~· "' '"'

" (>

"
f-'

ro ~ 00 ~·
(>

""
00

(> " (> ~ 0 00 "
(>

~

'"' '"' ~ " (> (>

2 6.6 5 6 6 5 5 5 2 5 4
6 12.2 4 7 7 4 4 4 2 4 4
7 101.3 23 48 48 23 23 39 3 23 34

Tracker 10 8.5 1 4 4 1 1 1 0 1 4
12 528.5 44 139 139 44 44 125 4 44 114
14 127.1 23 56 56 23 23 47 3 23 42

Table 4..1: Summary of experiments with subtype checking proof obligations.

BACKTRACKING _TAC simply prints "backtracking" on the screen and
then fails if the depth if the depth is greater than zero and otherwise behaves
as the identity tactic. The test for zero makes sure that the tactic backtracks
appropriately but also returns subgoals not proved.

val VDM_RW_DEF_TAC:tactic =
(CONV_TAC (PURE_RW_CONV DEF_rules THENC

(DEPTH_CONV let_CONV) THENC
(RW_CONV vdm_rewrites)));

Before invoking the recursive invariants tactic we rewrite all specification
definitions using the tactic

val VDM_RW_DEF_TAC:tactic =
(CONV_TAC (PURE_RW_CONV DEF_rules THENC

(DEPTH_CONV let_CONV) THENC
(RW_CONV vdm_rewrites)));

Hence1 the invariants tactic we suggest is

val VDM_INV_TAC = VDM_RW_DEF_TAC THEN (VDM_REC_INV_TAC 0);

4.2 Summary of experiments

In this section 1 we summarize the experiments that we performed with the
solving of subtype checking proof obligations.

19

The file vdm-varians-tactics. sml containing the H OL98 tactics used, and
the file tracker-proof -lab. sml containing the applications of the tactics are
found in [4].

Table 4.1 summarizes the results obtained. We have applied the invari­
ants tactic to each of the proof obligations. All proof obligations were solved.
The Duration column marks the response time in seconds, The max_subgoals
column marks the maximal number of immediate subgoals resulting from an
application of a tactic component tactic in a THEN-sequencing of tactics, that is,
the maximal number of immediate subgoals passed to the tactical THEN during
the proof. The max_depth column marks the maximal recursion depth reached
by VDM_REC_INV _TAC during the proof. The rest of the columns mark the number
of invocations of the respective component tactics.

Simplification on its own can solve a proof obligation like

val tracker_P010 =Term '!trk cid ptoid pfromid.
(inv_Tracker trk) ==>
(pre_Move(trk,cid,ptoid,pfromid) ==>
inv_Phase(mk_Phase({(Phase_contents(FAPPLY (Tracker_phases trk) ptoid)) UNION {cid}),
Phase_expected_materials(FAPPLY {Tracker_phases trk) ptoid),
Phase_capacity(FAPPLY (Tracker_phases trk) ptoid))))';

Resolution versus simplification Note that in the invariants tactic above
we try to make sure that resolution is not followed by simpification of assump­
tions using the assumptions as rewrite theorems because such a simplification
would cancel the consequences derived by the resolution. Consider the goal

"p X<<

"!y. p y ==> q y"

invoking RES_TAC yields the goal

''g"

''p x''
' ' ! y. p y ==> q y' '
"qx"

with the derived assumption q x which is then canceled by an invocation of
OUR_FULLSIMP _TAC booLss [] which yields the goal

'' g''

''p x''
"!y. p y ==> q y"
''T''

20

Resolution should be used with care. Consider the proof obligation

val tracker_P014 = Term '!trk cid source.
(inv_Tracker trk) ==>
(pre_Delete (trk,cid,source) ==>
inv_Tracker(mk_Tracker(({cid} <-: (Tracker_containers trk)),

Tracker_phases(Remove(trk,cid,source)))))';

Proving tracker .P014 valid includes solving subgoals like the one shown in
Figure 4.1 Such a goal is difficult to solve using goal directed reasoning since a
contradiction in the assumptions needs to be derived. An obvious next move
would be to use resolution. This should however only be done with care as
shown by the subgoal in Figure 4.2 resulting from an invocation of RES_TAC.
Hopefully, we will never have to present any of these goals to an end-user!

Arithmetic is needed in order to prove tracker.P010 valid. If ARITH_ss
is removed from the vdm_ss simpset then the VDM_INV_TAC tactic invoked on
tracker .POlO cannot solve the subgoal

''1 + {CARD (Phase_contents (FAPPLY (Tracker_phases trk) ptoid)) -
CARD ({cid} INTER Phase_contents (FAPPLY (Tracker_phases trk) ptoid))) <=
Phase_capacity (FAPPLY (Tracker_phases trk) ptoid)''

''cid IN Phase_contents (FAPPLY (Tracker_phases trk} pfromid)''
''pfromid IN FDOM (Tracker_phases trk)''
''Container_material (FAPPLY (Tracker_containers trk) cid) IN

Phase_expected_materials (FAPPLY (Tracker_phases trk) ptoid) ''
''CARD (Phase_contents (FAPPLY (Tracker_phases trk) ptoid)) <

Phase_capacity (FAPPLY (Tracker_phases trk) ptoid)''
11 ptoid IN FDOM {Tracker_phases trk)''
''cid IN FDOM (Tracker_containers trk) 11

<' !pid.
pid IN FDOM (Tracker_phases trk) ==>
(!cid.

cid IN Phase_contents (FAPPLY (Tracker_phases trk) pid) ==>
cid IN FDOM (Tracker_containers trk) /\
(cid IN FDOM (Tracker_containers trk) ==>
Container_material (FAPPLY (Tracker_containers trk) cid) IN
Phase_expected_materials {FAPPLY (Tracker_phases trk) pid)))''

«-(?pi p2.

pi IN FDOM (Tracker_phases trk) /\
p2 IN FDOM (Tracker_phases trk) /\
(pi <> p2) /\
(Phase_contents (FAPPLY {Tracker_phases trk) pi) INTER
Phase_contents (FAPPLY {Tracker_phases trk) p2) <>
{}))"

'' !pid.
pid IN FDOM (Tracker_phases trk) ==>
Phase_contents (FAPPLY (Tracker_phases trk) pid) SUBSET
FDOM (Tracker_containers trk)''

'< !pid.
pid IN FDOM (Tracker_phases trk) ==>
FINITE (Phase_contents (FAPPLY (Tracker_phases trk) pid)) /\
FINITE

21

--·-------- -------.~------.------··------ ---·---------

" "

Figure 4.1: A subgoal arising in proving P014 in the tracker example.

