Chapter 3

Specification and Validation of a
Network Security Policy Model

Peter Lindsay

Summary

This case study concerns the specification and validation of a Security
Policy Model (SPM) for an electronic network. The network is intended
to provide processing and transmission services for electronic messages,
including sensitive and classified material, over distributed sites and sup-
porting multiple levels of security classification. The SPM is formally
specified in VDM-SL and validated by showing that the model is math-
ematically consistent and satisfies certain security properties. Rigor-
ous proofs are provided. In addition, the case study illustrates some
new techniques concerning proof obligations for exception conditions in

VDM-SL.

3.1 Introduction

3.1.1 Background and Context

This chapter describes the specification and validation of a formal Security Policy
Model (SPM) for an electronic-message processing and transmission service. The
SPM is a distillation of the important security requirements of the software system
that provides the service. The SPM described here is based on a security model
originally proposed for an Australian Government agency’s secure distributed net-
work; the model has been changed in certain ways, however, to protect sensitive
details.

A high degree of assurance in the correctness of the model and the system’s security
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was required — roughly equivalent to the requirements for level E5 in the ITSEC
computer security standard [1]. A particular accreditation requirement was that
the SPM be described in a formal language and that formal proofs of correctness
be performed. This chapter describes a formal specification of the SPM in VDM-
SL [4], but rather than present formal proofs, the proofs are given rigorously here,
for clarity and ease of understanding.

By way of context for the specification and validation of the SPM, the overall com-
puter system security objectives will be outlined in the rest of this section. The
process by which the security objectives were attained will not be discussed here,
however, nor how particular aspects of the model were determined to be the ap-
propriate ones for study. The interested reader is referred to Landwehr’s excellent
survey article [6] for explanation of computer security terminology and for further
background on the use and need for security models.

3.1.2 Software System Requirements

The system’s primary function is to provide a secure message processing and trans-
mission service for a government agency whose offices are distributed across many
locations. Messages generated and processed on the system range in sensitivity from
unclassified to classified material with different levels of security classification. The
system is also required to provide a message transmission service for other govern-
ment agencies, which send and receive messages via the network.

An important feature of the agency’s message processing procedures is analysis of
messages. Fach message is subjected to review by one or more analysts, to deter-
mine if the content of the message warrants additional dissemination and whether
additional relevant information should be appended to the message. Analysis occurs
both at the location where the message is generated (by a local expert) and at the
organisation’s headquarters by a team of experts (called central analysts).

In outline, the processing activities applied to a message from conception to delivery
are as follows:

1. The author generates a message together with its classification and a list of
proposed recipients.

2. The author sends the message for review by a local analyst, which may result
in information being added, the destination list changing, or in the message’s
classification being modified.

3. The local analyst sends the message for review by central analysts, which may
result in similar modifications of the message. Central analysis may involve
review by one or more analysts, depending upon the message’s content.

4. When central analysis is complete, the message is added to a queue for delivery.

5. The system transmits the message to appropriate locations, where local anal-
ysis may take place prior to delivery of the message to its intended recipients.
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3.1.3 Security Threats and Security Objectives

The security threats identified for the message processing system include the follow-
ing:

1. Users may gain access to classified messages which they are not cleared to
access.

2. Classified messages may (accidentally or deliberately) be delivered to users or
agencies who are not cleared to receive them.

3. During processing, information may (accidentally or deliberately) be added
whose classification is higher than that of the message, without subsequent
adjustment of the message’s classification.

4. Users of external agency facilities may try to subvert the system, for example
by sending messages containing malevolent code such as computer viruses.

The agency’s overall computer security objectives for the system are as follows:

1. To preserve the confidentiality of messages — i.e., to ensure that no message
is distributed to an individual who is not sufficiently cleared to receive it, nor
sent to an agency with a lower classification (no unauthorised disclosure).

2. To preserve the integrity of messages — i.e., to ensure that message contents
are not accidentally or deliberately changed in transit (no unauthorised mod-
ification).

3. To ensure accountability of users for their actions — i.e., to ensure that anyone
who authorises transmission of a message is identifiable and a record is kept
of their actions. This is an important deterrent against deliberate breaches of
security.

3.1.4 Conceptual Model of the Security Policy

The following principles underlie the conceptual model of the electronic security
policy for the new system:

1. Users are partitioned according to their clearance. This applies both to users
who are internal to the agency and those in connected external agencies.

2. Confidentiality of information is preserved by controlling the flow of informa-
tion between user partitions.

3. Seals are applied to parts of messages to enable the integrity of their classifica-
tion and contents to be checked. Any changes to the classification or contents
of a message need authorisation before the message can be transferred between
partitions.
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4. Accountability is enforced by maintaining a complete audit trail of system
and user actions related to authorisation of messages and attempts to transfer
messages between partitions.

The mechanisms which achieve these principles are outlined below.
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Figure 3.1: Conceptual model of security partitions.

Partitions

Conceptually, the system is divided into a number of internal partitions — serving a
community of users within the agency who are cleared to access messages passed to
(or within) that partition — and a set of external partitions, serving other agencies
connected to the message processing system (see Fig. 3.1).

A partition can hold messages that are classified up to, and including, the classifi-
cation of the partition. A user may have access to more than one internal partition,
provided of course they have sufficient clearance. Note also that there is not neces-
sarily a physical relationship between the location of users and an internal partition:
a single internal partition may be spread over many different physical locations that
comprise the distributed system.
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Transfers

The operations which move messages from one partition to another are called trans-
fers. For precision, transfers between internal partitions will be called internal trans-
fers; transfers from internal partitions to external partitions will be called exports;
and transfers from external partitions to internal partitions will be called imports.
A non-hierarchical adjoinment relation will be used to record how partitions are
connected to one another via network gateways. Note that in some cases the flow
of information is one-way only (see Fig. 3.1).

