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Summary

This chapter describes using the PVS system as a tool to support VDM-
SL. It is possible to translate from VDM-SL into the PVS specification
language in a very easy and direct manner, thus enabling the use of PVS
for typechecking and verifying properties of VDM-SL specifications and
refinements. The translation is described in detail and illustrated with
examples. The drawbacks of the translation are that it must be done
manually (though automation may be possible), and that the “shallow
embedding” technique which is used does not accurately capture the
proof rules of VDM-SL. The benefits come from the facts that the portion
of VDM-SL which can be represented is substantial and that it is a great
advantage to be able to use the powerful PVS proof-checker. A variety
of examples of verifications using PVS are described in the chapter.

6.1 Introduction

The PVS system[13], developed at SRI Menlo Park, in California, combines an
expressive specification language with a powerful theorem-proving tool in which
interactive proof is tightly integrated with many automatic procedures which speed
up routine parts of proof development. The combination makes for a user-friendly
system which is easy to learn and to use for doing non-trivial theorem-proving. The
specification language is based on classical higher-order logic, enriched with a type
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system based on Church’s simple theory of types with extensions for subtyping and
dependent types. The result is an expressive language which has much in common
with formal notations such as VDM-SL. A system of parameterized theories provides
structuring for developments and extensive libraries add definitions of many useful
mathematical constructs similar to those used in VDM-SL.

The striking, if superficial, similarity between VDM-SL and the PVS specification
language means that a significant portion of VDM-SL may be represented very di-
rectly in PVS. This gives rise to an informal “shallow embedding” [10] of a substan-
tial portion of VDM-SL. The embedding makes use of the parameterized theories of
PVS to represent VDM-SL specifications and refinement relationships between pairs
of specifications. The result is a simple and direct means of harnessing the power
of the PVS proof-checker for proving validation conditions and proof obligations
arising from specifications and refinements. The embedding also provides automatic
generation of some proof obligations which can be made to arise as type-checking
constraints (TCCs) in PVS. The drawbacks of the method are that translation must
(at present) be performed manually, and that the proof rules of VDM-SL are not
accurately captured because of differences between the logics of VDM-SL and PVS.
The latter fact implies that what we are doing would be more accurately described
as VDM-style specification.

Using this approach outlined above, we have hand-translated a number of VDM-
SL specifications and refinements into the PVS logic, and used the prover to check
various properties of these specifications. This process resulted in the detection
of several errors in some of these specifications. In this chapter we describe one
medium-sized example which illustrates most of the aspects of our approach. The
structure of the chapter is as follows. In Section 6.2 we briefly describe the PVS
system. This is followed in Section 6.3 by an informal presentation of the trans-
lation from VDM-SL to the PVS specification language. Section 6.4 complements
Section 6.3 by illustrating through the use of an example how a specification as a
whole is represented as a PVS theory. In this section we also discuss using the PVS
proof-checker to typecheck the example specification and to prove various validation
conditions about it. In Section 6.5 we turn to the subject of refinement, showing
how the example of Section 6.4 can be represented in PVS as a refinement of a
more abstract specification, and how the PVS proof-checker was used to discharge
all the resulting proof obligations. In the final sections we discuss the validity of our
informal translation from VDM-SL to PVS, make some observations about what
was learned during this exercise, and present our conclusions.

6.2 The PVS System

The PVS system is produced by a team of researchers at SRI International, in
California. The philosophy behind the system is that it should provide a high
degree of support for requirements specification, since errors at this initial stage are
considered to be the most costly. However, the system itself is general purpose and
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lends itself to a variety of applications [13], including verifications of algorithms and
hardware systems and embeddings of other logics.

The foundation of the system is the expressive PVS Specification Language. This is
based on classical higher-order logic, enhanced with a rich system of types including
subtyping, dependent types and recursive types. Specifications may be structured
using a system of parameterized theories. Various aspects of the syntax of the PVS
specification language will be explained where they arise in the chapter.

The PVS specification language is supported by a collection of tools including a type
checker and an interactive proof checker. The tools run under emacs which provides
a basic user interface. Typechecking in PVS is undecidable and generally results in
the generation of proof obligations called type-checking constraints (TCCs). TCCs
may be proved by invoking a powerful tactic called tcp or, if this tactic fails, by use

of the PVS proof-checker.

One of the main attractions of the PVS proof-checker is that basic proof commands
are tightly integrated with powertul decision procedures and tactics. The tactics may
be combined in various ways to form proof strategies. Some of the most commonly
used tactics embody simple proof rules (splitting conjunctions and disjunctions,
instantiating quantifiers, skolemizing, etc). Others implement sophisticated decision
procedures. Examples are the tactic PROP for propositional simplification and the
all-powerful tactic GRIND, which subsumes PROP and does much more. Other tactics
such as HIDE allow management of the proof state.

The version of PVS referred to in this chapter is the “alpha-plus” release available

in June 1996.

6.3 From VDM-SL to the Higher Order Logic of
PVS

A large subset of VDM-SL can be translated into a higher order logic such as the
PVS specification language. This section describes such a translation in sufficient
detail to support manual translations, though more formality might be required
in order to support an implementation of the translation process. The translation
method may be viewed as a (very) shallow embedding of VDM-SL in PVS. The
syntax of VDM-SL constructs is not embedded: we work with the “semantics” of
the constructs directly. Therefore it can be argued that the translation is not safe
(in a logical sense). This is a disadvantage of shallow embeddings in general, though
some shallow embeddings are more safe than others. The translation of VDM-SL
to PVS is relatively safe in this sense since PVS and VDM-SL share many concepts
and constructs.

One of the differences between VDM-SL. and PVS is that a VDM-SL expression
can be undefined; there is one common undefined element to all types, which can
be viewed as sets. For example, an expression is undefined if a divisor is zero, if a
finite sequence is applied to an index outside its indices, or if a pattern match in
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a let expression fails. Most of such situations are handled implicitly by restrictions
on the translation of various constructs, in combination with type checking in PVS.
For instance, PVS itself generates type checking conditions to capture division by
zero. A related factor is that PVS does not support partial functions. All VDM-SL
functions are translated to PVS functions and PVS generates an obligation stating
that a given function must be total. Partial functions are discussed in more depth
in Section 6.6.

Below we discuss how various constructs of VDM-SL specifications can be translated.
We show VDM-SL expressions in the ASCII notation supported by the IFAD VDM-
SL Toolbox.

6.3.1 Basic Types, the Product Type and Type Invariants

Boolean and number types can be viewed as sets and translated directly to the
corresponding types in PVS. It is not necessary to edit arithmetic expressions and
logical connectives since they have the same symbols and names in PVS. Specially,
the connectives and and or are used as “and-also” and “or-else” in both the Toolbox
version of VDM-SL and PVS. Hence, it is allowed to write “P(x) and x/x = 17 if
one can prove the automatically generated condition “P(x) IMPLIES x /= 0”.

Restricted quantifications are translated to quantifications over PVS subtypes. Hence,
a universal quantification like forall x in set s & P[x] can be translated to
forall (x:(s)): P[x]. Note that the & is replaced with : and we insert brackets
around the binding.