22

•' ,.

Figure 4.2: After invoking RES_TAC on the subgoal in Figure 4.1.

23

l

(Phase_expected_materials (FAPPLY (Tracker_phases trk) pid)) /\
CARD (Phase_contents (FAPPLY (Tracker_phases trk) pid)) <=
Phase_capacity (FAPPLY (Tracker_phases trk) pid) /\
(Phase_expected_materials (FAPPLY (Tracker_phases trk) pid) <>
{})''

In fact, all of the subtype checking proof obligations except tracker Y02 require
arithmetic.

4.2.1 Reusing type information

Sometimes type correctness stated in a proof obligation can - if proved - be
reused when proving other proof obligations. The reason for doing this is the
hope of gaining effeciency by not having to redo proofs. In this section, we
investigate three examples taken from the tracker example. Consider the proof
obligation tracker Y07 from the tracker example. The proof obligation states
that the type of the expression

mk_Tracker(containers,(phases MOVERRIDE (MAPENUM [(source, pha)])))

is a subtype of Tracker. For this to be the case, the variable pha needs to be of
type Phase. But, this is exactly the property stated in trackerY06. Under the
assumption that tracker Y06 is proved it would suffice to prove the following
modified version of tracker _F07

val tracker_P07_2 =Term '!containers phases cid source.
inv_Phaselnfo(phases) ==>
inv_Tracker(mk_Tracker(containers,phases)) ==>
(let pha = (mk_Phase(((Phase_contents(FAPPLY phases source)) DIFF {cid}),

Phase_expected_materials{FAPPLY phases source),
Phase_capacity(FAPPLY phases source)))

in
inv_Phase(pha) ==>
pre_Remove(mk_Tracker(containers,phases),cid,source)
==>
inv_Tracker(mk_Tracker(containers,

(phases MOVERRIDE (MAPE?JUM [(source, pha)])))))';

where we have added the assumption that pha satisfies the Phase invariant.
Similarly) we can reuse the type correctness of the Remove function stated in
tracker Y07 (tracker _1'07_2) to modify tracker Y014 to:

val tracker_P014_2 = Term '!trk cid sou=ce. (inv_Tracker trk) ==>
inv_Tracker(Remove(trk,cid,source)) ==>
(pre_Delete (trk,cid,source) ==>
inv_Tracker(mk_Tracker(({cid} <-: (Tracker_containers trk)),

Tracker_phases(Remove(trk,cid,source)))))';

Also 1 tracker _F012 can be modified using the type correctness of Remove and
ph a stated in respectively tracker Y07 (tracker Y07 ..2) and tracker _1'014
(tracker _1'014..2):

24

~
., "' < < < < < < a o' a
0 ~ §' §' §' §' §' §' ~ ~ ~

~
~ () ~

~ ' ' ' io. ' ~ io. "" '
" 00 ~· () 00 " 00

>-' ~-
., ~ 0 ro ~· ro ro ~ & ro 0 >-' < ~ g- {] 00 .,

~
~ ~· \, " " " n ()q

" ~ ()

" "' ,. 0
~ "

H ~ " ~
~· ~

00 ~· p.

"
~ ()

~ >-'
ro ~ 00 ~·

()
()q 00

() n " n ~
00 "

()

~ " " ~ ~ n

7 101.3 23 48 48 23 23 39 3 23 34
7.2 112.1 19 40 40 19 19 35 3 19 34
12 528.5 44 139 139 44 44 125 4 44 114

Tracker 12.2 1681.4 44 133 133 44 44 125 4 44 114
14 127.1 23 56 i 56 23 23 47 3 23 42

14.2 122.7 1 16 16 1 1 9 0 0 16

Table 4.2: Summary of experiments on reuse of extra type information.

val tracker_P012_2 =Term '!trk cid ptoid pfromid.
(inv_Tracker trk) ==>
(let pha = (mk_Phase(((

in

Phase_contents(FAPPLY (Tracker_phases trk) ptoid)) UNION {cid}),
Phase_expected_materials(FAPPLY (Tracker_phases trk) ptoid},
Phase_capacity(FAPPLY (Tracker_phases trk) ptoid)))

inv_Tracker(Remove(trk,cid,pfromid)) ==>
inv_Phase(pha) ==>
pre_Move(trk,cid,ptoid,pfromid) ==>

inv_Tracker(mk_Tracker(Tracker_containers trk,
(Tracker_phases(Remove(trk,cid,pfromid)) MOVERRIDE

MAPENUM [(ptoid,pha)]))))';

Table 4.2 summarizes the results obtained by applying the invariants tactic
to each of the modified proof obligation. The table should be read as explained
for Table 4.1 in Section 4.2. All proof obligations were proved valid. There seems
to be no clear conclusions; for trackerY012 there is a dramatic loss in time
efficiency and for tracker .P014 is possibly a slight gain in time efficiency. One
interesting observation however seems to be that the modified versions are solved
using fewer tactic invocations. In particular, tracker..P014.2 seems to have a
nice flat proof structure with no recursive calls, and hence no backtracking.
Though no conclusion can be made, the result might indicate that the size of
the goals is more important to the time efficiency than the number of invocations
on tactics.