Certain constraints will be imposed on the transfer operations by the security policy.
In particular, a message will only be transferred from one partition to another if the
two partitions adjoin, the receiving partition has sufficient clearance to accept the
message, and any changes made to the message have been authorised. Fig. 3.2
illustrates how a message is processed by the system.
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Figure 3.2: Example life-cycle of a message in the message processing system.

Seals

Conceptually, a seal binds the classification of a message part to its contents in
a trusted manner. Intuitively, an electronic seal is a kind of encrypted check-sum.
The sealing function will be carefully protected from unauthorised use. The essential
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property of a seal is that authorised users can check the integrity of message parts
and their classification by regenerating the seal and checking that it hasn’t changed.

Each internal partition has its own protected sealing mechanism. In addition to their
use for checking integrity, this SPM uses seals as a mechanisms for maintaining con-
fidentiality, by checking seals before transfer is allowed. This principle is explained
in detail in the body of the chapter. In essence, the sealing mechanism provides
a trusted path between the authoriser and trusted software performing gateway or
access control decisions.

Audit trail

Details of each use of a message authorisation operation or transfer operation —
successful or unsuccessful — are recorded as part of a security audit trail, including
the identity of the authoriser.

3.1.5 The Security Enforcing Functions

The conceptual model of security policy is achieved through four Security Enforcing
Functions(SEFs), outlined below:

o An Authorise Message function, to authorise transfers and apply seals. Au-
thorising requires the user to check the content of the message and to confirm
the message is correctly classified. Upon authorisation, seals are added to the
message.

o An Internal Transfer function, to perform transfers between internal parti-
tions. The function confirms that the message has been sealed and that the
destination partition has sufficient clearance to receive the message.

e An Fxport function to perform transfers from internal partitions to external
partitions. A confirmation procedure similar to that for Internal Transfer is
performed.

e An Import function to perform transfers from external partitions to internal
partitions. Since in this case the message has been received from an external
agency, it is not considered to have been authorised in the required manner.
The Import function thus checks that the message contains no viruses, hostile
software, etc, before sealing and transferring the message into an internal
partition.

The system has many other functions, but the above four are the ones that are
concerned with enforcing security.
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3.1.6 Specification and Validation of the SPM

In the remainder of this chapter, the Security Policy Model is formally specified in
VDM-SL:

e Section 3.2 defines a data model which describes the main system entities at
an appropriate level of abstraction.

e Section 3.3 defines the abstract state of the network at any time as consisting
of: the conceptual location of messages; the active user sessions; and the
complete audit trail of user and system actions. The main security properties
are defined as constraints (invariants) on the allowable states.

o In Section 3.4, the four Security Enforcing Functions are modelled as state-
changing operations. Exception conditions are used to model abnormal oper-
ation, including accidental or deliberate attempts to subvert security.

The SPM is validated in various ways in Section 3.5. In particular, it is shown that
the specification is mathematically consistent, the Security Enforcing Functions pre-
serve the desired security properties, and the specification is complete with respect
to its input space. Finally Section 3.6 draws some conclusions about the use of
specification and proof on this example.

3.2 The Data Model

This section gives mathematical definitions of the main system entities and the
relationships between them, including the various static security-enforcing properties
of the network. In what follows, primitive types are types which will not be defined
further here.

3.2.1 Partitions

The primitive type Partition will be used to model the set of all possible partitions.
The sets of internal and external partitions will be modelled as constants, with
declarations:

intpartns: Partition-set
extpartns: Partition-set

The adjoinment relation will be modelled as a binary relation on partitions:

adjoins: Partition x Partition — B

Thus, adjoins(p1, p2) stands for the assertion that messages are physically able to
flow from partition p; to partition py. Note that the configuration of partitions may
change from time to time, but that operations for reconfiguring the network are
outside the scope of the SPM described here.
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3.2.2 Users and User Sessions

The primitive type Userld will be used to model the set of identifiers of users. It
is assumed that user identifiers are unique and are sufficient to enable a user to be
identified unambiguously. (User authentication mechanisms are outside the scope

of the SPM described here.) A binary predicate
hasAccess: Userld x Partition — B

will model the check that a given user has access to a given partition. Note that a
user may be able to access multiple partitions (but not simultaneously).

The concept of sessions is introduced for periods of use of the system by internal
users. Work areas can be shared by a number of users and it is not practical
to authenticate users’ identities at all times; sessions thus allow an extra level of
identification for accountability.

The primitive type Sessionld will be used to model the set of identifiers of individual
user sessions. Conceptually, each session has a unique identifier, together with a
record of the partition in which it is being run and the identity of the user who is

running it:

Sesston :: sid : Sessionld
pid : Partition
wid : Userld

inv s, p,u 2 p € intpartns A\ hasAccess(u, p)

The invariant says that sessions run in internal partitions only, and that some kind
of access control is in place to ensure that only users who can access the given
partition are able to run sessions there.

3.2.3 Classifications

The primitive type Classif will be used to model the set of all possible classifications
of messages. In practice, classifications are not simply hierarchical in nature, but
have multiple dimensions. The binary predicate

hasClearance: Partition x Classif — B

will be used to model the relationship between partitions and the classifications
of messages they are cleared to receive. The clearance of an individual will be
determined implicitly by the partitions they are able to access.

3.2.4 Messages

The central concept of the model is a message, which consists of a destination list,
a classification, and a set of message parts:
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Message :: destins : Destination-set

classif : Classif
body : MessagePart™

A destination consists of a user identifier for the intended recipient, together with
the partition in which they will receive the message:

Destination :: uid : Userld
pid : Partition

The system does not actively check that the intended recipient has access to the
destination partition. (Access control is applied at the partition itself.)