In VDM-SL it is possible to specify a subtype of a type by writing a predicate
that the elements of the subtype must always satisfy. This predicate is called an
invariant. As an example consider the definition of a type of positive reals:

Realp = real
inv r ==1r > 0

This introduces a new constant inv_Realp implicitly, which equals the invariant
predicate. The definition is translated to PVS as follows:

inv_Realp(r:real) : bool = r >= 0
Realp: TYPE = (inv_Realp)

The type Realp is defined as a subtype of the built-in type real.

The product type of VDM-SL can be translated directly to the product type of PVS.
VDM-SL tuples are written using a constant mk_, e.g. mk_(1,2,3). This constant
could be ignored in the translation, but instead we have introduced and usually use
a dummy constant mk_, defined as the identity function. The only way to split a
tuple in VDM-SL is using pattern matching on mk_, e.g. in a let expression like
let mk_(x,y,z) = t in e. The translation of pattern matching is discussed in
more detail in Section 6.3.6.
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6.3.2 Record Types

VDM-SL records are translated directly to records in PVS. There is only a slight
difference in syntax. PVS does not automatically introduce a constructor function
mk_A as in VDM-SL for a record definition called A, but the function is easy to define.
Below, we first give an example of how to translate a standard record type definition
and then give a more complicated example where an invariant is also specified.

Standard Records

We consider a simple example, which defines a record of points in the two-dimensional
positive real plane. The VDM-SL definition of the record type is (Realp was intro-
duced above):

Point:: x: Realp
y: Realp

This is translated to PVS as follows:
Point: TYPE = [# x: Realp, y: Realp #]

In both cases, field selectors x and y are introduced implicitly. Unfortunately, PVS
does not support the VDM-SL notation for field selection, which is the standard
one using a dot and the field name, e.g. p.x for some point p. Instead fields are
viewed as functions that can be applied to records. Thus the VDM-SL expression
p.x translates to the PVS expression x(p). The PVS notation is less convenient,
e.g. a nested field selection as in r.a.b.c translates to c(b(a(r))).

In VDM-SL each new record definition generates a new “make” function for building
elements of the record. In order to allow a direct translation of such expressions to
the same expressions in PVS, the constructor function is defined along with a record
definition. The constructor for points is:

mk_Point(a:Realp,b:Realp) : Point = (# x:= a, y:= b #)

In VDM-SL such make constructors are also used for pattern matching in function
definitions and in let expressions but this is not possible in PVS. Instead we use
Hilbert’s choice operator (choose), as described in Section 6.3.6.

VDM-SL also provides an is_ test function for records, which is sometimes used to
test where elements of union types come from. Since we do not support union types
properly (see Section 6.3.4) we shall ignore this constant.

Records with Invariants

Sometimes a VDM-SL record definition is written with an invariant. For instance, an
equivalent way of defining the point record above would be the following definition
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Point:: x: real
y: real
inv mk_Point(x,y) == x >= 0 and y >= 0

where an invariant is used to specify that we are only interested in the positive part
of the two-dimensional real plane. We translate this as follows:

inv_Point(x:real,y:real) : bool = x >= 0 and y >= 0

Point: TYPE = {p: [# x:real, y:real #] | inv_Point(x(p),y(p))}

mk_Point(z:(inv_Point)) : Point = (# x:= x(z2), y:= y(=z) #)

Note that we restrict the arguments of mk_Point. For instance, the following defi-
nition does not work

mk_Point(a:real,b:real) : Point = (# x:= a, y:= b #)

since we cannot prove that this yields a point for all valid arguments.

There 1s one small semantic difference between VDM-SL records and the above
representation in PVS. In VDM-SL it is allowed to write mk_Point(1,-1) though
this will not have type Point. The only use of such a (kind of ) junk term would be in
inv_Point (mk_Point(1,-1)), which would equal false. In the PVS representation,
this invariant expression is written as inv_Point(1,-1).

6.3.3 Sequences, Sets and Maps

In this section, we briefly consider the translation of finite sequences, finite sets and
finite maps. Invariants on these types are treated much like in the previous section
on records.

Finite Sets

A type of finite sets is provided in the PVS finite_sets library. The type is defined
as a subtype of the set type, which represents sets as predicates. Most operations
on sets exist, or can be defined easily. One annoying factor is that for instance set
membership, set union and set intersection are all prefix operations in PVS. E.g.
one must write member (x,s) for the VDM-SL expression “x in set s”. Moreover,
user-defined constants must be prefix and one cannot define new symbols. PVS
supports only a simple and restricted syntax of expressions.

Finite Sequences

VDM-SL finite sequences can be represented as finite sequences or as finite lists in
PVS. The difference is that finite sequences are represented as functions and finite
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lists as an abstract datatype. There is more support for finite lists, so we have
usually chosen this type as the representation. An advantage of sequences is that
indexing is just function application. However, with both representations one must
be careful since indexing of sequences starts from one in VDM-SL and from zero in
PVS. The safest thing to do is therefore to define new indexing operations in PVS
and use these for the translation.

Finite Maps

PVS does not support finite maps, so an appropriate theory must be derived from
scratch. In doing this, one could probably benefit from the paper on finite maps in
HOL by Collins and Syme [12], who have implemented their work in a HOL library.
However, many operations on finite maps are not supported in this library, so an
extended theory of finite maps must be worked out.

As a start one could just axiomatize maps in PVS, e.g. by introducing maps as an
uninterpreted subtype of the function type, with a few appropriate definitions (and
axioms). In fact, for the examples very little support was needed.

A representation of maps using functions has advantages. Map application will
just be function application and map modification can be translated to PVS with
expressions. For example, the VDM-SL map modificationm ++ { 1 [-> 2, 2 |->
3 }, where a map m from numbers to numbers is modified to send 1 to 2 and 2 to
3, translates tom with [ 1 [-> 2, 2 |[-> 3 ].

6.3.4 Union Types

In VDM-SL, the union of two or more types corresponds to the set union of the types.
Thus, the union type is a non-disjoint union, if two types have a common element
this will be just one element in the union type. Higher order logics do not support
non-disjoint unions, but support disjoint sums (unions) or abstract datatypes as
in PVS. In general, a VDM-SL union type cannot be translated easily to a PVS
datatype. However, if the component types of the union are disjoint then this is
partly possible. The translation is only satisfactory when the component types are
quote types; these correspond to singleton sets.

Union of Disjoint Types

The union of disjoint types can be represented as a new datatype with constructor
names for the different types. This representation is not perfect, the component
types does not become subtypes of the union type as in VDM-SL. For example this
means that the operators defined on the individual types are not inherited as in
VDM-SL, where the dynamic type checking ensures that arguments of operators
have the right types. In the special case where all components of the union type are
new types, it might be possible to define the union type first and then define each
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of the component type as subtypes of this. Such tricks would not be easy to employ
in an automatic translation.

Enumerated Types

An enumerated type is a union of quote types, which is written using the following
ASCII syntax in VDM-SL: ABC = <A>|<B>|<C>. This can be translated almost
directly to PVS, with some minor syntax changes: ABC: TYPE = {A,B,C}. PVS
does not support identifiers enclosed in < and >.

6.3.5 Function Definitions

Total functions are translated directly to PVS functions. As mentioned before,
partial functions cannot be translated in this way. As we shall see in Section 6.6,
it is possible to encode some partial functions as total functions in PVS by using
subtypes to represent their domains of definition. Other formalizations are also
possible (see e.g. [2, 1]). Polymorphic functions are not considered at the moment.