4.2.2 Normal form

In this section, we adress the question of why did we not simplify, and hence
normalize, our goal before calling the recursive tactic VDM...REC_INV _TAG? The

25

"' "' t:1 < < < < < < s o' s
" D " fr fr fr fr fr fr ~ ~ ~
l >1 " 0

~ ' ' ' ' ' ~ ' ,..
' m ~· 0 p, m p, " m

"' " 0 @ ~· @ @ >1 g. >-' ~· >-' < " §' .§ m "' ~ @ 0

" ~· ' " " " 0 ()q

"
@ >1 0 " "' ,.. 0

' " ~ " ~
~· ~ ~ " ~· p, "

~ 0

" >-' m ~ m 0 m @ ~· ()q
0

0 " 0 ~
m " 0

~ " l+
~ ~ 0 0

2 10.8 6 5 5 6 6 6 2 6 3
6 11.3 3 3 3 3 3 3 I 3 2
7 98.7 49 43 43 49 49 49 3 49 22

Tracker 10 6.9 I I 1 1 I I 0 1 I
12 537.9 146 121 121 146 146 152 5 146 42

14
: - i ,88.7, 3 9 9 3 3 3 I 3 30

Table 4.3: Summary of experiments with normalising first.

answer illustrates the subtleties of automated theorem proving. A seemingly
obvious suggestion turns out to have quite divergent consequences on distinct
goals. Some are proved faster, others slower, and yet others are no longer proved.
Table 4.2 summarizes the results obtained by applying the invariant tactic to
each of the modified proof obligation. The table should be read as explained
for Table 4.1 in Section 4.2. The grey shaded box in Table 4.3 marks that the
strategy failed. The proof obligation tracker_F014 is not proved by the new
strategy. Instead, it results in one remaining subgoal:

<I Cid () Cid >I I

' '-(pid =source)''
''cid' IN Phase_contents (FAPPLY {Tracker_phases trk) pid)''
''pid IN FDOM (Tracker_phases trk)''
''cid IN Phase_contents (FAPPLY (Tracker_phases trk) source)''
''source IN FDOM (Tracker_phases trk)''
<I !pid cid,

pid IN FDOM (Tracker_phases trk) /\
cid IN Phase_contents (FAPPLY (Tracker_phases trk) pid) /\
cid IN FDOM (Tracker_containers trk) ==>
Container_material (FAPPLY (Tracker_containers trk) cid) IN
Phase_expected_materials (FAPPLY (Tracker_phases trk) pid)''

'' !pid cid.
pid IN FDOM (Tracker_phases trk) /\
cid IN Phase_contents (FAPPLY (Tracker_phases trk) pid) ==>
cid IN FDOM (Tracker_containers trk)''

''!pi p2.
pi IN FDOM (Tracker_phases trk) /\
p2 IN FDOM (Tracker_phases trk) /\
(pi <> p2) ==>
(Phase_contents (FAPPLY (Tracker_phases trk) pi) INTER

26

Phase_contents {FAPPLY (Tracker_phases trk) p2)
{})''

'' !pid.
pid IN FDOM {Tracker_phases trk) ==>
Phase_contents (FAPPLY (Tracker_phases trk) pid) SUBSET
FDOM (Tracker_containers trk)''

'' !pid.
pid IN FOOM (Tracker_phases trk) ==>
({} <>
Phase_expected_materials {FAPPLY (Tracker_phases trk) pid))''

'' Jpid.
pid IN FDOM (Tracker_phases trk) ==>
CARD (Phase_contents (FAPPLY (Tracker_phases trk) pid)) <=
Phase_capacity (FAPPLY (Tracker_phases trk) pid)''

''!pi d.
pid IN FDOM (Tracker_phases trk) ==>
FINITE

(Phase_expected_materials (FAPPLY (Tracker_phases trk) pid))''
'' !pid.

pid IN FDOM (Tracker_phases trk) ==>
FINITE (Phase_contents (FAPPLY (Tracker_phases trk) pid))''

The example illustrates just how fragile a general strategy like the above is to
changes in the exact representation of the goal. We shall not go into exactly
why the strategy fails to prove the goal. Instead, we illustrate the sort of the
reasoning required. We need to show that

''cid <> cid'''

First, we notice that cid and cid' belong to sets

''cid' IN Phase_contents (FAPPLY (Tracker_phases trk) pid)''
''cid IN Phase_contents (FAPPLY (Tracker_phases trk) source)''

Hence, we are done if we can show that the sets are disjoint. Second, the sets
are in fact disjoint since

and

4.2.3

«-(pid = source)"
''pid IN FDOM (Tracker_phases trk)''
''source IN FDOM {Tracker_phases trk)''

'' !p1 p2.
p1 IN FDOM (Tracker_phases trk) /\
p2 IN FDOM (Tracker_phases trk) /\
(p1 <> p2) ==>
(Phase_contents (FAPPLY (Tracker_phases trk) p1) INTER
Phase_contents (FAPPLY (Tracker_phases trk) p2)
{}) ''

Translational choices

In the translation of VDM-SL specifications into HOL98 specifications, we have
experimented with

27

• the translation of A and B into A /\ (A ==> B), and

• with the elimination of quantifications over ranges.

Below, we test how well the invariants tactic does if the VDM-SL and is trans­
lated directly into the HOL98 /\, and if the quantification over ranges is kept.

Andalso Consider the function

val MaterialSafe_DEF = func 'MaterialSafe(containers,phases}
!pid. pid IN FDOM phases ==>

!cid. cid IN (Phase_contents (FAPPLY phases pid)) ==>
(cid IN FDOM containers /\
(cid IN FDOM containers ==>
(Container_material(FAPPLY containers cid) IN
(Phase_expected_materials (FAPPLY phases pi d)})))';

from the tracker example. Now, consider the modified tracker example with the
alternative definition of MaterialSafe

val Materia1Safe2_DEF = func 'MaterialSafe(containers,phases)
!pid. pid IN FDOM phases ==>

!cid. cid IN (Phase_contents (FAPPLY phases pid)) ==>
(cid IN FDOM containers /\
(Container_rnaterial(FAPPLY containers cid) IN
(Phase_expected_materials (FAPPLY phases pid))))';

where

(cid IN fDOM containers ==>
(Container_material(FAPPLY containers cid) IN
(Phase_expected_materials (FAPPLY phases pid))))

has been replaced by

(Container_material(FAPPLY containers cid) IN
(Phase_expected_materials (FAPPLY phases pid)))

Table 4.4 summarizes the results obtained by applying the invariants tactic
to each of the proof obligations. The table should be read as explained for
Table 4.1 in Section 4.2. The grey shaded box marks that the strategy failed.