The primitive type Content is used to model the set of all possible contents of
messages. A message part consists of some content, an optional user identifier to
note the person who has authorised the content, and an optional seal (explained

below):

MessagePart content : Content
authoriser : [Userld]
seal : [Seal]

Creation and processing of the message parts are outside the scope of the SPM.
Seals and user identifiers would not be edited under normal circumstances, but the
model covers the possibility of malicious editing.

3.2.5 Seals

Seals are applied to individual message parts to enable integrity of their classifi-
cation, contents and authoriser to be checked. Each of the internal partitions has
its own sealing mechanism, which is assumed to be protected in such a way that
only authorised users of that partition can access the mechanism, and then only via
the Security Enforcing Functions. Intuitively, a seal is a kind of encrypted check-
sum which binds the classification, content and authoriser to the message part; any
attempt to modity these will be detected by regenerating and checking the seal.

The primitive type Seal will be used to model the set of all possible seals. The
function

generateSeal: Partition x Classif x Content x Userld — Seal

will be used to model the generation of seals in internal partitions.

The following function checks the integrity of a message part with respect to a given
partition and classification:
hasValidSeal : MessagePart x Partition x Classif — B

hasValidSeal(mp,p,c) £ mp.authoriser # nil A
mp.seal = generateSeal(p, ¢, mp.content, mp.authoriser)
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Note that the seal may be valid in one partition but not in another. (There will
be functions for changing the seals on message parts when messages are transferred
from one partition to another.)

The following lemma is a logical consequence of the above definition:

ValidSeal Lemma If a message part’s seal is valid, then it is non-nil and an au-
thoriser is identifier for the message part:

Vmp: MessagePart, p: Partition, c¢: Classif -
hasValidSeal(mp, p, ¢) = mp.seal # nil A mp.authoriser # nil

3.2.6 Sealing

The following function models sealing of an individual message part:

sealMsgPart : Partition x Classif x MessagePart x Userld — MessagePart

else mk-MessagePart(mp.content, u, generateSeal(p, ¢, mp.content, u))

sealMsgPart(p, c,mp,u) £ if hasValidSeal(mp, p, c) then mp

Note that if message part already has a valid seal then neither it nor the authoriser
identifier are changed.

The following function models the sealing of an entire message:

sealMessage : Partition X Message x Userld — Message
sealMessage(p, m,u) &

w(m, body — [sealMsgPart(p, m.classif, m.body(i), w) | i € inds m.body])

The following lemma is a logical consequence of the above definition:

Main Sealing Lemma Sealing a message does not change its destination list, its
classification or the content of its parts, and the authoriser field is changed only for
message parts without valid seals:

Vp: Partition, m: Message, u: Userld -
let m’ = sealMessage(p, m, u) in
m’.destins = m.destins/\
m'.classif = m.classif A
len m'.body = len m.bodyA
Vi € inds m.body - let mp = m.body(i), mp’ = m’.body(i) in
mp’.content = mp.content A\
if hasValidSeal(mp, p, m.classif )
then mp'.authoriser = mp.authoriser
else mp’.authoriser = u

Note that sealed message parts can be inspected without breaking the seal, but
any changes to the message part will be detectable. If a message is resealed after
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message parts have been changed, then the person who authorises the resealing will
be identified as the authoriser of the new and changed parts (only).

3.2.7 Changing Seals

The following functions change the seals on a transferred message so that they are
valid in its new partition. The functions will be assumed to be protected in such
a way that they can be invoked only by the system, and then only at network
gateways.

changeSeal : Partition x Classif x MessagePart — MessagePart
changeSeal (p, c, mp) 2

w(mp, seal — generateSeal(p, ¢, mp.content, mp.authoriser))

pre mp.authoriser # nil

changeSeals : Partition x Message — Message

changeSeals(p, m) &
w(m, body — [changeSeal(p, m.classif , m.body(i)) | i € inds m.body])

pre Vmp € elems m.body - mp.authoriser # nil

The following lemma is a logical consequence of the above definition:

Resealing Lemma Resealing a message does not change its destination list, its
classification, nor the content or authoriser fields of its parts:

Vp: Partition, m: Message -
(Vmp € elems m.body - mp.authoriser # nil) =
let m’ = changeSeals(p, m) in
m’.destins = m.destins/\
m’.classif = m.classif A
len m'.body = len m.bodyA
Vi € inds m.body - let mp = m.body(i), mp’ = m’.body(i) in
mp’.content = mp.content A\
mp’.authoriser = mp.authoriser

3.2.8 Other Integrity Checks

The following predicate checks whether all message parts of a given message have
valid seals:

allSealsAreValid : Message x Partition — B
allSealsAreValid(m,p) £ Vmp € elems m.body - hasValidSeal(mp, p, m.classif )
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The following predicate checks that a message has no seals (valid or otherwise):

hasNoSeals : Message — B
hasNoSeals(m) £ Vmp € elems m.body - mp.seal = nil

The following function strips all seals off the message parts in a given message:

stripSeals : Message — Message
stripSeals(m) 2 u(m, body — [pu(m.body(i), seal — nil) | i € inds m.body))

The following lemma is a logical consequence of the above definition:

StripSeals Lemma After applying stripSeals, the message has no seals:
Vm: Message - hasNoSeals(stripSeals(m))

3.2.9 Content Checks

A primitive predicate
contentUserChecked: Content x Userld — B

will model the assertion that the content of a message part has been authorised by
the given user. Through the use of seals it will follow that, if this predicate is true,
then the message part’s content has not subsequently changed in any way.

Similarly, a primitive predicate

contentAutoChecked: Content — B

will model the assertion that an automated check (e.g. for malicious code) has been
applied successtully. This check will be applied to all messages imported from an
external partitions. A primitive function

filterContent: Content — Content

will model a function which removes potentially dangerous content (program code,
etc) from a message part.