Standard explicit function definitions, which are function definitions that do not
have postconditions, can be translated directly to PVS, if they are not recursive. A
precondition will be translated to a subtype predicate. If functions are recursive we
must demonstrate that they are total functions in PVS. It is up to the translator
to specify an appropriate measure, which is decreased in each recursive call, for the
termination proof. Moreover, VDM-SL supports mutual recursive function defini-
tions which would not be easy to translate. The example specifications used only
few recursive definitions and these were very simple.

Implicit function definitions, which are specified using pre- and postconditions only
and have no function body, can be represented using the choice operator. Almost
equivalently, one can also use function specification, which is a way of defining
partially specified functions; it is only specified on a subset of a type how a function
behaves, and this is specified by an “underdetermined” relation, not an equation

18, 15].
Implicit Definition

Let us first consider the following semi-abstract example of an implicit function

definition in VDM-SL:

f(x:real,y:real) z:Point
pre plx,y]
post qlx,y,z]

where the variables in square brackets may occur free in the precondition p and the
postcondition q. This translates to the following PVS definitions:

pre_f(x:real,y:real) : bool = plx,y]
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post_f(t:(pre_f))(z:Point) : bool = let (x,y) = t in qlx,y,z]

f: FUNCTION[t:(pre_f) -> (post_f(t))]

The precondition is translated to a predicate on the arguments of the function and
the postcondition is translated to a binary relation on the arguments and the result.
The function itself is defined as an uninterpreted constant using a dependent function
type: given arguments t satisfying the precondition it returns a result satisfying the
postcondition, or more precisely, a result related to t by the postcondition. This
relation may be underdetermined, i.e. it may specify a range of possible values for
a given input, but the function will always return a fixed value in this range. If the
precondition is not satisfied the result is an arbitrary value.

As a result of an uninterpreted constant definition, the PVS type checker generates
an existence condition, which says that we must prove there exists a value in the
specified type. Hence, above we must prove there exists a function from the precon-
dition to the postcondition. In general, proving this condition can be non-trivial,
since one must usually provide a witness, i.e. a function of the specified form. (For
instance, it would be difficult to prove that there exists a square root function.)

Explicit Definition

Explicit definitions of recursive functions can be problematic for automatic transla-
tion since a translator must insert a well-founded measure for proofs of termination.
This is easy enough when the recursion is simple, which it is for primitive recursive
functions over numbers and abstract datatypes, but for more general recursive func-
tions this can be hard. PVS has some strategies for proving termination in simple
cases.

An explicit function definition has no postcondition but instead a direct definition,
and perhaps a precondition. Let us consider a standard example of a primitive
recursive function on the natural numbers:

fac: nat -> nat
fac(n) == if n = 0 then 1 else n * fac(n-1)
pre 0<=n

This translates to the following PVS definitions:

pre_fac(n:nat) : bool = n >= 0

fac(n:(pre_fac)) : recursive nat =
if n = 0 then 1 else n * fac(n-1) endif
measure (lambda (n:(pre_fac)): n)

Note that we have inserted “recursive” and “measure”, which are part of the
syntax for recursive function definitions in PVS. The measure is used to generate
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conditions for termination of recursive calls. (The precondition is redundant above,
it is included for illustration.)

6.3.6 Pattern Matching

Pattern matching plays an important role in VDM-SL specifications. It is used fre-
quently to get access to the values at fields of a record, and it is the only way to
get access to the values of the components of a tuple. We can represent a successful
pattern matching but not a failing one, since we do not represent undefined expres-
sions. However, undefined expressions are either avoided due to type checking, or
else represented by arbitrary values, i.e. values of a certain type that we do not know
anything about.

Pattern Matching in Let Expressions

Here are some examples which use a record type A with three fields a, b and <.
Assuming x, y and z are variables, the following VDM-SL let expression

let mk_(x,y,z) = el in e2[x,y,z]

can be translated to exactly the same term in PVS, except that the tuple construc-
tor mk_ must be omitted for the expression to parse. The following VDM-SL let
expression with a pattern match on the record type A

let mk_A(x,y,z) = el in e2[x,y,z]
can be translated to the following PVS term:
let x = a(el), y = b(el), z = c(el) in e2[x,y,z]

The field selector functions are used to destruct the expression. This corresponds
to the way that PVS itself represents pattern matching on tuples (using project
functions). If one of the variables in the VDM-SL expression was the don’t care
pattern, written as an minus sign -, then we could just replace this with a new
variable. We do not allow constants in patterns in let expressions, since they do not
make much sense (they are however allowed in VDM-SL).

The following VDM-SL “let-be-such-that” expression
let mk_A(x,y,z) in set s be st blx,y,z] in elx,y,z]
can be translated to

let v = (choose ({w:(s) | let x = a(w), y = b(w), z = c(w)
in blx,y,zl})
in
let x = a(v), y = b(v), z = c(v) in elx,y,z]
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where we use the choice operator, choose, to represent the looseness in the VDM-SL
specification. Don’t care patterns are translated as suggested above, by introducing
new variables. We allow constants and other values in let-be-st expressions. For
instance, we can translate

let mk_A(x,y,0) in set s be st blx,y] in elx,y]
into the PVS term

let
v = (choose ({w:(s) | let x = a(w), y = b(w), n = c(w)
inn = 0 and blx,yl})
in
let x = a(v), y = b(v) in elx,y]

where we include a test in the body of the choose.

Pattern Matching in Cases Expressions
The following VDM-SL cases expression

cases e:
mk_AC0,-,z) -> el,
mk_A(x,1,z) -> e2,
others -> e3
end

can be translated to the following conditional expression in PVS:

cond
a(e) = 0 -> let z = c(e) in eil,
b(e) =1 -> let x = a(e), z = c(e) in e2,
else -> e3

endcond

PVS’s built-in cases expression only works on abstract datatypes.

Pattern Matching in Function Definitions

Pattern matching can be used on arguments in a function definition, where the
patterns are typically variables (or don’t care patterns which are translated to new
variables). We can treat this by inventing a new variable using the function definition
and then extending the body with a let expression to represent the pattern match.
This approach is also used in the formal semantics of VDM-SL.
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6.3.7 State and Operations

A VDM-SL specification may contain a state definition, which specifies a number
of variable names for elements of the state space. The state space is known to
operations and nowhere else. The state definition is essentially a record definition
and 1is therefore represented as a record type in PVS. Operations are represented
as state transformations, i.e. functions which, in addition to the operation’s input
values, take the initial state as an argument and return the output state as a result
(and possibly an explicit result value). Hence, operation definitions can be translated
in a similar way as functions.

The body of operation definitions may contain assignments and sequential compo-
sitions. Assignments are translated to PVS with expressions and sequential com-
positions are represented using let expressions. In this chapter we do not consider
conditions (which should be easy) and while loops (which probably could be trans-
lated to recursive functions). More exotic features such as exception handling are
also excluded from consideration.

Assume we have the following state definition in VDM-SL:

state ST of
Xx: real
y: real
z: real
end

This can be translated to:

ST: TYPE = [# x: real, y: real, z: real #]
mk_ST(x:real,y:real,z:real): ST = (# x:=x, y:=y, z:=z #)

Now assume we have the sequence:
x:=b; y:=3; z:=1
This can be translated to

lambda (s:ST):

let s1 = s with [x:=5],
s2 = sl with [y:=3],
83 = 582 with [z:=1]
in s3

or simply to
lambda (s:st): s with [x:=5, y:=3, z:=1]

since the assignments are independent in this example.
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6.4 A Specification Example: MSMIE

The Multiprocessor Shared-Memory Information Exchange (MSMIE) is a protocol
for “inter-processor communications in distributed, microprocessor-based nuclear
safety systems” [17], which has been used in the embedded software of Westinghouse
nuclear systems designs.