All proof obligations but trackerY014 are proved valid with slightly better
time efficiency but otherwise with the almost the same numbers as in Table 4.1.
Instead) tracker Y014 results in one remaining subgoal

''Container_material
(FAPPLY

(DRESTRICT {Tracker_containers trk)
(FDOM (Tracker_containers trk) DIFF {cid}))

cid') IN
Phase_expected_materials (FAPPLY (Tracker_phases trk) pid)''

28

"' '"" "' < < < < < < s o' s
~ 0 ~ !r !r !r !r !r !r ~ ~ ~
~

~ ~ n
~ ' ' ' P. ' h P. "' ' rt 00 ~· n 00 rt 00
~· "' ~ 0 ro ~· ro ro ~ ~ >-'

" g- ~ 00 "' o' ro 0 >-' ~

" ~· ' rt ~ rt n "" rt ro ~ n ~ o' "'
0

~
~ ~ rt ~

~· ~ ~
~· ~ n

00 "' ~ " >-'
ro ~ 00 ~· n

""
00 n rt n ~ n 00 rt n

~ ~ ~
~ ~ n n

2 4.8 5 5 5 5 5 5 2 5 3
6 11.9 4 7 7 4 4 4 2 4 4
7 23 48 23 39 3 34 97.8 48 23 23

Tracker 10 8.1 1 4 4 1 1 1 0 1 4
12 503.8 44 139 139 44 44 125 4 44 114
14 :159.6' 26 59 59 26 26 50 3 26

Table 4.4: Summary of experiments on tracker without andalso.

''- (pid = source)''
''cid' IN Phase_contents (FAPPL! (Tracker_phases trk) pid)''
''pid IN FDOM (Tracker_phases trk)''
''cid IN Phase_contents (FAPPLY (Tracker_phases trk) source)''
''source IN FDOM (Tracker_phases trk)''
'' !pid.

pid IN FDOM (Tracker_phases trk) ==>
(! cid.

cid IN Phase_contents (FAPPLY (Tracker_phases trk) pid) ==>
cid IN FDOM (Tracker_containers trk) /\
Container_material (FAPPLY (Tracker_containers trk) cid) IN
Phase_expected_materials (FAPPLY (Tracker_phases trk) pid))''

'· -c?pl p2.
pl IN FDOM (Tracker_phases trk) /\
p2 IN FDOM (Tracker_phases trk) /\
(pl <> p2) /\
(Phase_contents (FAPPLY {Tracker_phases trk) p1) INTER
Phase_contents (FAPPLY (Tracker_phases trk) p2) <>
{})) ((

(' !pid.
pid IN FDOM (Tracker_phases trk) ==>
Phase_contents (FAPPLY (Tracker_phases trk) pid) SUBSET
FDOM (Tracker_containers trk)''

((!pid.
pid IN FDOI'I (Tracker _phases trk) :::.=>
FINITE (Phase_contents (FAPPLY (Tracker_phases trk) pid)) /\
FINITE

42

(Phase_expected_materials (FAPPLY (Tracker_phases trk) pid)) /\
CARD (Phase_contents (FAPPLY (Tracker_phases trk) pid)) <=
Phase_capacity (FAPPLY (Tracker_phases trk) pid) /\
(Phase_expected_materials (FAPPLY (Tracker_phases trk) pid) <>
{}) (<

29

To solve the subgoal, we could first deduce the cid <> cid' like in the proof
at the end of the previous section. Once, we know this the goal simplifies to

''Container_material
(FAPPLY (Tracker_containers trk) cid') IN

Phase_expected_materials (FAPPLY (Tracker_phases trk) pid)''

Using the assumptions

''cid' IN Phase_contents (FAPPLY (Tracker_phases trk) pid)''
''pid IN FDOM (Tracker_phases trk)''
(' !pid.

pid IN FDOM (Tracker_phases trk) ==>
Phase_contents (FAPPLY (Tracker_phases trk) pid) SUBSET
FDOM (Tracker_containers trk)''

we can deduce that

cid' IN FDOM (Tracker_containers trk)

Finally, the goal is solved using the assumption

I I !pid.
pid IN FDOM (Tracker_phases trk) ==>
(!cid.

cid IN Phase_contents {FAPPLY (Tracker_phases trk) pid) ==>
. cid IN FDOM (Tracker_containers trk) /\

Container_material (FAPPLY (Tracker_containers trk) cid) IN
Phase_expected_materials (FAPPLY (Tracker_phases trk) pid))''

Range or domain Consider the function

val Consistent_DEF = func 'Consistent(containers,phases)
!pid. pid IN FDOM phases ==>

Phase_contents (FAPPLY phases pid) SUBSET FDOM containers';

from the tracker example. Now, consider the modified tracker example with the
alternative definition of Consistent

val Consistent_DEF_2 = func 'Consistent(containers, phases)
!ph.

inv_Phase ph ==>
ph IN FRANGE phases ==>
Phase_contents ph SUBSET FDOM containers';

where the quantification over the domain of the map phases is replaced by a
quantification over its range.

We have applied the invariants tactic to each of the proof obligations, and
none were proved valid. For example tracker_F014 resulted in one remaining
subgoal

30

''Container_material
(FAPPLY

(DRESTRICT (Tracker_containers trk)
(FDOM (Tracker_containers trk) DIFF {cid}))

cid') IN
Phase_expected_materials ph''

''cid' IN Phase_contents ph''
''ph IN PRANGE (DRESTRICT (Tracker_phases trk) (\x. -ex source)))''
''Phase_expected_materials ph<>{}''
''CARD (Phase_contents ph) <= Phase_capacity ph''
''FINITE (Phase_expected_materials ph)''
''FINITE (Phase_contents ph)''
''cid IN Phase_contents (FAPPLY (Tracker_phases trk) source)''
''source IN FDOM (Tracker_phases trk)''
''!ph.