The following functions are used to rebuild a message after its contents have been
filtered:

rebuildMsgPart : MessagePart — MessagePart

rebuildMsgPart(mp) £ mk-MessagePart(filterContent(mp.content), nil, nil)

rebuildMessage : Message — Message

rebuildMessage(m) 2
w(m, body — [rebuildMsgPart(mp.body(i)) | ¢ € inds mp.body])
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The following lemma is a logical consequence of the above definitions:

RebuildMessage Lemma Rebuilt messages have no seals:

Vm: Message - hasNoSeals(rebuildMessage(m))

3.2.10 Accountability Records

The primitive type AccRecord will be used to model the set of all possible account-
ability records which may be stored as part of the system’s audit trail.

3.2.11 The Message Pool

The final concept in the data model is that of a message pool, which represents the
complete collection of messages that are undergoing processing within the network.
Message identifiers will be introduced, to simplify modelling of the processing and
delivery of messages within the network. Intuitively, a message’s attributes may
change during processing, but the identity of the message will be preserved by each
of the Security Enforcing Functions, to allow trace-back.

The primitive type Msgld will be used to model the set of all possible message
identifiers. The following type will be used to model pools of messages, indexed by
the partition in which they reside and their message identifier:

MessagePool = Partition -~ (Msgld = Message)

Note that, a message may be transferred to more than one partition, but during
processing there is (conceptually) at most one copy of the message in each partition.

The following function updates message d, with name n, in partition p in the mes-
sage pool — or adds it, if it didn’t already exist:

updateMsgPool : MessagePool x Partition x Msgld x Message — MessagePool
updateMsgPool(pool, p,n,d) £ poolt {p— (pool(p)t{n d})}

The following lemma is a logical consequence of the definition:
UpdateMessagePool Lemma Apart from the new message new, all messages in

the updated message pool were already present before the update took place:

let pool’ = updateMsgPool(pool,to, n, new) in
Vp € dom pool’ - Vd € rng pool'(p) -
(p=toANd=mnew)V (p&€dom pool A d € rng pool(p))

3.3 The System State

The system state consists of three state variables: a message pool, representing the
conceptual location of messages; a set of currently active sessions; and a sequence of
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state SecureNetwork of
pool : MessagePool
sessions : Session-set
auvdittrail . AccRecord™

inv pool, sessions, audittrail &
dom pool C intpartns U extpartns A
(Vp € dom pool N extpartns - ¥Ym € rng pool(p) - hasNoSeals(m)) A
Vp € dom pool N intpartns - Vm € rng pool(p) - Ymp € elems m.body -
hasValidSeal(mp, p, m.classif) =
hasClearance(p, m.classif) A
contentUserChecked(mp.content, mp.authoriser)

end

Figure 3.3: The state of the secure network, with its important security properties.

accountability records, representing the complete audit trail. The following security
properties are required to hold at all times:

1. Messages reside only in recognised internal and external partitions.

2. Messages in external partitions have no seals. (Seals should be stripped off
messages before they are exported.)

3. If any part of a message in an internal partition has a valid seal, then

o the partition has clearance to store the message, and

o the content of that part has been checked by the authorising person and
has not subsequently changed.

This clause formalises the trusted-path property which the sealing mechanism
is intended to provide (Section 3.1.4).

The security properties are expressed as an invariant of the state in Figure 3.3.

3.4 Operations Modelling the SEFs

This section gives a formal specification of the four Security Enforcing Functions
(SEFs) described in Section 3.1.5 above. Each SEF is modelled as a VDM operation

which may change the values of the state variables.

In what follows, and in the subsequent validation, preconditions of operations will
have two parts:

1. An environmental precondition, which models the important security charac-
teristics of the operation’s interface and the conditions under which the op-
eration can be performed. (Certain implementation-level restrictions will not
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be modelled here, such as checking that the audit trail recording mechanism
is working.)

2. A precondition for success, which models the additional conditions which de-
termine whether an attempt has been made to subvert security, for example by
attempting to transfer a message to a partition which does not have clearance
to receive it.

VDM exception conditions (see p.214 [4]) will be used here to model accidental
or deliberate attempts to breach security. An exception is raised whenever the
environmental precondition is satisfied but the precondition for success is not. The
general form of the specification of the SEFs is thus:

Operation (inputs)

ext ...
pre PAS
post Ag

errs FAILURETYPE,: PN\ Ey — Ay

FAILURETYPE,: PN E, — A,

where P represents the environmental precondition, S represents the precondition
for success, Ag represents the action upon success, and Aq,..., A, represent the
individual actions upon failure.

3.4.1 The Authorise Message Operation

Description: The AuthoriseMessage operation is invoked by a user from a session
within an internal partition. By authorising a message, the user is taking
responsibility for checking the contents of all message parts which did not
have a valid seal.

Environmental precondition: The message should reside in the partition in which
authorisation takes place, in a currently active session.

Preconditions for success:

1. The partition should have sufficient clearance to store the message. (This
check will for example prevent someone who is used to working in multiple
partitions from accidentally creating a message in a partition which does
not have appropriate clearance.)

2. All addresses in the destination list should refer to the current parti-
tion or to an immediately adjoining partition, and the latter should have
clearance to receive the message.
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AuthoriseMessage (s: Session, p: Partition, n: Msgld)

ext wr pool, audittrail
rd sessions

pre s € sessions A s.pid = p A hasAccess(s.uid, p) A
p € dom pool A n € dom pool(p) A
sealingAllowed(p, pool(p)(n))

post let old = ]TOl(p)(n), ¢ = old.classif, new = sealMessage(p, old, s.uid) in
(Ymp € elems old.body - — hasValidSeal(mp, p, ¢) =
contentUserChecked(mp.content, mp.authoriser)) A

pool = updateMsgPool(;Tol, P, n, new) A
audittrail = audittrail ~" [authoriseSuccess(s, p, new)]
errs AUTHORISEMESSAGEFAIL:
s € sessions A\ s.pid = p N hasAccess(s.uid, p)A

p € dom pool A n € dom pool(p)A
= sealingAllowed (p, pool(p)(n))

PA—

—  pool = poolA
audittrail = audittrail ~ [authoriseFailure(s, p, pool(p)(n))]

Figure 3.4: The operation for authorising a message and adding seals.

