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Summary

This chapter describes using the PVS system as a tool to support VDM�
SL� It is possible to translate from VDM�SL into the PVS speci�cation
language in a very easy and direct manner� thus enabling the use of PVS
for typechecking and verifying properties of VDM�SL speci�cations and
re�nements� The translation is described in detail and illustrated with
examples� The drawbacks of the translation are that it must be done
manually �though automation may be possible�� and that the �shallow
embedding� technique which is used does not accurately capture the
proof rules of VDM�SL� The bene�ts come from the facts that the portion
of VDM�SL which can be represented is substantial and that it is a great
advantage to be able to use the powerful PVS proof�checker� A variety
of examples of veri�cations using PVS are described in the chapter�

��� Introduction

The PVS system�	
�� developed at SRI Menlo Park� in California� combines an
expressive speci�cation language with a powerful theorem�proving tool in which
interactive proof is tightly integrated with many automatic procedures which speed
up routine parts of proof development� The combination makes for a user�friendly
system which is easy to learn and to use for doing non�trivial theorem�proving� The
speci�cation language is based on classical higher�order logic� enriched with a type
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system based on Church�s simple theory of types with extensions for subtyping and
dependent types� The result is an expressive language which has much in common
with formal notations such as VDM�SL� A system of parameterized theories provides
structuring for developments and extensive libraries add de�nitions of many useful
mathematical constructs similar to those used in VDM�SL�

The striking� if super�cial� similarity between VDM�SL and the PVS speci�cation
language means that a signi�cant portion of VDM�SL may be represented very di�
rectly in PVS� This gives rise to an informal �shallow embedding� �	�� of a substan�
tial portion of VDM�SL� The embedding makes use of the parameterized theories of
PVS to represent VDM�SL speci�cations and re�nement relationships between pairs
of speci�cations� The result is a simple and direct means of harnessing the power
of the PVS proof�checker for proving validation conditions and proof obligations
arising from speci�cations and re�nements� The embedding also provides automatic
generation of some proof obligations which can be made to arise as type�checking
constraints �TCCs� in PVS� The drawbacks of the method are that translation must
�at present� be performed manually� and that the proof rules of VDM�SL are not
accurately captured because of di�erences between the logics of VDM�SL and PVS�
The latter fact implies that what we are doing would be more accurately described
as VDM�style speci�cation�

Using this approach outlined above� we have hand�translated a number of VDM�
SL speci�cations and re�nements into the PVS logic� and used the prover to check
various properties of these speci�cations� This process resulted in the detection
of several errors in some of these speci�cations� In this chapter we describe one
medium�sized example which illustrates most of the aspects of our approach� The
structure of the chapter is as follows� In Section ��� we brie�y describe the PVS
system� This is followed in Section ��
 by an informal presentation of the trans�
lation from VDM�SL to the PVS speci�cation language� Section ��� complements
Section ��
 by illustrating through the use of an example how a speci�cation as a
whole is represented as a PVS theory� In this section we also discuss using the PVS
proof�checker to typecheck the example speci�cation and to prove various validation
conditions about it� In Section ��� we turn to the subject of re�nement� showing
how the example of Section ��� can be represented in PVS as a re�nement of a
more abstract speci�cation� and how the PVS proof�checker was used to discharge
all the resulting proof obligations� In the �nal sections we discuss the validity of our
informal translation from VDM�SL to PVS� make some observations about what
was learned during this exercise� and present our conclusions�

��� The PVS System

The PVS system is produced by a team of researchers at SRI International� in
California� The philosophy behind the system is that it should provide a high
degree of support for requirements speci�cation� since errors at this initial stage are
considered to be the most costly� However� the system itself is general purpose and
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lends itself to a variety of applications �	
�� including veri�cations of algorithms and
hardware systems and embeddings of other logics�

The foundation of the system is the expressive PVS Speci�cation Language� This is
based on classical higher�order logic� enhanced with a rich system of types including
subtyping� dependent types and recursive types� Speci�cations may be structured
using a system of parameterized theories� Various aspects of the syntax of the PVS
speci�cation language will be explained where they arise in the chapter�

The PVS speci�cation language is supported by a collection of tools including a type
checker and an interactive proof checker� The tools run under emacs which provides
a basic user interface� Typechecking in PVS is undecidable and generally results in
the generation of proof obligations called type�checking constraints �TCCs�� TCCs
may be proved by invoking a powerful tactic called tcp or� if this tactic fails� by use
of the PVS proof�checker�

One of the main attractions of the PVS proof�checker is that basic proof commands
are tightly integrated with powerful decision procedures and tactics� The tactics may
be combined in various ways to form proof strategies� Some of the most commonly
used tactics embody simple proof rules �splitting conjunctions and disjunctions�
instantiating quanti�ers� skolemizing� etc�� Others implement sophisticated decision
procedures� Examples are the tactic PROP for propositional simpli�cation and the
all�powerful tactic GRIND� which subsumes PROP and does much more� Other tactics
such as HIDE allow management of the proof state�

The version of PVS referred to in this chapter is the �alpha�plus� release available
in June 	����

��� From VDM�SL to the Higher Order Logic of

PVS

A large subset of VDM�SL can be translated into a higher order logic such as the
PVS speci�cation language� This section describes such a translation in su�cient
detail to support manual translations� though more formality might be required
in order to support an implementation of the translation process� The translation
method may be viewed as a �very� shallow embedding of VDM�SL in PVS� The
syntax of VDM�SL constructs is not embedded� we work with the �semantics� of
the constructs directly� Therefore it can be argued that the translation is not safe
�in a logical sense�� This is a disadvantage of shallow embeddings in general� though
some shallow embeddings are more safe than others� The translation of VDM�SL
to PVS is relatively safe in this sense since PVS and VDM�SL share many concepts
and constructs�

One of the di�erences between VDM�SL and PVS is that a VDM�SL expression
can be unde�ned� there is one common unde�ned element to all types� which can
be viewed as sets� For example� an expression is unde�ned if a divisor is zero� if a
�nite sequence is applied to an index outside its indices� or if a pattern match in
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a let expression fails� Most of such situations are handled implicitly by restrictions
on the translation of various constructs� in combination with type checking in PVS�
For instance� PVS itself generates type checking conditions to capture division by
zero� A related factor is that PVS does not support partial functions� All VDM�SL
functions are translated to PVS functions and PVS generates an obligation stating
that a given function must be total� Partial functions are discussed in more depth
in Section ����

Below we discuss how various constructs of VDM�SL speci�cations can be translated�
We show VDM�SL expressions in the ASCII notation supported by the IFAD VDM�
SL Toolbox�

����� Basic Types� the Product Type and Type Invariants

Boolean and number types can be viewed as sets and translated directly to the
corresponding types in PVS� It is not necessary to edit arithmetic expressions and
logical connectives since they have the same symbols and names in PVS� Specially�
the connectives and and or are used as �and�also� and �or�else� in both the Toolbox
version of VDM�SL and PVS� Hence� it is allowed to write �P�x� and x�x � �� if
one can prove the automatically generated condition �P�x� IMPLIES x �� ���

Restricted quanti�cations are translated to quanti�cations over PVS subtypes� Hence�
a universal quanti�cation like forall x in set s � P�x� can be translated to
forall �x	�s��	 P�x�� Note that the � is replaced with 	 and we insert brackets
around the binding�

In VDM�SL it is possible to specify a subtype of a type by writing a predicate
that the elements of the subtype must always satisfy� This predicate is called an
invariant� As an example consider the de�nition of a type of positive reals�

Realp � real

inv r �� r 
� �

This introduces a new constant inv�Realp implicitly� which equals the invariant
predicate� The de�nition is translated to PVS as follows�

inv�Realp�r	real� 	 bool � r 
� �

Realp	 TYPE � �inv�Realp�

The type Realp is de�ned as a subtype of the built�in type real�

The product type of VDM�SL can be translated directly to the product type of PVS�
VDM�SL tuples are written using a constant mk�� e�g� mk�������� This constant
could be ignored in the translation� but instead we have introduced and usually use
a dummy constant mk�� de�ned as the identity function� The only way to split a
tuple in VDM�SL is using pattern matching on mk�� e�g� in a let expression like
let mk��x�y�z� � t in e� The translation of pattern matching is discussed in
more detail in Section ��
���



���� FROM VDM�SL TO THE HIGHER ORDER LOGIC OF PVS 	�	

����� Record Types

VDM�SL records are translated directly to records in PVS� There is only a slight
di�erence in syntax� PVS does not automatically introduce a constructor function
mk�A as in VDM�SL for a record de�nition called A� but the function is easy to de�ne�
Below� we �rst give an example of how to translate a standard record type de�nition
and then give a more complicated example where an invariant is also speci�ed�

Standard Records

We consider a simple example� which de�nes a record of points in the two�dimensional
positive real plane� The VDM�SL de�nition of the record type is �Realp was intro�
duced above��

Point		 x	 Realp

y	 Realp

This is translated to PVS as follows�

Point	 TYPE � �� x	 Realp� y	 Realp ��

In both cases� �eld selectors x and y are introduced implicitly� Unfortunately� PVS
does not support the VDM�SL notation for �eld selection� which is the standard
one using a dot and the �eld name� e�g� p�x for some point p� Instead �elds are
viewed as functions that can be applied to records� Thus the VDM�SL expression
p�x translates to the PVS expression x�p�� The PVS notation is less convenient�
e�g� a nested �eld selection as in r�a�b�c translates to c�b�a�r����

In VDM�SL each new record de�nition generates a new �make� function for building
elements of the record� In order to allow a direct translation of such expressions to
the same expressions in PVS� the constructor function is de�ned along with a record
de�nition� The constructor for points is�

mk�Point�a	Realp�b	Realp� 	 Point � �� x	� a� y	� b ��

In VDM�SL such make constructors are also used for pattern matching in function
de�nitions and in let expressions but this is not possible in PVS� Instead we use
Hilbert�s choice operator �choose�� as described in Section ��
���

VDM�SL also provides an is� test function for records� which is sometimes used to
test where elements of union types come from� Since we do not support union types
properly �see Section ��
��� we shall ignore this constant�

Records with Invariants

Sometimes a VDM�SL record de�nition is written with an invariant� For instance� an
equivalent way of de�ning the point record above would be the following de�nition
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Point		 x	 real

y	 real

inv mk�Point�x�y� �� x 
� � and y 
� �

where an invariant is used to specify that we are only interested in the positive part
of the two�dimensional real plane� We translate this as follows�

inv�Point�x	real�y	real� 	 bool � x 
� � and y 
� �

Point	 TYPE � �p	 �� x	real� y	real �� � inv�Point�x�p��y�p���

mk�Point�z	�inv�Point�� 	 Point � �� x	� x�z�� y	� y�z� ��

Note that we restrict the arguments of mk�Point� For instance� the following de��
nition does not work

mk�Point�a	real�b	real� 	 Point � �� x	� a� y	� b ��

since we cannot prove that this yields a point for all valid arguments�

There is one small semantic di�erence between VDM�SL records and the above
representation in PVS� In VDM�SL it is allowed to write mk�Point������ though
this will not have type Point� The only use of such a �kind of� junk term would be in
inv�Point�mk�Point�������� which would equal false� In the PVS representation�
this invariant expression is written as inv�Point�������

����� Sequences� Sets and Maps

In this section� we brie�y consider the translation of �nite sequences� �nite sets and
�nite maps� Invariants on these types are treated much like in the previous section
on records�

Finite Sets

A type of �nite sets is provided in the PVS finite�sets library� The type is de�ned
as a subtype of the set type� which represents sets as predicates� Most operations
on sets exist� or can be de�ned easily� One annoying factor is that for instance set
membership� set union and set intersection are all pre�x operations in PVS� E�g�
one must write member�x�s� for the VDM�SL expression �x in set s�� Moreover�
user�de�ned constants must be pre�x and one cannot de�ne new symbols� PVS
supports only a simple and restricted syntax of expressions�

Finite Sequences

VDM�SL �nite sequences can be represented as �nite sequences or as �nite lists in
PVS� The di�erence is that �nite sequences are represented as functions and �nite
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lists as an abstract datatype� There is more support for �nite lists� so we have
usually chosen this type as the representation� An advantage of sequences is that
indexing is just function application� However� with both representations one must
be careful since indexing of sequences starts from one in VDM�SL and from zero in
PVS� The safest thing to do is therefore to de�ne new indexing operations in PVS
and use these for the translation�

Finite Maps

PVS does not support �nite maps� so an appropriate theory must be derived from
scratch� In doing this� one could probably bene�t from the paper on �nite maps in
HOL by Collins and Syme �	��� who have implemented their work in a HOL library�
However� many operations on �nite maps are not supported in this library� so an
extended theory of �nite maps must be worked out�

As a start one could just axiomatize maps in PVS� e�g� by introducing maps as an
uninterpreted subtype of the function type� with a few appropriate de�nitions �and
axioms�� In fact� for the examples very little support was needed�

A representation of maps using functions has advantages� Map application will
just be function application and map modi�cation can be translated to PVS with

expressions� For example� the VDM�SL map modi�cation m �� f � ��
 �  ��


� g� where a map m from numbers to numbers is modi�ed to send 	 to � and � to

� translates to m with � � ��
 �  ��
 � ��

����� Union Types

In VDM�SL� the union of two or more types corresponds to the set union of the types�
Thus� the union type is a non�disjoint union� if two types have a common element
this will be just one element in the union type� Higher order logics do not support
non�disjoint unions� but support disjoint sums �unions� or abstract datatypes as
in PVS� In general� a VDM�SL union type cannot be translated easily to a PVS
datatype� However� if the component types of the union are disjoint then this is
partly possible� The translation is only satisfactory when the component types are
quote types� these correspond to singleton sets�

Union of Disjoint Types

The union of disjoint types can be represented as a new datatype with constructor
names for the di�erent types� This representation is not perfect� the component
types does not become subtypes of the union type as in VDM�SL� For example this
means that the operators de�ned on the individual types are not inherited as in
VDM�SL� where the dynamic type checking ensures that arguments of operators
have the right types� In the special case where all components of the union type are
new types� it might be possible to de�ne the union type �rst and then de�ne each
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of the component type as subtypes of this� Such tricks would not be easy to employ
in an automatic translation�

Enumerated Types

An enumerated type is a union of quote types� which is written using the following
ASCII syntax in VDM�SL� ABC � �A
��B
��C
� This can be translated almost
directly to PVS� with some minor syntax changes� ABC	 TYPE � �A�B�C�� PVS
does not support identi�ers enclosed in � and 
�

����� Function De�nitions

Total functions are translated directly to PVS functions� As mentioned before�
partial functions cannot be translated in this way� As we shall see in Section ����
it is possible to encode some partial functions as total functions in PVS by using
subtypes to represent their domains of de�nition� Other formalizations are also
possible �see e�g� ��� 	��� Polymorphic functions are not considered at the moment�

Standard explicit function de�nitions� which are function de�nitions that do not
have postconditions� can be translated directly to PVS� if they are not recursive� A
precondition will be translated to a subtype predicate� If functions are recursive we
must demonstrate that they are total functions in PVS� It is up to the translator
to specify an appropriate measure� which is decreased in each recursive call� for the
termination proof� Moreover� VDM�SL supports mutual recursive function de�ni�
tions which would not be easy to translate� The example speci�cations used only
few recursive de�nitions and these were very simple�

Implicit function de�nitions� which are speci�ed using pre� and postconditions only
and have no function body� can be represented using the choice operator� Almost
equivalently� one can also use function speci�cation� which is a way of de�ning
partially speci�ed functions� it is only speci�ed on a subset of a type how a function
behaves� and this is speci�ed by an �underdetermined� relation� not an equation
�	� 	���

Implicit De�nition

Let us �rst consider the following semi�abstract example of an implicit function
de�nition in VDM�SL�

f�x	real�y	real� z	Point

pre p�x�y�

post q�x�y�z�

where the variables in square brackets may occur free in the precondition p and the
postcondition q� This translates to the following PVS de�nitions�

pre�f�x	real�y	real� 	 bool � p�x�y�
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post�f�t	�pre�f���z	Point� 	 bool � let �x�y� � t in q�x�y�z�

f	 FUNCTION�t	�pre�f� �
 �post�f�t���

The precondition is translated to a predicate on the arguments of the function and
the postcondition is translated to a binary relation on the arguments and the result�
The function itself is de�ned as an uninterpreted constant using a dependent function
type� given arguments t satisfying the precondition it returns a result satisfying the
postcondition� or more precisely� a result related to t by the postcondition� This
relation may be underdetermined� i�e� it may specify a range of possible values for
a given input� but the function will always return a �xed value in this range� If the
precondition is not satis�ed the result is an arbitrary value�

As a result of an uninterpreted constant de�nition� the PVS type checker generates
an existence condition� which says that we must prove there exists a value in the
speci�ed type� Hence� above we must prove there exists a function from the precon�
dition to the postcondition� In general� proving this condition can be non�trivial�
since one must usually provide a witness� i�e� a function of the speci�ed form� �For
instance� it would be di�cult to prove that there exists a square root function��

Explicit De�nition

Explicit de�nitions of recursive functions can be problematic for automatic transla�
tion since a translator must insert a well�founded measure for proofs of termination�
This is easy enough when the recursion is simple� which it is for primitive recursive
functions over numbers and abstract datatypes� but for more general recursive func�
tions this can be hard� PVS has some strategies for proving termination in simple
cases�

An explicit function de�nition has no postcondition but instead a direct de�nition�
and perhaps a precondition� Let us consider a standard example of a primitive
recursive function on the natural numbers�

fac	 nat �
 nat

fac�n� �� if n � � then � else n � fac�n���

pre ���n

This translates to the following PVS de�nitions�

pre�fac�n	nat� 	 bool � n 
� �

fac�n	�pre�fac�� 	 recursive nat �

if n � � then � else n � fac�n��� endif

measure �lambda �n	�pre�fac��	 n�

Note that we have inserted �recursive� and �measure�� which are part of the
syntax for recursive function de�nitions in PVS� The measure is used to generate
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conditions for termination of recursive calls� �The precondition is redundant above�
it is included for illustration��

����� Pattern Matching

Pattern matching plays an important role in VDM�SL speci�cations� It is used fre�
quently to get access to the values at �elds of a record� and it is the only way to
get access to the values of the components of a tuple� We can represent a successful
pattern matching but not a failing one� since we do not represent unde�ned expres�
sions� However� unde�ned expressions are either avoided due to type checking� or
else represented by arbitrary values� i�e� values of a certain type that we do not know
anything about�

Pattern Matching in Let Expressions

Here are some examples which use a record type A with three �elds a� b and c�
Assuming x� y and z are variables� the following VDM�SL let expression

let mk��x�y�z� � e� in e�x�y�z�

can be translated to exactly the same term in PVS� except that the tuple construc�
tor mk� must be omitted for the expression to parse� The following VDM�SL let
expression with a pattern match on the record type A

let mk�A�x�y�z� � e� in e�x�y�z�

can be translated to the following PVS term�

let x � a�e��� y � b�e��� z � c�e�� in e�x�y�z�

The �eld selector functions are used to destruct the expression� This corresponds
to the way that PVS itself represents pattern matching on tuples �using project
functions�� If one of the variables in the VDM�SL expression was the don�t care
pattern� written as an minus sign �� then we could just replace this with a new
variable� We do not allow constants in patterns in let expressions� since they do not
make much sense �they are however allowed in VDM�SL��

The following VDM�SL �let�be�such�that� expression

let mk�A�x�y�z� in set s be st b�x�y�z� in e�x�y�z�

can be translated to

let v � �choose ��w	�s� � let x � a�w�� y � b�w�� z � c�w�

in b�x�y�z���

in

let x � a�v�� y � b�v�� z � c�v� in e�x�y�z�
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where we use the choice operator� choose� to represent the looseness in the VDM�SL
speci�cation� Don�t care patterns are translated as suggested above� by introducing
new variables� We allow constants and other values in let�be�st expressions� For
instance� we can translate

let mk�A�x�y��� in set s be st b�x�y� in e�x�y�

into the PVS term

let

v � �choose ��w	�s� � let x � a�w�� y � b�w�� n � c�w�

in n � � and b�x�y���

in

let x � a�v�� y � b�v� in e�x�y�

where we include a test in the body of the choose�

Pattern Matching in Cases Expressions

The following VDM�SL cases expression

cases e	

mk�A�����z� �
 e��

mk�A�x���z� �
 e�

others �
 e�

end

can be translated to the following conditional expression in PVS�

cond

a�e� � � �
 let z � c�e� in e��

b�e� � � �
 let x � a�e�� z � c�e� in e�

else �
 e�

endcond

PVS�s built�in cases expression only works on abstract datatypes�

Pattern Matching in Function De�nitions

Pattern matching can be used on arguments in a function de�nition� where the
patterns are typically variables �or don�t care patterns which are translated to new
variables�� We can treat this by inventing a new variable using the function de�nition
and then extending the body with a let expression to represent the pattern match�
This approach is also used in the formal semantics of VDM�SL�
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����	 State and Operations

A VDM�SL speci�cation may contain a state de�nition� which speci�es a number
of variable names for elements of the state space� The state space is known to
operations and nowhere else� The state de�nition is essentially a record de�nition
and is therefore represented as a record type in PVS� Operations are represented
as state transformations� i�e� functions which� in addition to the operation�s input
values� take the initial state as an argument and return the output state as a result
�and possibly an explicit result value�� Hence� operation de�nitions can be translated
in a similar way as functions�

The body of operation de�nitions may contain assignments and sequential compo�
sitions� Assignments are translated to PVS with expressions and sequential com�
positions are represented using let expressions� In this chapter we do not consider
conditions �which should be easy� and while loops �which probably could be trans�
lated to recursive functions�� More exotic features such as exception handling are
also excluded from consideration�

Assume we have the following state de�nition in VDM�SL�

state ST of

x	 real

y	 real

z	 real

end

This can be translated to�

ST	 TYPE � �� x	 real� y	 real� z	 real ��

mk�ST�x	real�y	real�z	real�	 ST � �� x	�x� y	�y� z	�z ��

Now assume we have the sequence�

x	��� y	��� z	��

This can be translated to

lambda �s	ST�	

let s� � s with �x	����

s � s� with �y	����

s� � s with �z	���

in s�

or simply to

lambda �s	st�	 s with �x	��� y	��� z	���

since the assignments are independent in this example�
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��� A Speci�cation Example� MSMIE

The Multiprocessor Shared�Memory Information Exchange �MSMIE� is a protocol
for �inter�processor communications in distributed� microprocessor�based nuclear
safety systems� �	��� which has been used in the embedded software of Westinghouse
nuclear systems designs�

The protocol uses multiple bu�ering to ensure that no �data�tearing� occurs as
separate processors communicate via some shared memory� In other words� data
should never be overwritten by one process while it is still being read by another�
One important requirement is that neither writing nor reading processes should have
to wait for a bu�er to become available� another is that recent information should
be passed� via the bu�ers� from writers to readers� The example has previously
been analyzed using CCS in �		� and using VDM and B in ���� In common with
these analyses� we shall be working with a simpli�ed system in which it is assumed
that information is being passed from a single �slave� processor to several �master�
processors� Thus� there are several reading processors� �masters�� but only one
writing� �slave� process�

The information exchange is realised by a system with three bu�ers� At any time�
one bu�er is available for writing� one for reading� and the third is either between
a write and a read and hence contains the most recently written information� or
between a read and a write and so is idle�

The status of each bu�er is recorded by a �ag which can take one of four values�

s � �assigned to slave� This bu�er is reserved for writing� It may actually be being
written at the moment or just marked as available for writing�

n � �newest� This bu�er has just been written and contains the latest information�
It is not being read at the moment�

m � �assigned to master� This bu�er is being read by one or more processors�

i � �idle� This bu�er is not being read or written and does not contain the latest
data�

The names of the master processors that are currently reading are also stored in the
state�

The VDM speci�cation of �� and ��� is concerned with various �data models� of
MSMIE� the state of the device is modelled but not the slave and master processors
nor the dynamic evolution of the system as they access the bu�ers in parallel� This
analysis concerns only the operations which modify the bu�er status �ags� In the
system as a whole� these operations are protected by a system of semaphores which
allows each operation uninterrupted access to the state� and thus their behaviour is
purely sequential�

There are three such operations�
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slave This operation is executed when a write �nishes� The bu�er that was being
written is given the status �newest� thereby replacing any other bu�er with
this status�

acquire This is executed when a read begins� The new reader name �passed as
a parameter� is added to the set of readers and status �ags are updated as
appropriate�

release This is executed when a read ends� The given reader name is removed from
the set of readers and status �ags are updated as appropriate�

The precise description of these operations is left to the formal speci�cation in the
following section�

We note� in passing� that the MSMIE protocol has the the undesirable property that
it is possible for information �ow from slave to master to be held up inde�nitely�
This problem is dealt with in the original paper �	�� by the use of timing constraints�
The paper �		� suggests an improvement to the protocol in which the problem is
avoided by the use of a fourth bu�er� This improved protocol is quite intricate�
and is modelled in �� by using non�standard extensions to VDM which provide a
more concise means of expression than standard VDM�SL� In this report we restrict
ourselves to standard VDM�SL speci�cations and so do not treat the improved
MSMIE protocol�

The paper �� explores several ways of specifying the MSMIE system in VDM with
varying degrees of abstraction� These speci�cations can be translated more or less
�as is� into PVS� which can then be used to carry out proof obligations� The
speci�cations can be written in such a way that some of the proof obligations are
automatically generated by PVS� though it is still necessary to type in others by
hand�

The VDM speci�cations of MSMIE which we show are in VDM�SL and therefore
di�er slightly from those in ��� They were developed with the help of the IFAD
VDM�SL Toolbox �	���

����� The VDM Speci�cation

The speci�cation uses an auxiliary function called count � which counts the number
of occurrences of a given item in a sequence�
functions
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count ��T � � �T ��T � � N

count �s� ss� �

cases ss �
��� ��
others � if hd ss � s

then 	 � count ��T � �s� tl ss�
else count ��T � �s� tl ss�

end

The possible values of the status �ags are given via an enumerated type� the type
of the names of master processes is deferred�
types

Status � s j m j n j i�

MName � token

The state records the status of each of the three bu�ers� and the names of all cur�
rently reading master processes� These are represented by� respectively� a sequence
of status values and a set of master names� The invariant captures constraints on
the possible states that are reachable� there is exactly one bu�er assigned to the
writing slave process� at most one bu�er is currently being read� and at most one
holds newest data that is not being read� the set of readers is empty precisely when
no bu�er is being read� In the initial state� one bu�er is assigned to the slave and
the other two bu�ers are marked as idle�

state � of

b � Status�

ms �MName�set

inv mk�� �b�ms� �

len b � 
 �
count �Status� �s� b� � 	 �
count �Status� �m� b� � f�� 	g �
count �Status� �n� b� � f�� 	g �
�count �Status� �m� b� � � � ms � fg�

init s � s � mk�� ��s� i� i�� fg�
end

The slave operation is executed when a slave process completes writing� The bu�er
that has just been written� previously of status S� is given the status N re�ecting
that it now contains the newest data� This bu�er replaces any other bu�er with the
N status� The operation also selects one of the available bu�ers and assigns to it
status S� making it the new bu�er available for writing�
operations
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slave ��
ext wr b � �Status��

pre true

post � i � f	� �� 
g �

�
��
b �i� � s � b �i� � n� �

�
��
b �i� � m � b �i� � m� �

The acquire operation is executed when a master process is about to begin reading�
The new reader�s name� passed as a parameter� is added to the set of active readers�
and status �ags are updated as necessary� If there is already a bu�er being read�
then the new reader also begins to read that bu�er and no status changes are needed�
Otherwise it reads the bu�er with the newest data� status N� and the status of that
bu�er is changed to M�

acq �l �MName�
ext wr b � �Status��

wr ms � �MName�set�

pre �	 �l � ms�� �
�
 i � f	� �� 
g � b �i� � n � b �i� � m�

post ms � ��ms � flg �
� i � f	� �� 
g �

if
��
b �i� � n ���ms � fg

then b �i� � m

else b �i� �
��
b �i� �

The release operation takes place when a master process has �nished reading� The
master�s name is removed from the set of readers and bu�er �ags reassigned as
appropriate� If there are still other masters reading then the status �ags do not
need to be changed� Otherwise� the bu�er that has just been relinquished must
have its status �ag reassigned� There are two possibilities� If there is some other
bu�er which was written while the read was taking place� and therefore has status
N� then the released bu�er no longer contains the newest data and must have its
status set to I� Otherwise� it still contains the freshest data and must have its status
reset to N�

rel �l �MName�
ext wr b � �Status��

wr ms � �MName�set�

pre l � ms



���� A SPECIFICATION EXAMPLE� MSMIE 	�


post ms � ��ms n flg �
� i � f	� �� 
g �

if
��
b �i� � m �ms � fg

then b �i� � fn� ig � count �Status� �n� b� � 	

else b �i� �
��
b �i�

����� PVS Translation

The VDM speci�cation is represented as a PVS theory called msmie sigma�� The
theory is parameterized over a non�empty type of master names�

msmie�sigma�MName 	 TYPE�� 	 THEORY

BEGIN

The theory begins by importing another theory containing de�nitions of functions
on lists� The �count� function is de�ned within this imported theory�

IMPORTING list�funs

As in VDM� the possible values of the status �ags are represented by an enumerated
type�

Status 	 TYPE � �Slave�Master�Newest�Idle�

The state and invariant of the VDM speci�cation are represented by a single �de�
pendent� type in PVS� The de�nition is best understood in two parts� First� the
state is represented as a record containing two �elds� a list� b of Status values� and
a set of master names� ms� The set of valid states is then represented by forming
the subtype� sigma� of all such records which satisfy the invariant�

sigma 	 TYPE �

�x 	 �� b 	 list�Status��

ms 	 setof�MName� �� �

��length �b�x�� � �� AND

�count �Slave�b�x�� � �� AND

member�count�Master�b�x����x	nat�x�� OR x���� AND

member�count�Newest�b�x����x	nat�x�� OR x���� AND

��count �Master�b�x�� � �� ��
 �ms�x� � emptyset����

The initial state is de�ned as a record containing appropriate values and its type is
explicitly constrained to be sigma� When this de�nition is typechecked� PVS will
automatically generate as a type�checking constraint �TCC� the condition that the
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initial state satis�es the invariant� We shall look more closely at these TCCs in the
next section�

initial�sigma 	 sigma �

�� b 	� �	 Slave� Idle� Idle 	�� ms 	� emptyset ��

For each operation� the precondition is represented as a predicate over the valid
states �sigma�� The postcondition is represented as a predicate over pairs of valid
states� The operation is then de�ned as a function which maps each value from the
subtype de�ned by the precondition to some unspeci�ed valid state which� when
paired with the input value� satis�es the postcondition� Typechecking such a de��
nition will cause PVS to generate a TCC stating that a suitable value for the post
state does indeed exist� In other words� we are asked to show that the speci�ed
operation is feasible�

Our �rst example is the slave operation� The de�nitions of the pre� and postcon�
ditions resemble very closely the original VDM speci�cation� One di�erence is that
there is no analogue in PVS to the frames in VDM� so that the fact that the variable
ms has read�only status in the VDM speci�cation must be explicitly stated in the
PVS postcondition�

pre�slave 	 �sigma �
 bool� � LAMBDA �st	sigma� 	

true

post�slave 	 ��pre�slave��sigma �
 bool� �

LAMBDA �st	�pre�slave��st	sigma� 	

��FORALL �i	�x	nat� x�� OR x�� OR x��� 	

�nth�b�st��i� � Slave IMPLIES nth�b�st��i� � Newest�

AND

�nth�b�st��i� � Master IMPLIES nth�b�st��i� � Master��

AND

�ms�st� � ms�st���

The slave operation is then de�ned using the PVS choice operator choose� Our use
of choose leads to a rather di�erent interpretation of looseness from that adopted
in VDM�SL� We defer discussion of this point until Section ����
�

slave 	 ��pre�slave� �
 sigma� �

LAMBDA �st	�pre�slave�� 	

choose��st	sigma � post�slave�st�st���

The speci�cation of acquire is done similar� First the precondition and postcondition
are de�ned as predicates�

pre�acq 	 �MName �
�sigma �
 bool�� �

LAMBDA �l	MName��st	sigma� 	
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�NOT member�l�ms�st��� AND

�EXISTS �i	�x	nat� x�� OR x�� OR x��� 	

�nth�b�st��i� � Newest OR nth�b�st��i� � Master��

post�acq 	 �l	MName �
 ��pre�acq�l���sigma �
 bool�� �

LAMBDA �l	MName��st	�pre�acq�l���st	sigma� 	

�ms�st� � union�ms�st��singleton�l��� AND

�FORALL �i	�x	nat� x�� OR x�� OR x��� 	

IF nth�b�st��i� � Newest AND ms�st� � emptyset

THEN nth�b�st��i� � Master

ELSE nth�b�st��i� � nth�b�st��i�

ENDIF�

Next� the acquire operation is de�ned as a function which� when given a master name
l and a state belonging to the type �pre�acq�l��� returns a nondeterministically
chosen state in sigma� such that the two states together satisfy the postcondition
post�acq�l�

acq 	 �l	MName� �pre�acq�l�� �
 sigma� �

LAMBDA �l	MName� st	�pre�acq�l��� 	

choose��st	sigma � post�acq�l��st�st���

The speci�cation of the release operation is similar to that of acquire and is not
described here�

����� Typechecking Constraints

When the theory msmie�sigma is typechecked by PVS� a number of typechecking
constraints �TCCs� are generated� These must be proved in order to demonstrate
that the theory is well�typed� Simple TCCs can be handled by invoking an automatic
TCC�prover� tcp� but more di�cult ones must be proved interactively by the user�
In the case of the theory msmie�sigma� there are only � TCCs which are too
di�cult for tcp to prove� Interestingly� these TCCs correspond to the satis�ability
proof obligations for the speci�cation� We are required to show that the initial state
satis�es the invariant� and that each of the three operations is feasible�

Showing that the Initial State Satis�es the Invariant

The �rst TCC generated for msmie�sigma is shown below� It results from the fact
that we have explicitly stated that the initial state� initial�sigma� is of type
sigma� we are required to prove that initial�sigma satis�es the predicate which
de�nes the subtype sigma� In other words� we must show that the initial state
satis�es the invariant� The proof is too di�cult for tcp� but can be done quickly
using the interactive prover� The main goal� which consists of a conjunction of �
formulae� is split� making each conjunct into a separate subgoal� Each of these is
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then proved by repeatedly expanding de�nitions until a statement is obtained which
PVS recognises to be trivially true�

initial�sigma�TCC�	 OBLIGATION

��length�Status���	 Slave� Idle� Idle 	�� � ��

AND �count�Status��Slave� �	 Slave� Idle� Idle 	�� � ��

AND

member�nat��count�Status��Master� �	 Slave� Idle� Idle 	���

�x	 nat � x � � OR x � ���

AND

member�nat��count�Status��Newest� �	 Slave� Idle� Idle 	���

�x	 nat � x � � OR x � ���

AND

��count�Status��Master� �	 Slave� Idle� Idle 	�� � ��

��
 �emptyset�MName� � emptyset�MName�����

Showing that the Operations Are Feasible

To specify the operations we used the nondeterministic choice operator of PVS� For
this to be correctly typed� PVS requires us to demonstrate that there exist possible
candidates for the nondeterministically chosen values� In other words� we must show
that each operation is feasible�

We show the statement of this proof obligation for the acquire operation� Given
any master name l� and any state st within the type de�ned by the precondition�
�pre�acq�l��� we must prove that the set of all states� st� satisfying the postcon�
dition post�acq�l��st�st� is nonempty�

acq�TCC�	 OBLIGATION

�FORALL �l	 MName� st	 �pre�acq�l���	

nonempty��sigma���st	 sigma � post�acq�l��st� st�����

This TCC has been proved interactively using PVS� The proof is unsurprising but
not trivial� the user must supply a suitable candidate for the nondeterministic choice
and then verify that all the various conditions imposed by the postcondition and
the invariant are satis�ed�

We describe only the main highlights of the proof� After skolemizing� expanding
de�nitions� and making some hidden hypotheses explicit� we are in a position where
we may supply a possible candidate for the value that is nondeterministically cho�
sen� This is done using the tactic INST� which is given two arguments� an integer
representing the appropriate subgoal and a value for instantiation consisting of a
record representing the state after the operation is carried out� In this case� the
postcondition of the acquire operation happens to be very explicit so the calculation
of the post state simply re�ects the postcondition� Note that identi�ers such as
st�� are skolem variables generated by PVS�
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�INST ��

��� ms 	� union�ms�st���� singleton�l�����

b 	� �	 IF nth�b�st���� �� � Newest AND ms�st��� � emptyset

THEN Master ELSE nth�b�st���� �� ENDIF�

IF nth�b�st���� �� � Newest AND ms�st��� � emptyset

THEN Master ELSE nth�b�st���� �� ENDIF �

IF nth�b�st���� � � Newest AND ms�st��� � emptyset

THEN Master ELSE nth�b�st���� � ENDIF 	� ����

This gives us two subgoals� we must show that the witness satis�es both the post�
condition and the invariant� We shall not describe these proofs in detail because
they are lengthy and not particularly instructive� Brie�y� each subgoal consisted of
a conjunction which was split to give several new subgoals� These subgoals were
then proved by case analysis �splitting the hypotheses�� rewriting and simplifying
each individual case� and then using a decision procedure or some general tactic
such as GRIND to either verify the conclusion or discover a contradiction within the
hypotheses� Much use was made of the HIDE command to hide irrelevant formulae
and hence speed up the workings of the tactics�

Using a proof approach similar to that described above� we were able to show that
the release operation is also feasible� The slave operation should have been similarly
easy to handle� but� unfortunately� we were unable to complete the proof because
of a bug in the PVS system concerning equality� In certain situations arising after a
lengthy sequence of tactics� it seems that the system fails to recognise goals which
are simply instances of the re�exivity of equality� This is a known bug and will�
hopefully� be corrected in future versions of PVS�

����� Some Validation Conditions

In both the VDM and PVS speci�cations of the slave operation� the postconditions
explicit specify what happens to those bu�ers which have status Slave or Master� but
do not describe the e�ect on bu�ers which have status Newest or Idle� However� in
conjunction with the invariant �and the frame in the VDM version� the postcondition
ensures that no other Newest bu�er remains� exactly one new Slave bu�er is chosen�
and no new Master bu�ers are added� This fact was stated as a validation condition
in ��� and we have veri�ed it using PVS� We show its statement in both VDM and
PVS notations�

� i � f	� �� 
g � �
��
b �i� � fn� ig � b �i� � fi� sg�

slave�prop 	 CONJECTURE

�FORALL �i	�x	nat� x�� OR x�� OR x��� 	

member�nth�b�st��i�� �x	Status�x�Newest OR x�Idle��

IMPLIES

member�nth�b�slave�st���i�� �x	Status�x�Idle OR x�Slave���
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Our PVS proof of this statement required about ��� tactics and is di�cult to fol�
low intuitively� although neither its structure nor any of the individual steps is
particularly sophisticated� After some initial preparation including skolemization�
de�nition expansion� and adding some simple lemmas� the tactic PROP is invoked�
This has the e�ect of splitting the many disjunctions among the hypotheses and
thereby breaking the top goal down into about ��� subgoals� The majority of these
were proved easily by some de�nition expansion� simpli�cation� rewriting� and use
of the tactic GRIND to detect contradictions among the hypotheses of the subgoal�
Of the �� subgoals which remained� 
� were proved by simply using GRIND� For the
remaining subgoals� further case analysis was used to split each one into smaller
subgoals which were then proved by GRIND�

The lemmas stated below were required later in order to prove a re�nement proof
obligation� We present them as validation conditions since they are reasonable prop�
erties to require of the MSMIE system� Their proofs were carried out interactively
and required about 	� tactics each�

slave�prop 	 LEMMA

�FORALL �st�st	sigma� 	

post�slave�st�st� IMPLIES count�Newest�b�st�� � ��

slave�prop� 	 LEMMA

�FORALL �st�st	sigma� 	

post�slave�st�st� IMPLIES

count�Master�b�st�� � count�Master�b�st���

��	 Representing Re�nement

The states of the MSMIE system may be described more abstractly by ignoring the
identity of individual bu�ers and distinguishing only the possible combinations of
bu�ers which satisfy the invariant� The two binary choices in the invariant concern�
ing the number of bu�ers assigned to Master and Newest mean that there are four
such combinations� �Slave� Idle� Idle�� �Slave� Idle� Newest�� �Slave� Idle� Master��
and �Slave� Newest� Master��

����� The VDM Speci�cation

In VDM� the possible status combinations are represented by giving a new enumer�
ated type comprising four tokens�
types

Status	 � sii j sin j sim j snm

The state simply records which combination is current and the invariant and initial
state are the �images under retrieval� of the concrete ones given previously�
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state �	 of

bs � Status	
ms �MName�set

inv mk��	 �bs�ms� �

ms � fg � bs � fsii� sing

init s � s � mk��	 �sii� fg�
end

The operations are similar to those given in the previous speci�cations� In particular�
the postconditions rely on the same case distinctions�
operations

slave ��
ext wr bs � Status	

rd ms � �MName�set�

pre true

post �
��
bs � fsii� sing � bs � sin� �

�
��
bs � fsim� snmg � bs � snm� �

acq �l �MName�
ext wr bs � Status	

wr ms � �MName�set�

pre �	 �l � ms�� � �	 �bs � sii��

post ms � ��ms � flg �

if
��ms � fg

then bs � sim

else bs �
��
bs �

rel �l �MName�
ext wr bs � Status	

wr ms � �MName�set�

pre l � ms

post ms � ��ms n flg �
if ms � fg
then bs � sin

else bs �
��
bs

����� The PVS Speci�cation

We have formalised the more abstract speci�cation as a theory in PVS� The tech�
niques used are the same as for the concrete speci�cation� The TCCs generated
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by typechecking are also similar� but they are easier to prove because this is a less
elaborate speci�cation�

msmie�sigma��MName 	 TYPE�� 	 THEORY

BEGIN

Status� 	 TYPE � �SII�SIN�SIM�SNM�

sigma� 	 TYPE �

�x 	 �� bs 	 Status��

ms 	 setof�MName� �� �

�member�bs�x���x	Status��x�SII OR x�SIN�� ��
 ms�x� � emptyset��

initial�sigma� 	 sigma� �

�� bs 	� SII� ms 	� emptyset ��

pre�slave 	 �sigma� �
 bool� � LAMBDA �st	sigma�� 	

true

post�slave 	 ��pre�slave��sigma� �
 bool� �

LAMBDA �st	�pre�slave��st	sigma�� 	

��member�bs�st���x	Status��x�SII OR x�SIN�� IMPLIES

bs�st� � SIN�

AND

�member�bs�st���x	Status��x�SIM OR x�SNM�� IMPLIES

bs�st� � SNM��

AND

�ms�st� � ms�st��

slave 	 ��pre�slave� �
 sigma�� �

LAMBDA �st	�pre�slave�� 	

choose��st	sigma� � post�slave�st�st���

pre�acq 	 �MName �
 �sigma� �
 bool�� �

LAMBDA �l	MName��st	sigma�� 	

�NOT member�l�ms�st��� AND �bs�st� �� SII�

post�acq 	 �l	MName �
 ��pre�acq�l���sigma� �
 bool�� �

LAMBDA �l	MName��st	�pre�acq�l���st	sigma�� 	

��ms�st� � union�ms�st��singleton�l���� AND

�IF

ms�st� � emptyset

THEN
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bs�st� � SIM

ELSE

bs�st� � bs�st�

ENDIF�

acq 	 �l	MName� �pre�acq�l�� �
 sigma�� �

LAMBDA �l	MName� st	�pre�acq�l��� 	

choose��st	sigma� � post�acq�l��st�st���

The speci�cation of the release operation is not shown�

END msmie�sigma�

����� The Re�nement Relationship

We formalise� as a PVS theory� the statement that sigma is a re�nement of sigma��
The re�nement relationship is modelled by a theory which imports the theories rep�
resenting the concrete and abstract speci�cations� The proof obligations that pertain
to re�nement must be typed in by hand� they are not automatically generated by
the system� They are declared to be CONJECTURES in the theory� as described
below and then PVS is used to prove them�

sigma��sigma�MName 	 TYPE�� 	 THEORY

BEGIN

IMPORTING msmie�sigma��MName�� msmie�sigma�MName�

First� we de�ne the �retrieve� operation mapping concrete states to abstract ones�
The de�nition is given by cases� and is much the same as that given in ��� Type�
checking generates a TCC stating that the retrieved state does indeed satisfy the
invariant of sigma�� This is proved automatically by tcp�

retr�� 	 �sigma �
 sigma�� � LAMBDA �st	sigma� 	

�� bs 	�

LET cc 	 �nat�nat� �

�count�Newest�b�st���count�Master�b�st���

IN

IF cc � ����� THEN SII

ELSIF cc � ����� THEN SIN

ELSIF cc � ����� THEN SIM

ELSE SNM

ENDIF�

ms 	� ms�st� ��
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Next we typed in the various proof obligations required to demonstrate that sigma
is a re�nement of sigma�� All of these have been veri�ed using PVS� We shall
indicate how di�cult it was to carry out each veri�cation�

Showing adequacy was a relatively non�trivial task� taking a few hours to complete�
The proof itself is conceptually simple� we consider each of the possible values of
the system status in the abstract speci�cation� and supply a suitable value for the
concrete state in each case� For each of these we must then show two things� that it
is the value returned by the � and that it satis�es the invariant of sigma�� The �rst
can be proved almost automatically by expanding some de�nitions and invoking the
tactic GRIND� To prove the second we must use the invariant of the abstract state�
The entire proof script for adequacy is about 	
� lines long�

adeq�� 	 CONJECTURE

�FORALL �st�	sigma�� 	

�EXISTS �st	sigma� 	 retr���st� � st���

Next we proved that the maps the concrete initial state to the abstract initial state�
This was very simple� after expanding one de�nition� the �grind� tactic completed
the proof�

init�� 	 CONJECTURE

�retr�� �initial�sigma� � initial�sigma��

Next was the domain rule for the slave operation� This is trivial and was proved
automatically by �grind��

slave�dom�� 	 CONJECTURE

�FORALL �st	sigma� 	

�pre�slave �retr���st��� IMPLIES pre�slave�st��

To prove the result rule for slave we �rst added the lemmas slave�prop� and
slave�prop which were validation conditions in the theory msmie�sigma� Next�
we used the tactic TYPEPRED to make the invariant of sigma visible to the prover�
Once this preparation was in place� the GRIND tactic completed the proof�

slave�result�� 	 CONJECTURE

�FORALL �st�	��pre�slave	�sigma�
bool����st	sigma� 	

��pre�slave �retr���st��� AND �post�slave�st��st���

IMPLIES

�post�slave �retr���st���retr���st�����

The domain rule for acq required a proof about 
� tactics long as well as a lemma
about the count function� The proof structure is as follows� �rst de�nitions were
expanded� the lemma was added� hidden type information was made visible� and the
proof was split into two subgoals� then the GRIND tactic was called upon to complete
the proof�



���� DISCUSSION 	


acq�dom�� 	 CONJECTURE

�FORALL �st	sigma� 	 �FORALL �l	MName� 	

�pre�acq �l��retr���st��� IMPLIES pre�acq�l��st���

The result rule for acq required a complicated� interactive proof comprising hundreds
of tactics which took several days to complete�

acq�result�� 	 CONJECTURE

�FORALL �l	MName� 	

�FORALL �st�	�pre�acq�l�	�sigma�
bool���st	sigma� 	

��pre�acq �l��retr���st��� AND �post�acq�l��st��st���

IMPLIES

�post�acq �l��retr���st���retr���st������

The domain rule for the release operation was proved automatically by GRIND�

rel�dom�� 	 CONJECTURE

�FORALL �st	sigma� 	 �FORALL �l	MName� 	

�pre�rel �l��retr���st��� IMPLIES pre�rel�l��st���

The result rule for this operation required a complex� interactive proof very similar
to that of the result rule for acq�

rel�result�� 	 CONJECTURE

�FORALL �l	MName� 	

�FORALL �st�	�pre�rel�l�	�sigma�
bool���st	sigma� 	

��pre�rel �l��retr���st��� AND �post�rel�l��st��st���

IMPLIES

�post�rel �l��retr���st���retr���st������

END sigma��sigma

��� Discussion

In this section we note various observations made during our experiments� These
include some points about the PVS system� as well as a discussion of some di�erences
between the logics of VDM�SL and the PVS speci�cation language�

����� Using the PVS System

PVS facilitates proofs at a fairly non�tedious level� due to the integrated decision
procedures and rewriting techniques� Low level proof hacking using for instance
associativity and commutation properties of arithmetic operations is usually not
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necessary� Of course� the real di�cult side of theorem proving is still di�cult�
for instance� understanding the application �and formalizing it correctly�� inventing
proofs� and generating suitable lemmas� However� we were impressed by the fact
that we were actually able to prove all �but one� of the proof obligations� including
re�nement proof obligations� for the MSMIE example� This augers well for the
usability of the system for further applications�

In all of our examples we made use of the TCC mechanism of PVS to obtain some
automatic proof obligation generation� This results in TCCs which are� in general�
too complicated to be solved by the PVS command �typecheck�prove�� which is
good at automatically �nding proofs of simple TCCs� Unfortunately� in the present
implementation of PVS it is impossible to prevent this command from embarking
on time�consuming attempts to prove all existing TCCS for the current theory� even
though the user may know that certain ones are too di�cult to be solved� A more
�exible version of �typecheck�prove�� or perhaps simply a time limit to its operation�
would be welcome�

One may like or dislike the PVS Emacs interface� Though all of the authors were used
to Emacs� we disliked some of its features relating to PVS� For instance� we found
that the way in which bu�ers popped up and destroyed existing Emacs windows
was confusing and irritating� We also felt that the quite frequent switching between
bu�ers that we had to do became somewhat of a bottleneck� Moreover� the interface
was unreliable and it was often necessary to restart PVS when Emacs ended up in
a state where you could not execute important PVS commands�

����� Partiality in VDM and PVS

The most notable di�erence between the speci�cation languages of PVS and VDM is
that PVS deals only in total functions� In practice� much of the language �exibility
of partial functions in LPF can be captured in PVS by the use of subtypes and
dependent types to express the domain of de�nition of a function� A good example
is the nth function on lists which is de�ned recursively in PVS as follows�

nth�l� �n	nat � n � length�l���	 RECURSIVE nat �

IF n � � THEN car�l� ELSE nth�cdr�l�� n��� ENDIF

MEASURE length�l�

As the following examples show� this function may be used freely when writing
speci�cations� the fact that it is partial imposes no special syntactic constraints�
For example we can write�

ex�	nat � nth��	 �� � �  	�� ��

ex	nat � nth��	 �� � �  	�� ��

Correctness is maintained by typechecking� The �rst example causes no problems�
However� the second example results in the false TCC
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� � length�nat���	 �� ��  	��

An example of a use of partial functions which is possible in LPF but not in PVS
involves the subp function� due to Cli� Jones� In PVS it may be de�ned as follows��

subp�i	nat�j	nat � i 
� j�	 RECURSIVE nat �

IF i�j THEN � ELSE � � subp�i�j��� ENDIF

MEASURE abs�i�j�

When applied to natural numbers i and j� where i 
 j� this function returns the
di�erence i�j� This property can be formalised and proved in both PVS and LPF�
However� the following property which is also true of subp in LPF� cannot be proved
in PVS � in fact� it cannot even be typechecked�

subp�lemma 	 CONJECTURE

FORALL �i�j	nat� 	 �subp�i�j� � i � j� OR �subp�j�i� � j � i�

Attempting to typecheck this results in the false TCC�

subp�lemma�TCC�	 OBLIGATION �FORALL �i� j	 nat�	 i 
� j��

Fortunately� the present example does not contain any construction where this dis�
tinction is signi�cant�

����� Looseness in VDM and PVS

Another semantic di�erence between VDM and our translation to PVS is in the
interpretation of expressions whose values are not fully determined�

In VDM� looseness in function de�nitions is interpreted as underspeci�cation� that
is to say� every invocation of a function with the same argument will return the
same result� whereas looseness in operation de�nitions is understood to be genuine
non�determinism� so separate invocations of a loosely speci�ed operation can yield
di�erent results even if called with the same arguments and in the same state �	���
The motivation for this distinction is that� in an implementation� the result of an
operation may depend on some state not being modelled in the abstraction� whereas
a function should be declarative however it is implemented�

For example� for functions f and g�

f �x � � let y be st y � x in y end

g�x � � let y be st y � x in y end

we can always be certain that f �x � � f �x �� but f �x � � g�x � may not necessarily
hold in a re�nement�

PVS� on the other hand� takes a more constrained interpretation of looseness� all
occurrences of the same choice expression must yield the same result wherever they

�This de�nition is due to Klaus Havelund
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occur� So� if we make the corresponding de�nitions in PVS�

f�x� � choose��y	nat � y 
 x��

g�x� � choose��y	nat � y 
 x��

then we always have f�x� � g�x� also�

The VDM interpretation of loose functions is appropriate in the context of a develop�
ment employing the �design by contract� paradigm� Underspeci�cation represents
the deferral of a design decision concerning the choice of a fully determined im�
plementation� Thus looseness can be removed during re�nement and the resulting
behaviour will be no worse from the caller�s point of view than that of the loose
function� However� this interpretation of looseness has severe implications for rea�
soning as it prohibits the indiscriminate substitution of equals� We cannot make the
simple chain of equalities�

f �x � � let y be st y � x in y end � g�x �

Rather� each occurrence of a loose expression must in some way be tagged in order
that it is possible to determine which occurrence is being referred to when it occurs
in proofs� It also means that beta�reduction can only be undertaken when the
argument is fully determined �	���

The PVS interpretation of looseness yields simpler proofs since we can be sure that
identical expressions will have equal value irrespective of how they arise� However�
this interpretation of looseness de�es compositionality in re�nement as if the same
choice expression occurs in two separate parts of a speci�cation� they must both be
treated similarly in any subsequent re�nement�

In the present example� we have interpreted implicit operations by use of PVS
choice operator� In the case where there is some genuine choice� as in slave� this
is not strictly correct� With this interpretation we could prove properties of the
speci�cation which are not necessarily preserved by an implementation�

These di�erences in the semantics raise methodological questions about the use of
such constructions in practice� Though partiality and looseness are both extremely
useful� they should be used with caution particularly in circumstances where there
is disagreement as to their interpretation�

����� Errors in Example Speci�cations

The translation into PVS did not reveal any errors in the MSMIE speci�cation�
However� a number of errors were found in two other realistic VDM�SL speci��
cations �not shown here� which were translated into PVS by Agerholm� A third
speci�cation� also translated by Agerholm� was not found to contain any errors�

The errors themselves are not major and should perhaps mainly be read as small and
funny� but also worrying� examples of the errors that people make in writing formal
speci�cations �and programs�� They may be divided into three categories� �	� those
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that were pointed out directly during the proof of a type checking condition� ���
those that probably could have been found easily by testing speci�cations� �
� other
errors� some of which are quite subtle� e�g� due to parentheses problems� What the
errors teach us is that in speci�cation debugging one can bene�t from working with
speci�cations in a formal way� However� other alternatives for validation such as
testing could have found some of the errors as well� For detailed discussion of the
errors that were found� the reader is referred to �
��

��
 Conclusion

The VDM�SL style of speci�cation and re�nement �ts well with the PVS speci�ca�
tion language� As a result we were able to use a very direct embedding of VDM
in PVS �for example� logical formulae in VDM are represented by those of PVS��
which means that the proof capabilities of the PVS system are available directly to
the VDM user� This is not always the case where a deeper� more indirect embedding
is required� forcing the user to navigate through layers of de�nitions� A shallow em�
bedding is very desirable in a closed system like PVS� though it is less important in
open systems such as HOL and Isabelle where a programming language is available
to automate the deep embedding process�

At present the translation from VDM�SL to PVS� and the generation of re�nement
proof obligations must both be done manually� As well as being inconvenient� these
manual processes are opportunities for the introduction of errors� It is possible to
automate the translation step outside of PVS� generating PVS theories from VDM�
SL speci�cations� However� the closed nature of the PVS system makes it di�cult
to achieve a close integration with other tools supporting VDM�SL such as can be
achieved with other more open systems ��� 
�� This leads to the disadvantage that
a VDM�SL user who wishes to use PVS for proofs must master the PVS notation
and become� in e�ect� a PVS user as well�

Because of the di�culties described in the previous paragraph� as well as the se�
mantic di�erences between PVS and VDM�SL described in Section �� we do not
view PVS as a satisfactory proof tool for VDM�SL� However� the ease with which
VDM�SL style may be transported to PVS means that this style may be a useful
approach for VDM�SL users wishing to experiment with PVS�

The authors are all convinced of the need for and the bene�ts to be derived from
the use of tools to support VDM speci�cation� The extensive type�checking done
by the PVS system contributes greatly to our con�dence in the correctness of the
speci�cations and re�nements� For example� we can be certain that functions are
applied only to arguments within their domain�� We also derived con�dence from
the proof process� Although this is somewhat muted by reports of bugs in the PVS
prover� the advantages of mechanical support for proof compared to making proofs
by hand almost certainly outweighs the possibility of the system constructing an

�A similar kind of facility� called a proof obligation generator� is currently being developed for
the IFAD VDM�SL Toolbox ����
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erroneous proof�

The PVS prover was su�ciently fast and powerful to make it feasible to do proofs
of the size shown in this chapter� though the time required to do this is considerable
and so proof for �real�world� applications remains an expensive activity� On the
other hand� the proofs which were undertaken� though not mathematically sophis�
ticated� involved such elaborate case analyses that it is unlikely that they would be
successfully carried out without the help of tools�

Further work needs to be carried out in order to discover the implications as far as
re�nements are concerned of the di�erent approaches to looseness taken in VDM�SL
and PVS� It would also be interesting to see how the approach scales up to larger�
more �real�world� applications which might provide a more exacting test of the
capabilities of the PVS system� Finally� the authors are interested in a comparison
between PVS and the new VDM proof tool based on Isabelle which is currently
under development at IFAD�
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