FINITE (Phase_contents ph) /\
FINITE (Phase_expected_materials ph) /\
CARD (Phase_contents ph) <= Phase_capacity ph /\
(Phase_expected_materials ph <> {}) ==>
ph IN PRANGE (Tracker_phases trk) ==>
(!cid.

cid IN Phase_contents ph ==>
cid IN FDOM (Tracker_containers trk) /\
Container_material (FAPPLY (Tracker_containers trk) cid) IN
Phase_expected_materials ph)''

<f-(?p1 p2.
p1 IN FDOM
p2 IN FDOM
(p1 <> p2)

(Tracker_phases
(Tracker_phases
1\

trk) /\
trk) /\

(Phase_contents (FAPPLY (Tracker_phases trk) p1) INTER
Phase_contents (FAPPLY (Tracker_phases trk) p2) <>
{}))"

<'!ph.
FINITE (Phase_contents ph) (\
FINITE (Phase_expected_materials ph) /\
CARD (Phase_contents ph) <= Phase_capacity ph /\
(Phase_expected_materials ph <> {}) ==>
ph IN PRANGE (Tracker_phases trk) ==>
Phase_contents ph SUBSET FDOM (Tracker_containers trk)''

'' !pid.
pid IN FDOM (Tracker_phases trk) ==>
FINITE (Phase_contents (FAPPLY (Tracker_phases trk) pid)) /\
FINITE

(Phase_expected_materials (FAPPLY (Tracker_phases trk) pid)) /\
CARD (Phase_contents {FAPPLY (Tracker_phases trk) pid)) <=
Phase_capacity (FAPPLY (Tracker_phases trk) pid) /\
(Phase_expected_materials (FAPPLY (Tracker_phases trk) pid) <>
{})''

The subgoal can be solved along the lines of the proof at the previous section.

31

Chapter 5

Implicitly defined functions

In this chapter, we report on one experiment that we did with the solving of
proof obligations arising from implicitly defined functions, i.e., functions speci­
fied by pre- and post-conditions. Such proof obligations express that, for every
element of the domain of the implicitly defined function, there exists an element
satisfying the postcondition. The only such proof obligation occurring in the
examples is

val alarm_P04
Term '!a per plant. inv_Plant(plant) ==>

{pre_ExpertToPage(a,per,plant) ==>
?r. inv_Expert(r) /\ post_ExpertToPage(a,per,plant,r))';

In general we expect this kind of proof obligations to be hard as they involve the
construction of witnesses. However in some cases, they are rather straightfor­
ward because the witness is directly given by the context or the precondition.
For alarmY04, we get the following subgoal after rewriting with definitions,
splitting and an application of RES_TAC.

''?r.
(Expert_quali r <> {}) /\
r IN FAPPLY (Plant_schedule plant) per /\
Alarm_quali a IN Expert_quali r''

''a IN Plant_alarms plant''
''per IN FDOM (Plant_schedule plant)''
"!a.

a IN Plant_alarms plant ==>
(!per.

per IN FDOM (Plant_schedule plant) ==>
(?ex.

ex IN FAPPLY (Plant_schedule plant) per /\
Alarm_quali a IN Expert_quali ex))''

''ex IN FAPPLY (Plant_schedule plant) per''
''Alarm_quali a IN Expert_quali ex''

This is exactly the kind of goals that the tactic OUR_INV -EXISTS_TAC is aimed
at and indeed when applied to tbe goal it returns tbe following subgoal

32

"'
..,

"' < < < < < < s o' s
X 0 ~ §' §' §' §' §' §' ~ ~ ~

~
~ X n X
~ ' ' ' P. ' h P.

,. ' " m ~· 0 m " m
>-' ~·

.., ~ 0 ro ~· ro ro ~ g. ro 0 >-' < ~ g- .l'J m ..,
~

~ ~· ' " " " n ()q

" ro ~ 0 "
.,. ,. 0

~ "
X ~ " ~

~· ~
m ~· p,

"
~ 0

~ >-'
ro ~ m ~· 0 ()q m

0 " 0 ~ 0 m " n
~ " " ~ ~

0 0

I Alarm I 4 I 3.0 2 2 1 3 I

Table 5.1: Summary of experiments on satisfiability proof obligations.

''(Expert_quali ex<> {}) /\
ex IN FAPPLY (Plant_schedule plant) per /\
Alarm_quali a IN Expert_quali ex''

''a IN Plant_alarms plant''
''per IN FDOM (Plant_schedule plant)''
"!a.

a IN Plant_alarms plant ==>
(!per.

per IN FDOM (Plant_schedule plant) ==>
(?ex.

ex IN FAPPLY (Plant_schedule plant) per /\
Alarm_quali a IN Expert_quali ex))''

''ex IN FAPPLY (Plant_schedule plant) per''
''Alarm_quali a IN Expert_quali ex''

Table 4. 2 summarizes the proof. The table should be read as explained for
Table 4.1 in Section 4.2.

33

Chapter 6

Termination

In this chapter, we briefly consider proof obligations generated to ensure termi­
nation of recursive functions.

The VDM-SL examples in [5] contain one recursively defined function in the
gateway example

val Gatevay_DEF = rfunc rGateway(ms,cat) =
COND (ms = []) (mk_Ports ([], []))

(let rest_p = Gateway(TL ms,cat}
in

ProcessMessage(HD ms,cat,rest_p)) 1

'measure \(x,y). LENGTH x';

We use the tfl HOL98-theory [10, 12] to define functions. On top of the
Rfunction of tfl, we have built a function rfunc which essential calls the
function Rfunction which derives a termination condition and tries to solve
it. If the Rfunction fails to solve the termination condition the rfunc makes
an additional attempt. The definition is found in the file vdm-func-def. sml
in [4] but it is rather ad hoc and will be changed eventually. We have chosen
to supply a measure by hand at the moment but the function function of the
tfl theory could just as well have extracted it for us in this case. The result of
the definition above is

val Gateway_DEF =
{induction =

[oracles: MK_THM] [axioms:] []
I- !P.