Action upon success: Fresh seals are added to all message parts and the audit
trail is updated.

Action upon failure: A record of the invalid attempt to authorise a message is
added to the audit trail but the message is not changed in any way.

The formal specification of the AuthoriseMessage operation is given in Figure 3.4,
where

sealingAllowed : Partition x Message — B

sealingAllowed (p, m) 2 hasClearance(p, m.classif ) A\
Ya € m.destins - a.pid # p
= adjoins(p, a.pid) N\ hasClearance(a.pid, m.classif)

3.4.2 The Internal Transfer Operation

Description: The Internallransfer operation is invoked automatically when a mes-

sage n arrives at an internal network gateway, from partition from to partition
to.
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Environmental precondition: Partitions from and fo should be internal parti-
tions which adjoin, and the message should currently reside in the from par-
tition.

Preconditions for success:

1. All seals in the message should be valid with respect to the from partition.

2. The to partition should appear among the addresses in the message’s
destination list.

3. To to partition should have sufficient clearance to receive the message.

Action upon success: The message is copied across to the new partition, with
fresh seals, and the audit trail is updated accordingly.

Action upon failure: A record of the invalid attempt to transfer a message is
added to the audit trail.

The formal specification of the InternalTransfer operation is given in Figure 3.5,
where

transferAllowed : Partition x Partition X Message — B

transferAllowed (from,to,m) &  allSealsAreValid(m, from) A

(Ja € m.destins - a.pid = to) N hasClearance(to, m.classif)

3.4.3 The Export Operation

Description: The FExport operation is invoked automatically when a message n
arrives at a network gateway from an internal partition from to an external
partition to.

Environmental precondition: Partitions from and to should be adjoining parti-
tions — from internal and to external. The message should currently reside in
the from partition.

Preconditions for success: As for InternalTransfer.

Action upon success: The message is copied across to the new partition, with
seals removed, and the audit trail is updated.

Action upon failure: A record of the invalid attempt to export a message is added
to the audit trail.

The formal specification of the Erport operation is given in Figure 3.6.
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Internal Transfer (from: Partition, to: Partition, n: Msgld)
ext wr pool, audittrail

pre from € dom pool N intpartns A
to € intpartns A adjoins(from,to) A
n € dom pool(from) A
transferAllowed(from, to, pool(from)(n))

post let new = changeSeals(to,m(from)(n)) in
pool = updateMsgPool(;Tol, to,n, new) A

audittrail = audittrail " [transferSuccess(from, to, n)]
errs TRANSFERFAIL:
from € dom pool N intpartns/A
to € intpartns N adjoins(from,to)A
n € dom pool(from)A
= transferAllowed(from, to, pool(from)(n))

PA—

—  pool = poolA

audittrail = audittrail ~ [transferFailure(from, to, n)]

Figure 3.5: The operation for copying a message from one internal partition to
another.

3.4.4 The Import Operation

Description: The Import operation is invoked automatically when a message n

arrives at a network gateway from an external partition from to an internal
partition to.

Environmental precondition: Partitions from and to should be adjoining parti-

tions — from external and to internal. The message should currently reside
in the from partition.

Preconditions for success:
1. The to partition should appear among the addresses in the message’s
destination list.
2. To to partition should have sufficient clearance to receive the message.
3. The automated check should have been applied successtully to the con-

tents of all message parts.

Action upon success: The message is copied across to the new partition, with its
contents filtered to remove any potentially dangerous content and with fresh
seals added; the audit trail is updated accordingly.



3.5. THE PROOFS 83

Export (from: Partition, to: Partition, n: Msgld)
ext wr pool, audittrail

pre from € dom pool N intpartns A
to € extparts A adjoins(from,to) A
n € dom pool(from) A
transferAllowed(from, to, pool(from)(n))

post let new = stripSeals(]TOZ(from)(n)) in
pool = updateMsgPool(;Tol, to,n, new) A

audittrail = audittrail ~ [exportSuccess(from, to, n)]
errs EXPORTFAIL:

from € dom pool N intpartns/A

to € extparts A adjoins(from,to)A

n € dom pool(from)A

= transferAllowed(from, to, pool(from)(n))

PA—

—  pool = pool A\

audittrail = audittrail ~ [exportFailure(from, to, n)]

Figure 3.6: The operation for copying a message from an internal partition to an
external partition.

Action upon failure:

1. If the to partition does not have sufficient clearance to receive the mes-

sage, a record of the invalid attempt to import a message is added to the
audit trail.

2. If the import check fails, a record of the attempt to import a potentially
dangerous message is added to the audit trial.