The protocol uses multiple buffering to ensure that no “data-tearing” occurs as
separate processors communicate via some shared memory. In other words, data
should never be overwritten by one process while it is still being read by another.
One important requirement is that neither writing nor reading processes should have
to wait for a buffer to become available; another is that recent information should
be passed, via the buffers, from writers to readers. The example has previously
been analyzed using CCS in [11] and using VDM and B in [9]. In common with
these analyses, we shall be working with a simplified system in which it is assumed
that information is being passed from a single “slave” processor to several “master”
processors. Thus, there are several reading processors, “masters”, but only one
writing, “slave” process.

The information exchange is realised by a system with three buffers. At any time,
one buffer is available for writing, one for reading, and the third is either between
a write and a read and hence contains the most recently written information, or
between a read and a write and so is idle.

The status of each buffer is recorded by a flag which can take one of four values:

s - “assigned to slave” This buffer is reserved for writing. It may actually be being
written at the moment or just marked as available for writing.

n - “newest” This buffer has just been written and contains the latest information.
It is not being read at the moment.

m - “assigned to master” This buffer is being read by one or more processors.

i - “idle” This buffer is not being read or written and does not contain the latest
data.

The names of the master processors that are currently reading are also stored in the
state.

The VDM specification of [8] and [9] is concerned with various “data models” of
MSMIE: the state of the device is modelled but not the slave and master processors
nor the dynamic evolution of the system as they access the buffers in parallel. This
analysis concerns only the operations which modify the buffer status flags. In the
system as a whole, these operations are protected by a system of semaphores which
allows each operation uninterrupted access to the state, and thus their behaviour is
purely sequential.

There are three such operations:
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slave This operation is executed when a write finishes. The buffer that was being
written is given the status “newest” thereby replacing any other buffer with
this status.

acquire This is executed when a read begins. The new reader name (passed as
a parameter) is added to the set of readers and status flags are updated as
appropriate.

release This 1s executed when a read ends. The given reader name is removed from
the set of readers and status flags are updated as appropriate.

The precise description of these operations is left to the formal specification in the
following section.

We note, in passing, that the MSMIE protocol has the the undesirable property that
it 1s possible for information flow from slave to master to be held up indefinitely.
This problem is dealt with in the original paper [17] by the use of timing constraints.
The paper [11] suggests an improvement to the protocol in which the problem is
avoided by the use of a fourth buffer. This improved protocol is quite intricate,
and is modelled in [8] by using non-standard extensions to VDM which provide a
more concise means of expression than standard VDM-SL. In this report we restrict
ourselves to standard VDM-SL specifications and so do not treat the improved

MSMIE protocol.

The paper [8] explores several ways of specifying the MSMIE system in VDM with
varying degrees of abstraction. These specifications can be translated more or less
“as 1s” into PVS, which can then be used to carry out proof obligations. The
specifications can be written in such a way that some of the proof obligations are
automatically generated by PVS, though it is still necessary to type in others by
hand.

The VDM specifications of MSMIE which we show are in VDM-SL and therefore
differ slightly from those in [8]. They were developed with the help of the IFAD
VDM-SL Toolbox [14].

6.4.1 The VDM Specification

The specification uses an auxiliary function called count, which counts the number
of occurrences of a given item in a sequence.
functions
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count[QT]:@T x Q@T* — N

count (s,ss) &
cases s :
=0,
others — if hd s5 = s
then 1 + count[QT](s,tl ss)
else count[QT](s,tl ss)

end

The possible values of the status flags are given via an enumerated type; the type
of the names of master processes is deferred.

types

Status =S | M | N | T;

MName = token

The state records the status of each of the three buffers, and the names of all cur-
rently reading master processes. These are represented by, respectively, a sequence
of status values and a set of master names. The invariant captures constraints on
the possible states that are reachable: there is exactly one buffer assigned to the
writing slave process; at most one buffer is currently being read, and at most one
holds newest data that is not being read; the set of readers is empty precisely when
no buffer is being read. In the initial state, one buffer is assigned to the slave and
the other two buffers are marked as idle.

state X of
b : Status™
ms : MName-set

inv mk-X' (b, ms) &
len b =3 A

count[Status] (S,b) =1 A
count[Status] (M, b) € {0,1} A
count[Status] (N, b) € {0,1} A

N7
(count[Status] (M
init s & s = mk-2 ([s,1,1],{})

end

The slave operation is executed when a slave process completes writing. The buffer
that has just been written, previously of status S, is given the status N reflecting
that it now contains the newest data. This buffer replaces any other buffer with the
N status. The operation also selects one of the available buffers and assigns to it
status S, making it the new buffer available for writing.

operations
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slave ()
ext wr b : (Status™)

pre true
post Vi€ {1,2,3} -
(b (i)=5 = b(i)=N)A

Pa—

(b () =m = b(i) =M);

The acquire operation is executed when a master process is about to begin reading.
The new reader’s name, passed as a parameter, is added to the set of active readers,
and status flags are updated as necessary. If there is already a buffer being read,
then the new reader also begins to read that buffer and no status changes are needed.
Otherwise it reads the buffer with the newest data, status N, and the status of that
buffer is changed to M.

acq (I : MName)
ext wr b : (Status™)
wr ms : (MName-set)
pre (= (1l € ms)) A
(Fie{1,2,3}-0(i) =NV b(i)=M)
post ms = ms U {[} A

Vie{1,2,3}
if b (i)=NAims={}
then b (i) =M

Pa—

else b(i)= b (i) ;

The release operation takes place when a master process has finished reading. The
master’s name is removed from the set of readers and buffer flags reassigned as
appropriate. If there are still other masters reading then the status flags do not
need to be changed. Otherwise, the buffer that has just been relinquished must
have its status flag reassigned. There are two possibilities. If there is some other
buffer which was written while the read was taking place, and therefore has status
N, then the released buffer no longer contains the newest data and must have its
status set to I. Otherwise, it still contains the freshest data and must have its status
reset to N.

rel (I : MName)
ext wr b : (Status™)
wr ms : (MName-set)

pre [ € ms
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post ms = ms \ {I} A
Vie{1,2,3)-
if b (i) =MAms=1{}
then b (i) € {N,1} A count[Status] (N,b) =1

else b (i) = b (i)

6.4.2 PVS Translation

The VDM specification is represented as a PVS theory called msmiesigma?2. The
theory is parameterized over a non-empty type of master names.

msmie_sigma2[MName : TYPE+] : THEORY
BEGIN

The theory begins by importing another theory containing definitions of functions
on lists. The “count” function is defined within this imported theory.

IMPORTING list_funs

As in VDM, the possible values of the status flags are represented by an enumerated
type.