{!ms cat. (-(ms = []) ==> P (TL ms,cat)) ==> P (ms,cat)) ==>
(!v vi. P (v,v1)),

rules
[oracles: MK_THM] [axioms: J []
1- Gateway (ms,cat) =

((ms = [])
=> (mk_Ports ([], []))
I (let rest_p =Gateway (TL ms,cat)

in
ProcessMessage (HD ms,cat,rest_p))), tcs []}

34

The fact that tcs is empty means that the termination of the functions was
proved. Another, reason for chasing the tfl theory for the definition offunctions
is the induction entry above in which an induction principle for the function
is returned. In the Chapter 7, the usefulness of the derived induction principle
will be illustrated.

35

Chapter 7

General properties

So far, we have been concerned with the solving of proof obligations. In this
chapter, we briefly report on some experiments with the proving of general
properties or validation conjectures of specifications. Tbe conjectures which we
consider are taken from the gateway example and express properties about the
gateway function

val CONJ_NoLost =
Term '!ms cat.

((inv_Message_seq ms /\ inv_Category cat) ==>
(let port Gateway(ms,cat) in

let hi = Ports_high port and
lo = Ports_low port

in (ELEMS ms = (ELEMS hi UNION ELEMS lo)) /\
LENGTH ms <=LENGTH hi+ LENGTH lo))';

val CONJ_NoBothPorts
Term '!ms cat.

((inv_Message_seq ms /\ inv_Category cat) ==>
(let port Gateway(ms,cat) in

let hi = Ports_high port and
lo = Ports_low port

in (ELEMS hi INTER ELEMS lo) {}))';

val CONJ_NoHighOnLow =
Term '!ms cat.

((inv_Message_seq ms /\ inv_Category cat) ==>
(let port Gateway(ms,cat) in

let hi = Ports_high port and
lo = Ports_low port

in !m. (mIN (ELEMS lo)) ==> ~(Classify(m,cat)

val CONJ_SameFunction
Term '!ms cat.

(inv_Message_seq ms) ==> (inv_Category cat) ==>
((Gateway(ms,cat))=(Gateway2(ms,cat)))';

HI)))';

We made some head-on attempts to prove the properties by induction using the
induction principle derived from the definition of the recursive function gateway,

36

see Chapter 6, and the support tactic PROGRAM_TAC of the tfl theory.
We begin with the first conjecture, CONLNoLost, stating that no message

is lost in the gateway. Using the following tactic:

fun VDM_INDUCTION_TAC (facts:{induction : Thm.thm,
rules : Thm.thm,
tcs : Term.term list})=

(PROGRAM_TAC {induction= #induction(facts),
rules = #rules{facts)}) THEN

(POP_ASSUM_LIST (MAP_EVERY MP_TAC)) THEN
VDM RW DEF_TAC THEN
(VDM_REC_INV_TAC 0);

based on the PROGRAM-IAC of tfl and the VDM_INV_TAC from above, the conjec­
ture is shown in a few seconds. Note that the PROGRAM_TAC takes the induction
derived when defining the Gateway function in HOL98 as an argument.

Trying to prove the second conjecture CONJ JloBothPorts in the same naive
way fails.

A closer look at the sub goals below tells us that in fact CONJ JloBothPorts
is not strong enough to be used as induction hypothesis.

''F"

''!hi i j.
hi IN cat /\ i IN INDS (HD ms) /\ j IN !NOS (HD ms) ==>
(hi<> SUBSEQ (HD ms) i j)''

''HI<>LO''
''ELEMS (Ports_high (Gateway (TL ms,cat))) INTER

ELEMS (Ports_low (Gateway (TL ms,cat))) =
{}"

'' !m. m IN ELEMS (TL ms) \1 (m = HD ms) ==> LENGTH m <= 100' 1

''!m. mIN ELEMS (TL ms) \/ {m = HD ms) ==> ([] <> m)''
''!s, sIN cat==>{[] <> s)''
''[] <> ms''
''HD ms IN ELEMS {Ports_high {Gateway (TL ms,cat)))''

''F''

''SUBSEQ (HD ms) i j IN cat''
1 'i IN INDS (HD ms) 1 1

''j IN INDS (HD ms) 11

''hi = SUBSEQ {HD ms) i j''
''T''
''ELEMS (Ports_high (GateYay (TL ms,cat))) INTER

ELEMS (Ports_low (GateYay (TL ms,cat))) =
{}"

'
1 1m. m IN ELEMS (TL ms) \1 (m = HD ms) ==> LENGTH m <= 100''

''!m. mIN ELEMS (TL ms) \! (m = HD ms) ==> ([] <> m)''
"!s. sIN cat==>{[]<> s)"
' ' [) <> ms''
''HD ms IN ELEMS (Ports_low (Gateway (TL ms,cat)))''

In other words, the subgoals ask to show thai whenever a message m is correctly
added to the high or low port then m is not already on the other port, a property
thai is not guaranteed by the induction hypothesis. Hence, a stronger hypothesis

37

0 t:J < < < < < < s o'
0 " §' §' §' §' p §' ~ ~
~ ~ (\

w. ~ ' ' ' ' !., b.
,.

ro <T w ~· (\ p. w " "" ~ 0 "' ~· "' ro (\ ~·
~ p. .lJ w ""

~

" 0 f-' ~

" ~ ~· ~ " " ~ <T (\

" ~ (\ ~ P' " ~
~ >< ~ " ~

~· ro ~
~· ~ (\ w ~ w

p. iT (\ ~ ro ~· "" (\ " (\ ~ (\ w "
(\

~ iT iT
~ ~
(\

CONJJJoLost 7.8 6 4 4 6 6 6 1 6
CONJ JJoBothPorts

'

-I 102 106 106 102 102 153 6 102
'

CONJJJoHighOnLow 1355.4 67 83 83 67 67 121 4 67
CONJ_5arneFunction 61.2 20 22 22 20 20 20 5 20

Table 7.1: Summary of experiments with subtype checking proof obligations.

is needed. Note that we produced the subgoals afterwards- by hand! How does
a strategy performing proof search produce ''good'' subgoals in case of failure?