The formal specification of the Import operation is given in Figure 3.7, where

importAllowed : Partition x Partition X Message — B

importAllowed (from,to,m) &
(Ja € m.destins - a.pid = to) N hasClearance(to, m.classif) N
Ymp € elems m.body - contentAutoChecked(mp.content)

3.5 The Proofs

This section validates the Security Policy Model by showing that the specification
is mathematically consistent, the Security Enforcing Functions preserve the security
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Import (from: Partition, to: Partition, n: Msgld)
ext wr pool, audittrail

pre from € dom pool N extpartns A
to € intparts A\ adjoins(from,to) A
n € dom pool(from) A
importAllowed(to, pool(from)(n))

post let new = rebuildMessage(;Tol(from)(n)) in
pool = updateMsgPool(;Tol, to,n, new) A
audittrail = audittrail ~ [importSuccess(from, to, new)]
errs IMPORTTRANSFERFAIL:
from € dom pool N extpartns A
to € intparts A\ adjoins(from, to)A
n € dom pool(from)A
= hasClearance(to, pool(from)(n).classif)

PA—

—  pool = pool A\
audittrail = audittrail ~ [import TransferFailure(from, to, n)]
IMPORTFAIL:
from € dom pool N extpartns A
to € intparts A\ adjoins(from, to)A
n € dom pool(from)A
hasClearance(to, pool(from)(n).classif )\
= importAllowed(to, pool(from)(n))

PA—

—  pool = poolA

audittrail = audittrail ~ [importFailure(from, to, n)]

Figure 3.7: The operation for copying a message from an external partition to an
internal partition.

properties defined as part of the state invariant, and the specification is complete
with respect to its input space.

3.5.1 Consistency Proofs

There are five parts to the proof of mathematical consistency of the model [2]:
1. The specification is syntax and type correct.
2. All function definitions are well formed and agree with the given signatures.

3. All uses of partial functions are well formed, in the sense that the function’s
arguments are in its domain.
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4. All data type invariants are satisfiable (and hence all data types are non-
empty).

5. The success or failure of each operation is uniquely determined: i.e., the pre-
condition for success and the exception conditions do not overlap. To the best
of our knowledge, this condition has not been made explicit in the literature
before now. (Strictly, it is a consistency property of the application domain,
in which exception conditions have a particular interpretation: it is thus closer
to a “proof opportunity” than a proof obligation in the strictest sense of the
word.)

The first two parts are straightforward.

For the third part, note that all uses of partial functions in this specification have
one of the following forms:

i. m.body(i) where m: Message

ii. pool(p) or pool(p)(n) where pool: MessagePool
iii. changeSeal(p, ¢, mp)
iv. changeSeals(p, m)

For (i), it is easy to check that ¢ € inds m in each case. For (ii), it is easy to check
that p € dom pool and n € dom pool(p) in each case. For (iii), the only use of
changeSeal in the specification is in the definition of changeSeals, whose precon-
dition guarantees the preconditions of changeSeal are satisfied. For (iv), the only

use is changeSeals(to, pool(from)(n)) in the postcondition of InternalTransfer. The
precondition of InternalTransfer guarantees that, for the message in question, all
message parts have valid seals, and hence (by the ValidSeal Lemma in Section 3.2.5)
that they all identify an authoriser, as required.

Turning now to data type invariants, the only occurrences in the specification are
for Session and the state of the system. Both are easily seen to be satisfiable: e.g.
the state invariant is satisfied when the message pool is empty.

Given an operation with precondition for success S and given exception conditions
Fi, ..., E,, proving non-overlap amounts to showing — (S A F;) and = (FE; A Ej) for
i # j. For the AuthoriseMessage, InternalTransfer and Frport operations, there
is a single exception condition and it is of the form =S, so non-overlap is obvious.
For the Import operation, there are two exception conditions, of the form — ) and
Q) N =S respectively, where S = (). The proofs of the required properties are
straightforward.

3.5.2 Preservation of the Security Properties

For each operation, there is a VDM proof obligation to show that, for any state
and inputs which satisty the operation’s precondition, there is a corresponding state
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which satisfies the operation’s postcondition. (This is usually called the satisfiability
proof obligation for operations [2].) For each of the four operations considered here,
the values of the post-state are defined explicitly in terms of the pre-state and the
inputs, so the proof obligation reduces to showing that the new values preserve the
system’s state invariant.

Since the message pool is the only state variable mentioned in the state invariant,
and since the exception cases of the operations do not actually change the message
pool in any way, it suffices to consider only the successtul cases of the four operations.
Each of the properties defined in Section 3.3 shall be considered in turn below.

Property 1: message location

Property 1 says that all messages reside in internal and external partitions only:

dom pool C intpartns U extpartns
For each operation, preservation of this property follows easily from the fact that
pool = updateMsgPool(pool, p, n, new) = dom pool C dom pool U {p}

and the fact that p € intpartns U extpartns; the latter is a consequence of the
environmental precondition in each case.

Property 2: messages in external partitions

Property 2 says that messages in the external partitions have no seals:

Vp € dom pool N extpartns - Ym € rng pool(p) - hasNoSeals(m)

To show that this property is preserved, it suffices to consider the Fxport operation
only, since the other operations do not affect the messages in the external partitions.
Let to be the destination partition and let new be the exported message. It follows
from the UpdateMessagePool lemma that new is the only new message in the pool.
Since, by the induction hypothesis, all other messages in external partitions have no
seals, it suffices to show that new has no seals. From the postcondition of Fxport
we know that new is of the form stripSeals(m) for some message m, so the desired
result follows from the StripSeals lemma. The proof is given in detail in Fig. 3.8.