Status : TYPE = {Slave,Master,Newest,Idle}

The state and invariant of the VDM specification are represented by a single (de-
pendent) type in PVS. The definition is best understood in two parts. First, the
state is represented as a record containing two fields: a list, b of Status values, and
a set of master names, ms. The set of valid states is then represented by forming
the subtype, sigma2, of all such records which satisfy the invariant.

sigma?2 : TYPE =
{x : [# b : list[Status],
ms : setof[MName] #] |

((length (b(x)) = 3) AND

(count (Slave,b(x)) = 1) AND

member (count (Master,b(x)),{x:nat|x=0 OR x=1}) AND
member (count (Newest ,b(x)),{x:nat|x=0 OR x=1}) AND
((count (Master,b(x)) = 0) <=> (ms(x) = emptyset)))’}

The initial state is defined as a record containing appropriate values and its type is
explicitly constrained to be sigma2. When this definition is typechecked, PVS will
automatically generate as a type-checking constraint (TCC) the condition that the
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initial state satisfies the invariant. We shall look more closely at these TCCs in the
next section.

initial_sigma2 : sigma2 =
(# b := (: Slave, Idle, Idle :), ms := emptyset #)

For each operation, the precondition is represented as a predicate over the valid
states (sigma2). The postcondition is represented as a predicate over pairs of valid
states. The operation is then defined as a function which maps each value from the
subtype defined by the precondition to some unspecified valid state which, when
paired with the input value, satisfies the postcondition. Typechecking such a defi-
nition will cause PVS to generate a TCC stating that a suitable value for the post
state does indeed exist. In other words, we are asked to show that the specified
operation is feasible.

Our first example is the slave operation. The definitions of the pre- and postcon-
ditions resemble very closely the original VDM specification. One difference is that
there is no analogue in PVS to the frames in VDM, so that the fact that the variable
ms has read-only status in the VDM specification must be explicitly stated in the
PVS postcondition.

pre_slave : [sigma2 -> bool] = LAMBDA (st:sigma2)
true

post_slave : [(pre_slave),sigma2 -> bool] =
LAMBDA (st:(pre_slave),st2:sigma2)

((FORALL (i:{x:nat| x=0 OR x=1 OR x=2})
(nth(b(st),1i) = Slave IMPLIES nth(b(st2),1i) = Newest)
AND
(nth(b(st),i) = Master IMPLIES nth(b(st2),1) = Master))

AND

(ms(st2) = ms(st)))

The slave operation is then defined using the PVS choice operator choose. Our use
of choose leads to a rather different interpretation of looseness from that adopted

in VDM-SL. We defer discussion of this point until Section 6.6.3.

slave : [(pre_slave) -> sigma2] =
LAMBDA (st:(pre_slave))
choose({st2:sigma2 | post_slave(st,st2)})

The specification of acquire is done similar. First the precondition and postcondition
are defined as predicates.

pre_acq : [MName ->[sigma2 -> booll] =
LAMBDA (1:MName) (st:sigma2)
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(NOT member(1l,ms(st))) AND
(EXISTS (i:{x:nat| x=0 OR x=1 OR x=2})
(nth(b(st),i) = Newest OR nth(b(st) i) = Master))

post_acq : [1l:MName -> [(pre_acq(l)),sigma2 -> bool]] =
LAMBDA (1:MName) (st:(pre_acq(l)),st2:sigma?2)
(ms(st2) = union(ms(st),singleton(1l))) AND
(FORALL (i:{x:nat| x=0 OR x=1 OR x=2})
IF nth(b(st),i) = Newest AND ms(st) = emptyset
THEN nth(b(st2),i) = Master
ELSE nth(b(st2),1) = nth(b(st),1)
ENDIF)

Next, the acquire operation is defined as a function which, when given a master name
1 and a state belonging to the type (pre_acq(1)), returns a nondeterministically
chosen state in sigma2 such that the two states together satisfy the postcondition
post_acq(l)

acq : [1:MName, (pre_acq(l)) -> sigma2] =
LAMBDA (1:MName, st:(pre_acq(l)))
choose({st2:sigma2 | post_acq(l)(st,st2)})

The specification of the release operation is similar to that of acquire and is not

described here.

6.4.3 Typechecking Constraints

When the theory msmie_sigma?2 is typechecked by PVS, a number of typechecking
constraints (TCCs) are generated. These must be proved in order to demonstrate
that the theory is well-typed. Simple TCCs can be handled by invoking an automatic
TCC-prover, tcp, but more difficult ones must be proved interactively by the user.
In the case of the theory msmie_sigma2, there are only 4 TCCs which are too
difficult for tcp to prove. Interestingly, these TCCs correspond to the satisfiability
proof obligations for the specification. We are required to show that the initial state
satisfies the invariant, and that each of the three operations is feasible.

Showing that the Initial State Satisfies the Invariant

The first TCC generated for msmie_sigma?2 is shown below. It results from the fact
that we have explicitly stated that the initial state, initial_sigma2, is of type
sigma2; we are required to prove that initial_sigma2 satisfies the predicate which
defines the subtype sigma2. In other words, we must show that the initial state
satisfies the invariant. The proof is too difficult for tcp, but can be done quickly
using the interactive prover. The main goal, which consists of a conjunction of 5
formulae, is split, making each conjunct into a separate subgoal. Each of these is
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then proved by repeatedly expanding definitions until a statement is obtained which
PVS recognises to be trivially true.

initial_sigma2_TCC1l: OBLIGATION
((length[Status] ((: Slave, Idle, Idle :)) = 3)
AND (count[Status](Slave, (: Slave, Idle, Idle :)) = 1)
AND
member [nat] (count[Status] (Master, (: Slave, Idle, Idle :)),
{x: nat | x = 0O0R x = 1})
AND
member [nat] (count [Status] (Newest, (: Slave, Idle, Idle :)),
{x: nat | x = 00OR x = 1})
AND
((count[Status] (Master, (: Slave, Idle, Idle :)) = 0)
<=> (emptyset[MName] = emptyset[MName])));

Showing that the Operations Are Feasible

To specity the operations we used the nondeterministic choice operator of PVS. For
this to be correctly typed, PVS requires us to demonstrate that there exist possible
candidates for the nondeterministically chosen values. In other words, we must show
that each operation is feasible.

We show the statement of this proof obligation for the acquire operation. Given
any master name 1, and any state st within the type defined by the precondition,
(pre_acq(1)), we must prove that the set of all states, st2, satistying the postcon-
dition post_acq(l) (st,st2) is nonempty.

acq_TCC1: OBLIGATION
(FORALL (1: MName, st: (pre_acq(l))):
nonempty?[sigma2] ({st2: sigma2 | post_acq(l) (st, st2)}));

This TCC has been proved interactively using PVS. The proof is unsurprising but
not trivial: the user must supply a suitable candidate for the nondeterministic choice
and then verify that all the various conditions imposed by the postcondition and
the invariant are satisfied.