Also, the third and fourth conjectures are not proved by the strategy. In­
stead, we attempt the following slightly changed recursive tactic

fun VDM_REC_INV_TAC_2 (depth:int):tactic = fn g => (
let val_= max_depth := (if depth> (!max_depth) then depth

in
VDM_SPLIT_TAC THEN
((SIMP_TAC vdm_ss vdm_rewrites) THEN
FIRST

[OUR_ASM_ACCEPT_TAC,

else (!max_depth))

COND_CASES_TAC THEN (VDM_REC_INV_TAC (depth+!)),
(VDM_INV_EXISTS_TAC (VDM_REC_INV_TAC (depth+!))),
VDM_CONTRADICT_TAC,

l

{VDM_DEDUCT_TAC (VDM_REC_INV_TAC (depth+!))),
(VDM_SIMP_TAC (VDM_REC_INV_TAC (depth+1))),
(VDM_RES_TAC (VDM_REC_INV_TAC (depth+1))),
(BACKTRACKING_TAC depth)

end

g;

which is built on top of VDM_REG_INV _TAG extending it by letting the component
tactic VOM_RES_TAC call VDM_REG_INV_TAC.
Table 7.1 summarizes the results obtained by applying the induction tactic
above with VDM_REC_INV 3AC replaced by VDM_REC_INV _TAC_2 to each of the con­
jectures. The table should be read as explained for Table 4.1 in Section 4.2.
The grey shaded box marks that a the strategy failed. All conjectures but

s
~
><
' w
g.
"" 0
~
f-'
w

2
2
8
2

CONJ JJoBothPorts were proved valid. When applying the tactic to CDNJJJoBothPorts,
it looped several times while simplifying and eventually crashed while simplify-
ing.

38

Chapter 8

Conclusions

In this report we have discussed the verification of VDM-SL proof obligations
using HOL98. Proof obligations for domain checking turned out to be partic­
ularly easy to prove. All but one of these were solved using the propositional
tautology checker in HOL. Proof obligations for subtype checking arise due to
the use of invariants in type definitions and are typically more difficult to ver­
ify. We presented an adhoc recursive strategy which applies successively more
powerful proof steps in order to solve a proof obligation. The strategy proves
each of the considered proof obligations within minutes.

The experiments have been both encouraging and discouraging. It is en­
couraging to see that so many proof obligations can be solved using simple and
efficient techniques like tautology checking. This can be a valuable approach to
reducing the number of proof obligations presented to a user of the VDM tools.
It is also encouraging to see that we are able to build a powerful strategy to
solve even more proof obligations automatically. The strategy is based mainly
on general proof steps like simplification and top-down deduction where the
conclusion of a goal is reduced to simplier subgoals. HOL resolution is applied
in a limited way when nothing else seems to work.

However, we are not confident in the robustness of this strategy for two
reasons. First of all, it was developed in a demand-driven way while verifying
the example proof obligations, so it is difficult to predict how well it will work
in general. We have seen that even smaller changes can affect the success of
the strategy, because the order in which proof steps are performed is important
and the strategy employs heuristic approaches, for example, to invent witnesses
for existential goals. Secondly, the proof steps of the strategy are mostly based
on the application of theorems, and so the quality of our theorem database
is absolutely essential. Presently the theorems and simplification sets in the
database arc adhoc, but in the future we hope to make a systematical selection
of theorems from relevant theories and organize them in suitable simplification
sets. However, it is impossible to say how powerful this will make the strategy
in practice. More experiments are needed to show this.

Another discouraging aspect is the size and number of subgoals that arise in

39

proofs. One proof obligation can split into hundreds of subgoals and one subgoal
can be many pages long, as illustrated in Figure 4.1 and Figure 4.2. These
problems are partly related to the brute-force approach of the proof strategy,
which expands all VDM-SL definitions to constructs in pure HOL. If expansions
are made in a more controlled way, then the subgoals and proofs will be smaller
and easier to present to a user. However, the trade-off is that this approach
requires interaction with a user in order to obtain suitable lemmas for VDM­
level concepts and constructs. This shows a difference between automatic and
interactive theorem proving; the latter is structured more like a paper-and-pencil
proof. Moreover, the present version of the automatic strategy could be made
more sophisticated and intelligent by programming it to analyse goals before
searching for proofs. Perhaps, this could be supported by some kind of tagging
produced by the proof obligation generator. For example, the proof obligation
generator could tag easy goals in a certain way.

It is often difficult for an automatic strategy to produce good output which
is easy to read and comprehend, when it does not work. We have thought about
different approaches to simplifying unproven subgoals of our proof strategy, e.g.
by reversing expansions (if possible) or tagging assumptions with information
on how they were deduced to simplify presentation, but none of these work
well. So our present philosophy is to leave those subgoals unchanged and com­
plex, though translations are naturally reversed to the VDM level, and focusing
instead on supporting the interactive verification of difficult proof obligations
well, when the automatic strategy fails. In interactive proving, it is up to the
user to control the expansions and other deductions, but even then we believe
that it is important to have flexible ways of hiding and viewing information like
assumptions or parts of assumptions.

We have experimented with most built-in automated proof procedures of
HOL98. However, it is quite difficult to determine what they can do for us,
and what they cannot do. This could be solved partly by better documentation
including user guidelines.

Profiling support would help in order to ease experimental investigations
using different tactics and proof strategies. By profiling we understand the
collection of statistical information such as time and space required to do a
proof, but it should also include more detailed information about the structure
of the proof, the number of subgoals, which tactics solved which subgoals, which
tactics failed to solve which subgoals, how much time was spend by individual
tactics such as the simplifier, and so forth. In this report, we have presented
some primitive profiling information collected by dummy tactics, which is not
precise enough to be really useful.

In the experiments conducted so far, we have naturally not been able to work
with not-yet-integrated proof procedures. VVe have, however, initiated collabo­
rative work with Prover Technology AB on using their decision procedure for
propositional logic, called Prover, as well as their upcoming decision procedure
for first-order many-sorted logic. For this collaboration, we have translated the
alarm example in [5] into an intermediate language without type invariants,
record types, sequence types, and mappings (see Appendix A), which will form

40

the basis for a translation into the logics supported by the Prover tools. A
completely manual translation to propositional logic is not feasible due to an
explosion in the number of variables needed to represent VDM-SL specifica­
tions in such a format. This explosion happens even though infinite domains
like natural numbers and the set type have been restricted to finite domains.