Property 3: messages in internal partitions

Paraphrased, Property 3 says that, for those parts of messages in internal partitions
which have a valid seal, then the partition has clearance to store the message and
the content has been user-checked:

Vp € dom pool N intpartns - Vm € rng pool(p) - Ymp € elems m.body -
hasValidSeal(mp, p, m.classif ) =
hasClearance(p, m.classif) A
contentUserChecked(mp.content, mp.authoriser)
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from Vp € dom;?ol N extpartns - Vm € rng ]TOl(p) - hasNoSeals(m)

1 new = stripSeals(old) post- Fxport
2 pool = updateMsgPool(;Tol, to, n, new) post-Export
3 from p € dom pool N extpartns, m € rng pool(p)
3.1 p € dom pool sets, 3.h1
3.2 (p:to/\m:new)\/(pEdom;Tol/\mErng;Tol(p))
UpdateMessagePool lemma, 2, 3.1, 3.h2
3.3 from p = to, m = new
3.3.1 hasNoSeals(stripSeals(old)) StripSeals lemma
3.3.2 hasNoSeals(new) subs, 1, 3.3.1
infer hasNoSeals(m) subs, 3.3.h2, 3.3.2
3.4 from p € dom ;701, m € rng ;Tol(p)
3.4.1 p € extparins sets, 3.h1
3.4.2 p E dom;?ol N extpartns sets, 3.4.h1, 3.4.1
infer hasNoSeals(m) Induction Hypothesis hl, 3.4.2, 3.4.h2
infer hasNoSeals(m) cases, 3.2, 3.3, 3.4

infer Vp € dom pool N extpartns - ¥Ym € rng pool(p) - hasNoSeals(m)
V-intro,3

Figure 3.8: Proof of preservation of Property 2 by Export.

To show that this property is preserved, it suffices to consider only the operations
which affect the messages in the internal partitions: AuthoriseMessage, Internal-
Transfer and Import. As for the proof of Property 2 above, it suffices to show that
the desired property holds for the new message. Specifically, it suffices to show that:
the destination partition to has sufficient clearance to receive new; and that each
message part of new with a valid seal has had its contents checked by the given
authoriser. These properties are proved below for each of the three operations in
turn.

AuthoriseMessage:

For the AuthoriseMessage(s,p, n) operation, new is the result of adding fresh seals
for partition p to the message old identified by n. Since sealing does not affect the
message’s classification, it follows that old and new have the same classification.
Also, the AuthoriseMessage operation can be performed only if the sealingAllowed
test is passed, from which it follows that p must have sufficient clearance to store
old and hence must have sufficient clearance to store new, as desired.

Since, as a result of sealing, all parts of new have valid seals, it is necessary to show
that all parts have had their content checked by the given autoriser (and have not
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from new = sealMessage(p, old, s.uid)

St = W N —

5.1
5.2

3.3

5.3.1

5.3.2

5.3.3

5.4
5.4.1

5.4.2

3.5
5.6
5.7

infer Vmp' € elems new.body - hasValidSeal(mp’, p, new.classif ) =

A-intro, 4, 5.6
infer hasValidSeal(mp’, to, new.classif ) =
hasClearance(to, new.classif )\
contentUserChecked(mp'.content, mp'.authoriser)
= -intro, 5.7

new.classif = old.classif Main Sealing Lemma, h1l
sealingAllowed(p, old) pre- AuthoriseMessage
hasClearance(p, old.classif) defn of sealingAllowed, 2
hasClearance(p, new.classif) subs, 1, 3

from ¢ € inds new.body, mp' = new.body(i),
hasValidSeal(mp’, p, new.classif )
let mp = old.body(i) in
mp’.content = mp.content Main Sealing Lemma, h1, 5.h2
= hasValidSeal(mp, p, old.classif ) =
contentUserChecked(mp.content, s.uid)
post-AuthoriseMessage
from hasValidSeal(mp, p, old.classif )
hasClearance(p, old.classif )\
contentUserChecked(mp.content, mp.authoriser)
Induction Hypothesis, 5.3.h1
contentUserChecked(mp.content, mp.authoriser)
A-elim, 5.3.1
mp’.authoriser = mp.authoriser
Main Sealing Lemma, h1, 5.h2, 5.3.h1
infer contentUserChecked(mp.content, mp'.authoriser)
subs, 5.3.2, 5.3.3
from — hasValidSeal(mp, p, old.classif)
contentUserChecked(mp.content, s.uid)
modus ponens, 5.4.h1, 5.2
mp’.authoriser = s.uid
Main Sealing Lemma, h1, 5.h2, 5.4.h1
infer contentUserChecked(mp.content, mp'.authoriser)
subs, 5.4.1, 5.4.2
contentUserChecked(mp.content, mp'.authoriser) cases, 5.3, b4
contentUserChecked(mp'.content, mp'.authoriser) subs, 5.1, 5.5
hasClearance(p, new.classif )\
contentUserChecked(mp'.content, mp'.authoriser)

hasClearance(p, new.classif )\
contentUserChecked(mp'.content, mp'.authoriser) V-intro’, 5

Figure 3.9: Proof of preservation of Property 3 by AuthoriseMessage.
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changed since then). Let mp’ be one of the parts of the message new and let mp
be the corresponding part of message old. Since sealing does not affect message
contents, it follows that mp and mp’ have the same content, hence it suffices to
show that mp has been checked. By invoking the AuthoriseMessage operation, the
operator is taking responsibility for having checked all message parts which did not
have a valid seal, so it only remains to consider the parts which have valid seals.
But sealing does not change the value of the content or authoriser fields for such
parts, so this case follows directly from the induction hypothesis. This completes
the proof for this operation. The proof for the new message case is given in detail

in Fig. 3.9.

Internal Transfer:

The InternalTransfer proof is similar to the AuthoriseMessage proof above. Let new
be the message created by changing the seals on the message old from those for the
originating partition from to those of the destination partition to. As before, old and
new must have the same classification. Thus, from transferAllowed(from, to, old),
it follows that to has sufficient clearance to store new.

It also follows from transferAllowed(from, to, old) that all message parts in old have
valid seals, and hence from Property 3 applied inductively to old that all message
parts have had their contents checked. Since resealing does not change the contents
or authorisers of message parts, it follows that all message parts in new have had
their contents checked, which completes the proof for this operation. The proof is
given in detail in Fig. 3.10.

Import:

The Import proof is quite straightforward, since all seals are stripped off the im-
ported message, and so there is essentially nothing to check. The proof is given in

detail in Fig. 3.11.
This completes the proof that all operations preserve Property 3.