We describe only the main highlights of the proof. After skolemizing, expanding
definitions, and making some hidden hypotheses explicit, we are in a position where
we may supply a possible candidate for the value that is nondeterministically cho-
sen. This is done using the tactic INST, which is given two arguments: an integer
representing the appropriate subgoal and a value for instantiation consisting of a
record representing the state after the operation is carried out. In this case, the
postcondition of the acquire operation happens to be very explicit so the calculation
of the post state simply reflects the postcondition. Note that identifiers such as
st!1 are skolem variables generated by PVS.
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(INST -8
"(# ms := union(ms(st'1l), singleton(1'1)),
b := (: IF nth(b(st!l), 0) = Newest AND ms(st!l) = emptyset
THEN Master ELSE nth(b(st!1), 0) ENDIF,

IF nth(b(st!1), 1) = Newest AND ms(st!l) = emptyset
THEN Master ELSE nth(b(st!1), 1) ENDIF ,
IF nth(b(st!1l), 2) = Newest AND ms(st!l) = emptyset

THEN Master ELSE nth(b(st!1l), 2) ENDIF :) #)")

This gives us two subgoals: we must show that the witness satisfies both the post-
condition and the invariant. We shall not describe these proofs in detail because
they are lengthy and not particularly instructive. Briefly, each subgoal consisted of
a conjunction which was split to give several new subgoals. These subgoals were
then proved by case analysis (splitting the hypotheses), rewriting and simplifying
each individual case, and then using a decision procedure or some general tactic
such as GRIND to either verify the conclusion or discover a contradiction within the
hypotheses. Much use was made of the HIDE command to hide irrelevant formulae
and hence speed up the workings of the tactics.

Using a proof approach similar to that described above, we were able to show that
the release operation is also feasible. The slave operation should have been similarly
easy to handle, but, unfortunately, we were unable to complete the proof because
of a bug in the PVS system concerning equality. In certain situations arising after a
lengthy sequence of tactics, it seems that the system fails to recognise goals which
are simply instances of the reflexivity of equality. This is a known bug and will,
hopefully, be corrected in future versions of PVS.

6.4.4 Some Validation Conditions

In both the VDM and PVS specifications of the slave operation, the postconditions
explicit specify what happens to those buffers which have status Slave or Master, but
do not describe the effect on buffers which have status Newest or Idle. However, in
conjunction with the invariant (and the frame in the VDM version) the postcondition
ensures that no other Newest buffer remains, exactly one new Slave buffer is chosen,
and no new Master buffers are added. This fact was stated as a validation condition
in [8], and we have verified it using PVS. We show its statement in both VDM and
PVS notations.

Vie{1,2,3}- (b (i) € (N1} = b(i) € {1,5})

slave_prop : CONJECTURE
(FORALL (i:{x:nat| x=0 OR x=1 OR x=2})
member (nth(b(st),1), {x:Status|x=Newest OR x=Idle})
IMPLIES
member (nth(b(slave(st)),i), {x:Status|x=Idle OR x=Slave}))
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Our PVS proof of this statement required about 500 tactics and is difficult to fol-
low intuitively, although neither its structure nor any of the individual steps is
particularly sophisticated. After some initial preparation including skolemization,
definition expansion, and adding some simple lemmas, the tactic PROP is invoked.
This has the effect of splitting the many disjunctions among the hypotheses and
thereby breaking the top goal down into about 200 subgoals. The majority of these
were proved easily by some definition expansion, simplification, rewriting, and use
of the tactic GRIND to detect contradictions among the hypotheses of the subgoal.
Of the 54 subgoals which remained, 36 were proved by simply using GRIND. For the
remaining subgoals, further case analysis was used to split each one into smaller
subgoals which were then proved by GRIND.

The lemmas stated below were required later in order to prove a refinement proof
obligation. We present them as validation conditions since they are reasonable prop-
erties to require of the MSMIE system. Their proofs were carried out interactively
and required about 15 tactics each.

slave_prop2 : LEMMA
(FORALL (st,st2:sigma2)
post_slave(st,st2) IMPLIES count(Newest,b(st2)) = 1)

slave_prop3d : LEMMA
(FORALL (st,st2:sigma2)
post_slave(st,st2) IMPLIES
count (Master,b(st)) = count(Master,b(st2)))

6.5 Representing Refinement

The states of the MSMIE system may be described more abstractly by ignoring the
identity of individual buffers and distinguishing only the possible combinations of
buffers which satisfy the invariant. The two binary choices in the invariant concern-
ing the number of buffers assigned to Master and Newest mean that there are four
such combinations: (Slave, Idle, Idle), (Slave, Idle, Newest), (Slave, Idle, Master),
and (Slave, Newest, Master).

6.5.1 The VDM Specification

In VDM, the possible status combinations are represented by giving a new enumer-
ated type comprising four tokens.

types

Statusl = SII | SIN | SIM | SNM

The state simply records which combination is current and the invariant and initial
state are the “images under retrieval” of the concrete ones given previously.
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state 11 of
bs : Statusl
ms : MName-set
inv mk-2'1 (bs, ms) &
ms = {} & bs € {sI1,SIN}
init s & s = mk-2'1 (11, {})

end

The operations are similar to those given in the previous specifications. In particular,
the postconditions rely on the same case distinctions.
operations

slave ()
ext wr bs : Statusl
rd ms: (MName-set)

pre true
post (E € {SII,SIN} = bs = SIN) A

(E € {SIM,SNM} = bs = SNM) ;

acq (I : MName)
ext wr bs : Statusl
wr ms : (MName-set)
pre (= (1l € ms)) A (= (bs = s11))
post ms = ms U {I} A
if ms = {}
then bs = SIM

else bs = bs ;

rel (I : MName)
ext wr bs : Statusl
wr ms : (MName-set)

pre [ € ms

post ms = ms \ {I} A
if ms={}
then bs = SIN
else bs = bs

6.5.2 The PVS Specification

We have formalised the more abstract specification as a theory in PVS. The tech-
niques used are the same as for the concrete specification. The TCCs generated



180 CHAPTER 6. VDM PROOFS IN PVS

by typechecking are also similar, but they are easier to prove because this is a less
elaborate specification.

msmie_sigmal [MName : TYPE+] : THEORY
BEGIN
Statusl : TYPE = {SII,SIN,SIM,SNM}

sigmal : TYPE =
{x : [# bs : Statusl,
ms : setof[MName] #] |
(member (bs(x) ,{x:Statusl|x=SII OR x=SIN}) <=> ms(x) = emptyset)}

initial_sigmal : sigmal =
(# bs := SII, ms := emptyset #)

pre_slave : [sigmal -> bool] = LAMBDA (st:sigmal)
true

post_slave : [(pre_slave),sigmal -> bool] =
LAMBDA (st:(pre_slave),st2:sigmal)

((member(bs(st),{x:Status1|x=SII OR x=SIN}) IMPLIES
bs(st2) = SIN)

AND

(member(bs(st),{x:Status1|x=SIM OR x=SNM}) IMPLIES
bs(st2) = SNM))

AND

(ms(st2) = ms(st))

slave : [(pre_slave) -> sigmall] =
LAMBDA (st:(pre_slave))
choose({st2:sigmal | post_slave(st,st2)})

pre_acq : [MName -> [sigmal -> booll] =
LAMBDA (1:MName) (st:sigmal)
(NOT member(1,ms(st))) AND (bs(st) /= SII)

post_acq : [1:MName -> [(pre_acq(l)),sigmal -> bool]] =
LAMBDA (1:MName) (st:(pre_acq(l)),st2:sigmal) :
((ms(st2) = union(ms(st),singleton(l)))) AND
(IF
ms(st) = emptyset
THEN
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bs(st2) = SIM
ELSE

bs(st2) = bs(st)
ENDIF)

acq : [1:MName, (pre_acq(l)) -> sigmal] =
LAMBDA (1:MName, st:(pre_acq(l)))
choose({st2:sigmal | post_acq(l)(st,st2)})

The specification of the release operation is not shown.