The most surprising lessons we have learnt from our experiments are:

• The usefulness of the simplifier, though it needs instantiation with ap­
propriate sets of rewriting theorems and sometimes does not terminate or
does not terminate quickly enough.

• The size and complexity of subgoals, especially compared with the size of
the examples.

• The power of mixing top-down deduction and simplification while limiting
the use of HOL resolution, which should be used particularly carefully
together with simplification.

• The difficulty of understanding and applying some of the incorporated
decision procedures of HOL.

41

Appendix A

Appendix

(* The Alarm example in many sorted FOL *)

Sorts
Alarm_alarmtext_inds nat1;

Qualification = Elec I Mech I Bio I Chern;
Expert!d = token; (* Some infinite set of elements
Period token; (• Some infinite set of elements

Expert Expertid * set of Qualification;
Schedule= set of (Period* set of Expert);

supporting equality •)
- supporting equality *)

Alarm (set of (Alarrn_alarmtext_inds * char)) * Qualification;

Plant Schedule * set of Alarm;

(*functions supported (by YOU):

•)

x projections on product sorts
prj1: A * B -> A and prj2: A * B -> B

x membership relation for set of sorts.

x choose operator on set sorts {set of A):
choosing an element in A satifying a predicate P:A -> bool:
choose: set of A * (A -> bool) -> A

x Encoding I axiomatisation of the empty set
EmptySet

(* functions definitions *)

(* Auxiliary functions *)

Map_Alarm_alarmtext(m)
forall x,y: Alarm_alarmtext_inds * char.

(in(x,m) /\ in(y,m)) =>
prj1{x)=prj1(y) => prj2(x)=prj2(y);

42

In_Dom_Alarm_alarmtext{m) =
exists elm:Alarm_alarmtext_inds * char.

in(elm,m) /\ prj1(elm) = per;

Is_Seq(sa) = !s_Map_Alarm_alarmtext(sa) and
exists m: Alarm_alarmtext_inds.

forall n: Alarm_alarmtext_inds.
(n <= m) => In_Dom_Alarm_alarmtext(n,sa) /\
(n > m) => -rn_Dom_Alarm_alarmtext(n,sa);

Map_Schedule(sch) =
forall x,y: Period * set of Expert.

(in(x,sch) /\ in(y,sch)) =>
prj1(x)=prj1(y) => prj2(x)=prj2(y);

(* The following: Not quite right - any ideas for
encoding I axiomatising
the choice of an element in a set - what will you provide??

•)

Lookup_Schedule(sch,per)
Prj2_Schedule(choose(sch,

lambda p : Period * set of Expert &
in(p,sch) /\ (Prjl_Schedule(p) =per)));

In_Dom_Schedule(per,sch) = exists elm:Period * set of Expert.
in(elm,sch) /\ prj1(elm) =per;

In_Rng_Schedule(exs,sch) =exists elm:Period *set of Expert.
in(elm,sch) /\ prj2(elm) = exs;

Prjl_Schedule(p) prjl(p);

Prj2_Schedule(p) prj2(p);

(* Structured names for projections *)

Expert_expertid (e) = prj1(e);
Expert_quali (e) = prj2(e);

alarm_alarmtext(a) = prjl(a);
alarm_quali(a) = prj2(a);

plant_schedule(p) = prjl(p);
plant_alarms(p) = prj2(p);

(* Invariants *)

inv_Expert(ex) = Expert_quali(ex) <> EmptySet;

inv_Schedule (sch) =
Map_Schedule(sch) /\
(forall exs: set of Expert. In_Rng_Schedule(exs,sch) =>

forall ex: Expert. in(ex,exs) => inv_Expert(ex)) /\
(forall exs: set of Expert.

43

In_Rng_Schedule(exs,sch) =>
((exs <> EmptySet) /\
forall exl ex2: Expert. (in(exl,exs) /\ in(exl,exs)) =>

((exl <> ex2) =>
(Expert_expertid(exl) <> Expert_expertid(ex2)))));

inv_Plant{plant) =
inv_Alarm{plant_alarms(a)) /\
forall a: Alarm. inv_Alarm(a) => in(a,plant_alarms{plant)) =>

forall per:Period. In_Dom_Schedule{per,plant_schedule(plant)) =>
QualificationOK(Lookup_Schedule{plant_schedule(plant),per),

alarm_quali{a));

inv_Alarm{a) = Is_Seq{alarm_alarmtext(a));

(* user defined functions *)

QualificationOK (exs,reqquali)
exists ex: Expert. inv_Expert(ex) =>

in(ex,exs) => in(reqquali,Expert_quali(ex));

pre_ExpertToPage(a,per,plant) =
In_Dom_Schedule(per,plant_schedule(plant)) /\
in(a,plant_alarms(plant));

post_ExpertToPage(a,per,plant,r)
in(r,Lookup_Schedule(plant_schedule(plant),per)) /\
in(alarm_quali(a),Expert_quali(r));

(* Questions *)
(* Proof obligations •)
POl = forall a:Alarms, per:Period, schedule:Schedule.

inv_Alarms(a) => inv_Schedule(schedule) =>
(in(a,alarms) /\ !n_Dom_Schedule(per,schedule)) =>
ln_Dom_Schedule(per,schedule))

P02 forall per:Period, plant:Plant.
inv_Plant(plant) =>
(In_Dom_Schedule(per,plant_schedule(plant)) =>
ln_Dom_Schedule(per,plant_schedule(plant)))

P03 forall a:Alarm, per: Period, plant:Plant.
inv_Alarm(a) => inv_Plant(plant) =>

pre_ExpertToPage(a,per,plant) =>
In_Dom_Schedule(per,plant_schedule(plant))

P04 forall a:Alarms, per:Period, plant:Plant.
inv_Alarm(a) => inv_Plant(plant) =>
(pre_ExpertToPage(a,per,plant) =>
exists r:Expert. inv_Expert(r) /\ post_ExpertToPage(a,per,plant,r));

44