3.5.3 Completeness Proofs

This section is concerned with the proof that the specification is complete with
respect to its input space. Because the modelling is relatively straightforward in
this case, there is little to prove. For each SEF, the environmental precondition
describes the constraints which are to be imposed on inputs to the SEFs by their
interface to the system environment; it thus suffices to show that, for each SEF, the
environmental precondition P implies the precondition for success S or one of the
exception conditions Fj: i.e.,
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from new = changeSeals(to, old)

1 new.classif = old.classif Resealing Lemma, hl
2 transferAllowed(from, to, old) pre-Internal Transfer
3 hasClearance(to, old.classif) defn of transferAllowed, 2
4 hasClearance(to, new.classif ) subs, 1, 3
5 from ¢ € inds new.body, mp' = new.body(i),
hasValidSeal(mp’, to, new.classif )
let mp = old.body(i) in
5.1 mp’.content = mp.content Resealing Lemma, hl, 5.h2
5.2 allSealsAre Valid(old, from) defn of transferAllowed, 2
5.3 hasValidSeal(mp, from, old.classif)
defn of allSealsAreValid, 5.2
5.4 hasClearance(from, old. classif )\
contentUserChecked(mp.content, mp.authoriser)
Induction Hypothesis, 5.3
5.5 contentUserChecked(mp.content, mp.authoriser) A-elim, 5.4
5.6 mp’.authoriser = mp.authoriser Resealing Lemma, hl, 5.h2
5.7 contentUserChecked(mp'.content, mp'.authoriser)
subs, 5.1, 5.5, 5.6
5.8 hasClearance(to, new.classif )\
contentUserChecked(mp'.content, mp'.authoriser)
A-intro, 4, 5.7

infer hasValidSeal(mp’, to, new.classif ) =
hasClearance(to, new.classif )\
contentUserChecked(mp'.content, mp'.authoriser) = -intro, 5.8
infer Vmp' € elems new.body - hasValidSeal(mp’, to, new.classif ) =
hasClearance(to, new.classif )\
contentUserChecked(mp'.content, mp'.authoriser) V-intro’, 5

Figure 3.10: Proof of preservation of Property 3 by InternalTransfer.
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from new = rebuildMessage(old)

1 hasNoSeals(new) RebuildMessage Lemma, h1
2 Vmp € elems new.body - mp.seal = nil defn of hasNoSeals, 1
3 from mp € elems new.body

3.1 mp.seal = nil V-elim, 2, 3.hl
3.2 = hasValidSeal(mp, to, new. classif ) ValidSeal Lemma, 3.1

infer hasValidSeal(mp’, to, new.classif ) =
hasClearance(to, new.classif )\
contentUserChecked(mp'.content, mp'.authoriser)
= -intro’, 3.2
infer Vmp' € elems new.body - hasValidSeal(mp’, to, new.classif ) =
hasClearance(to, new.classif )\
contentUserChecked(mp'.content, mp'.authoriser) V-intro’, 3

Figure 3.11: Proof of preservation of Property 3 by Import.

For each of the operations AuthoriseMessage, Internallransfer and Export, there is
a single exception condition, which is of the form =S, where S is the precondition
for success. In each of these cases, the result thus follows easily from the following
propositional tautology

P = Sv-5§

upon showing that S is well formed, which is straightforward.

For the Import operation, there are two exception conditions, of the form — ) and
Q) N =S respectively, where S is the precondition for success. The result follows
easily from the following propositional tautology:

P = SV-aQV(QA-S)

This completes the proof of completeness.

3.6 Conclusions

In conclusion, this chapter has presented a formal Security Policy Model for an
electronic message processing and transmission network with multi-level security
classification requirements. The VDM-SL specification language was used to define
the model. The model was validated by proving that it is mathematically consistent
and that it satisfies its required security properties.

A key feature of the Security Policy Model is the use of a sealing mechanism to
preserve integrity of messages. The formal specification states precise requirements
for how the sealing mechanism should operate. It also explains how the sealing
mechanism provides a trusted path between the authoriser and trusted software



92 CHAPTER 3. A NETWORK SECURITY POLICY MODEL

performing gateway or access control decisions. The proofs confirm in principle
that the mechanism achieves its purpose. This in turn conveys a certain degree of
assurance that the model is sound.

The main value of the formal model is that it makes the security policy clear and
precise. (See Boswell’s paper [3] on use of 7 for specification and validation of a
security policy model for the NATO Air Command and Control System for more
discussion.) For the application in question, most of the benefit of the formalisation
process was felt to come from being required to make the security policy explicit,
and in particular from trying to express exactly what can be inferred from the fact
that a seal is valid (Property 3 above).

However, the formalisation did reveal an oversight in an earlier version of the model,
which may have had important security implications. The problem was that the
earlier model did not explicitly require that messages in external partitions have all
seals removed before being imported; as a result, the proof that Import preserves
Property 3 could not be completed. Upon reflection, it became apparent that the
original model was open to “spoofing”, whereby an external user with access to a
copy of the sealing function could introduce unauthorised messages into the system.
Being required to formalise the desired property and perform the proofs thus resulted
in the oversight being revealed and the model being improved.

Note in passing that fully formal proofs were constructed and mechanically checked
for an earlier version of the specification, using the Mural formal development sup-
port environment [4]. To save work, the formal specification was modified so that
the four operations shared a common structure, and lemmas were derived which
could be proved once and then applied to all four operations. Formal proofs are
needed for high degrees of assurance, but rigorous proofs were more appropriate for
this chapter, for clarity and ease of understanding. Note however that the amount
of additional effort required to construct fully formal proofs is small [2].

Finally, note that the consistency and completeness proof obligations for exception
conditions were developed by the first author in the course of this work, and do not
appear to have been published before now.
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