END msmie_sigmal

6.5.3 The Refinement Relationship

We formalise, as a PVS theory, the statement that sigma2 is a refinement of sigmal.
The refinement relationship is modelled by a theory which imports the theories rep-
resenting the concrete and abstract specifications. The proof obligations that pertain
to refinement must be typed in by hand; they are not automatically generated by

the system. They are declared to be CONJECTURES in the theory, as described
below and then PVS is used to prove them.

sigmal_sigma2[MName : TYPE+] : THEORY
BEGIN
IMPORTING msmie_sigmal[MName], msmie_sigma2[MName]

First, we define the “retrieve” operation mapping concrete states to abstract ones.
The definition is given by cases, and is much the same as that given in [8]. Type-
checking generates a TCC stating that the retrieved state does indeed satisfy the
invariant of sigmal. This is proved automatically by tcp.

retr2_1 : [sigma2 -> sigmal] = LAMBDA (st:sigma2)
(# bs :=
LET cc : [nat,nat] =
(count (Newest ,b(st)) ,count (Master,b(st)))

IN
IF cc = (0,0) THEN SII
ELSIF cc = (1,0) THEN SIN
ELSIF cc = (0,1) THEN SIM
ELSE SNM
ENDIF,

ms := ms(st) #)
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Next we typed in the various proof obligations required to demonstrate that sigma2
is a refinement of sigmal. All of these have been verified using PVS. We shall
indicate how difficult it was to carry out each verification.

Showing adequacy was a relatively non-trivial task, taking a few hours to complete.
The proof itself is conceptually simple: we consider each of the possible values of
the system status in the abstract specification, and supply a suitable value for the
concrete state in each case. For each of these we must then show two things: that it
is the value returned by the , and that it satisfies the invariant of sigma2. The first
can be proved almost automatically by expanding some definitions and invoking the
tactic GRIND. To prove the second we must use the invariant of the abstract state.
The entire proof script for adequacy is about 130 lines long.

adeq2_1 : CONJECTURE
(FORALL (stil:sigmal)
(EXISTS (st2:sigma2) : retr2_1(st2) = stl))

Next we proved that the maps the concrete initial state to the abstract initial state.
This was very simple: after expanding one definition, the “grind” tactic completed
the proof.

init2_1 : CONJECTURE
(retr2_1 (initial_sigma2) = initial_sigmal)

Next was the domain rule for the slave operation. This is trivial and was proved
automatically by “grind”.

slave_dom2_1 : CONJECTURE
(FORALL (st2:sigma2)
(pre_slave (retr2_1(st2))) IMPLIES pre_slave(st2))

To prove the result rule for slave we first added the lemmas slave_propl and
slave_prop2 which were validation conditions in the theory msmie_sigma2. Next,
we used the tactic TYPEPRED to make the invariant of sigma2 visible to the prover.
Once this preparation was in place, the GRIND tactic completed the proof.

slave_result2_1 : CONJECTURE
(FORALL (st2_:((pre_slave:[sigma2->bool])),st2:sigma2)
((pre_slave (retr2_1(st2_)) AND (post_slave(st2_,st2)))
IMPLIES
(post_slave (retr2_1(st2_),retr2_1(st2)))))

The domain rule for acq required a proof about 30 tactics long as well as a lemma
about the count function. The proof structure is as follows: first definitions were
expanded, the lemma was added, hidden type information was made visible, and the
proof was split into two subgoals; then the GRIND tactic was called upon to complete
the proof.
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acq_dom2_1 : CONJECTURE
(FORALL (st2:sigma2) : (FORALL (1:MName)
(pre_acq (1) (retr2_1(st2))) IMPLIES pre_acq(l) (st2)))

The result rule for acq required a complicated, interactive proof comprising hundreds
of tactics which took several days to complete.

acq_result2_1 : CONJECTURE
(FORALL (1:MName)
(FORALL (st2_:(pre_acq(l):[sigma2->bool]),st2:sigma?2)
((pre_acq (1) (retr2_1(st2_)) AND (post_acq(l)(st2_,st2)))
IMPLIES
(post_acq (1) (retr2_1(st2_),retr2_1(st2))))))

The domain rule for the release operation was proved automatically by GRIND.

rel_dom2_1 : CONJECTURE
(FORALL (st2:sigma2) : (FORALL (1:MName)
(pre_rel (1) (retr2_1(st2))) IMPLIES pre_rel(1l)(st2)))

The result rule for this operation required a complex, interactive proof very similar
to that of the result rule for acq.

rel_result2_1 : CONJECTURE
(FORALL (1:MName)
(FORALL (st2_:(pre_rel(l):[sigma2->bool]) ,st2:sigma2)
((pre_rel (1) (retr2_1(st2_)) AND (post_rel(l)(st2_,st2)))
IMPLIES
(post_rel (1) (retr2_1(st2_),retr2_1(st2))))))

END sigmal_sigma2

6.6 Discussion

In this section we note various observations made during our experiments. These
include some points about the PVS system, as well as a discussion of some differences
between the logics of VDM-SL and the PVS specification language.

6.6.1 Using the PVS System

PVS facilitates proofs at a fairly non-tedious level, due to the integrated decision
procedures and rewriting techniques. Low level proof hacking using for instance
associativity and commutation properties of arithmetic operations is usually not
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necessary. Of course, the real difficult side of theorem proving is still difficult,
for instance, understanding the application (and formalizing it correctly), inventing
proofs, and generating suitable lemmas. However, we were impressed by the fact
that we were actually able to prove all (but one) of the proof obligations, including
refinement proof obligations, for the MSMIE example. This augers well for the
usability of the system for further applications.

In all of our examples we made use of the TCC mechanism of PVS to obtain some
automatic proof obligation generation. This results in TCCs which are, in general,
too complicated to be solved by the PVS command “typecheck-prove”, which is
good at automatically finding proofs of simple TCCs. Unfortunately, in the present
implementation of PVS it is impossible to prevent this command from embarking
on time-consuming attempts to prove all existing TCCS for the current theory, even
though the user may know that certain ones are too difficult to be solved. A more
flexible version of “typecheck-prove”, or perhaps simply a time limit to its operation,
would be welcome.

One may like or dislike the PVS Emacs interface. Though all of the authors were used
to Emacs, we disliked some of its features relating to PVS. For instance, we found
that the way in which buffers popped up and destroyed existing Emacs windows
was confusing and irritating. We also felt that the quite frequent switching between
buffers that we had to do became somewhat of a bottleneck. Moreover, the interface
was unreliable and it was often necessary to restart PVS when Emacs ended up in
a state where you could not execute important PVS commands.

6.6.2 Partiality in VDM and PVS

The most notable difference between the specification languages of PVS and VDM is
that PVS deals only in total functions. In practice, much of the language flexibility
of partial functions in LPF can be captured in PVS by the use of subtypes and
dependent types to express the domain of definition of a function. A good example
is the nth function on lists which is defined recursively in PVS as follows:

nth(l, (n:nat | n < length(1))): RECURSIVE nat =
IF n = 0 THEN car(l) ELSE nth(cdr(l), n-1) ENDIF
MEASURE leng‘th(l)

As the following examples show, this function may be used freely when writing
specifications: the fact that it is partial imposes no special syntactic constraints.
For example we can write:

exl:nat = nth((: 1, 3, 2 :), 1)

ex2:nat = nth((: 1, 3, 2 :), 4)

Correctness is maintained by typechecking. The first example causes no problems.
However, the second example results in the false TCC
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4 < length[nat]((: 1, 3, 2 :))

An example of a use of partial functions which is possible in LPF but not in PVS
involves the subp function, due to CIiff Jones. In PVS it may be defined as follows!.

subp(i:nat,j:nat | i >= j): RECURSIVE nat =
IF i=j THEN 0 ELSE 1 + subp(i,j+1) ENDIF
MEASURE abs(i-j)

When applied to natural numbers 1 and j, where i > j, this function returns the
difference i-j. This property can be formalised and proved in both PVS and LPF.
However, the following property which is also true of subp in LPF, cannot be proved
in PVS — in fact, it cannot even be typechecked.

subp_lemma : CONJECTURE
FORALL (i,j:nat) : (subp(i,j) =i - j) OR (subp(j,i) = j - 1)

Attempting to typecheck this results in the false TCC:
subp_lemma_TCC1: OBLIGATION (FORALL (i, j: mnat): i >= j);

Fortunately, the present example does not contain any construction where this dis-
tinction is significant.

6.6.3 Looseness in VDM and PVS

Another semantic difference between VDM and our translation to PVS is in the
interpretation of expressions whose values are not fully determined.

In VDM, looseness in function definitions is interpreted as underspecification, that
is to say, every invocation of a function with the same argument will return the
same result; whereas looseness in operation definitions is understood to be genuine
non-determinism, so separate invocations of a loosely specified operation can yield
different results even if called with the same arguments and in the same state [16].
The motivation for this distinction is that, in an implementation, the result of an
operation may depend on some state not being modelled in the abstraction, whereas
a function should be declarative however it is implemented.

For example, for functions f and g¢:

f(z)=let y best y >z iny end
g(x) =let y best y > x in y end

we can always be certain that f(z) = f(«), but f(2) = g(x) may not necessarily
hold in a refinement.

PVS, on the other hand, takes a more constrained interpretation of looseness: all
occurrences of the same choice expression must yield the same result wherever they

1This definition is due to Klaus Havelund
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occur. So, if we make the corresponding definitions in PVS,

f(x) = choose({y:nat | y > x})
g(x) choose({y:nat | y > x})

then we always have £(x) = g(x) also.

The VDM interpretation of loose functions is appropriate in the context of a develop-
ment employing the “design by contract” paradigm. Underspecification represents
the deferral of a design decision concerning the choice of a fully determined im-
plementation. Thus looseness can be removed during refinement and the resulting
behaviour will be no worse from the caller’s point of view than that of the loose
function. However, this interpretation of looseness has severe implications for rea-
soning as it prohibits the indiscriminate substitution of equals. We cannot make the
simple chain of equalities:

f(z)=let ybest y > inyend=g(x)

Rather, each occurrence of a loose expression must in some way be tagged in order
that it is possible to determine which occurrence is being referred to when it occurs
in proofs. It also means that beta-reduction can only be undertaken when the
argument is fully determined [16].

The PVS interpretation of looseness yields simpler proofs since we can be sure that
identical expressions will have equal value irrespective of how they arise. However,
this interpretation of looseness defies compositionality in refinement as if the same
choice expression occurs in two separate parts of a specification, they must both be
treated similarly in any subsequent refinement.

In the present example, we have interpreted implicit operations by use of PVS
choice operator. In the case where there is some genuine choice, as in slave, this
is not strictly correct. With this interpretation we could prove properties of the
specification which are not necessarily preserved by an implementation.

These differences in the semantics raise methodological questions about the use of
such constructions in practice. Though partiality and looseness are both extremely
useful, they should be used with caution particularly in circumstances where there
is disagreement as to their interpretation.

6.6.4 Errors in Example Specifications

The translation into PVS did not reveal any errors in the MSMIE specification.
However, a number of errors were found in two other realistic VDM-SL specifi-
cations (not shown here) which were translated into PVS by Agerholm. A third
specification, also translated by Agerholm, was not found to contain any errors.

The errors themselves are not major and should perhaps mainly be read as small and
funny, but also worrying, examples of the errors that people make in writing formal
specifications (and programs). They may be divided into three categories: (1) those
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that were pointed out directly during the proof of a type checking condition, (2)
those that probably could have been found easily by testing specifications, (3) other
errors, some of which are quite subtle, e.g. due to parentheses problems. What the
errors teach us is that in specification debugging one can benefit from working with
specifications in a formal way. However, other alternatives for validation such as
testing could have found some of the errors as well. For detailed discussion of the
errors that were found, the reader is referred to [3].

6.7 Conclusion

The VDM-SL style of specification and refinement fits well with the PVS specifica-
tion language. As a result we were able to use a very direct embedding of VDM
in PVS (for example, logical formulae in VDM are represented by those of PVS),
which means that the proof capabilities of the PVS system are available directly to
the VDM user. This is not always the case where a deeper, more indirect embedding
is required, forcing the user to navigate through layers of definitions. A shallow em-
bedding is very desirable in a closed system like PVS, though it is less important in
open systems such as HOL and Isabelle where a programming language is available
to automate the deep embedding process.

At present the translation from VDM-SL to PVS, and the generation of refinement
proof obligations must both be done manually. As well as being inconvenient, these
manual processes are opportunities for the introduction of errors. It is possible to
automate the translation step outside of PVS, generating PVS theories from VDM-
SL specifications. However, the closed nature of the PVS system makes it difficult
to achieve a close integration with other tools supporting VDM-SL such as can be
achieved with other more open systems [4, 3]. This leads to the disadvantage that
a VDM-SL user who wishes to use PVS for proofs must master the PVS notation
and become, in effect, a PVS user as well.

Because of the difficulties described in the previous paragraph, as well as the se-
mantic differences between PVS and VDM-SL described in Section 6, we do not
view PVS as a satisfactory proof tool for VDM-SL. However, the ease with which
VDM-SL style may be transported to PVS means that this style may be a useful
approach for VDM-SL, users wishing to experiment with PVS.

The authors are all convinced of the need for and the benefits to be derived from
the use of tools to support VDM specification. The extensive type-checking done
by the PVS system contributes greatly to our confidence in the correctness of the
specifications and refinements. For example, we can be certain that functions are
applied only to arguments within their domain.? We also derived confidence from
the proof process. Although this is somewhat muted by reports of bugs in the PVS
prover, the advantages of mechanical support for proot compared to making proofs
by hand almost certainly outweighs the possibility of the system constructing an

?A similar kind of facility, called a proof obligation generator, is currently being developed for

the TFAD VDM-SL Toolbox [6].
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erroneous pI’OOf.

The PVS prover was sufficiently fast and powerful to make it feasible to do proofs
of the size shown in this chapter, though the time required to do this is considerable
and so proof for “real-world” applications remains an expensive activity. On the
other hand, the proofs which were undertaken, though not mathematically sophis-
ticated, involved such elaborate case analyses that it is unlikely that they would be
successfully carried out without the help of tools.

Further work needs to be carried out in order to discover the implications as far as
refinements are concerned of the different approaches to looseness taken in VDM-SL
and PVS. It would also be interesting to see how the approach scales up to larger,
more “real-world” applications which might provide a more exacting test of the
capabilities of the PVS system. Finally, the authors are interested in a comparison
between PVS and the new VDM proof tool based on Isabelle which is currently
under development at IFAD.
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